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Intermittent strong transport of the 
quasi-adiabatic plasma state
Chang-Bae Kim, Chan-Yong An & Byunghoon Min

The dynamics of the fluctuating electrostatic potential and the plasma density couched in the 
resistive-drift model at nearly adiabatic state are simulated. The linear modes are unstable if the phase 
difference between the potential and the density are positive. Exponential growth of the random small 
perturbations slows down due to the nonlinear E × B flows that work in two ways. They regulate the 
strength of the fluctuations by transferring the energy from the energy-producing scale to neighboring 
scales and reduce the cross phase at the same time. During quasi-steady relaxation sporadic appearance 
of very strong turbulent particle flux is observed that is characterized by the flat energy spectrum and 
the broad secondary peak in the mesoscale of the order of the gyro-radius. Such boost of the transport 
is found to be caused by presence of relatively large cross phase as the E × B flows are not effective in 
cancelling out the cross phase.

In the experiments of the magnetically confined fusion plasmas, the confinement is degraded by the presence of 
the turbulence. Long-range electromagnetic interactions between the charged particles cause the non-uniform 
plasma equilibrium linearly unstable. Small perturbations grow exponentially and the plasma becomes turbulent 
through numerous nonlinear interactions, notably the E × B advection. Turbulence enhances the level of the 
transport of the particles and the heat much higher than classical collisional dissipation from the hot-and-dense 
core to the edge. Since there exist various forms of the free-energy source that may be released to turbulence, it is 
a general practice to study the effect of each source on the transport separately. At the edge region of the confined 
plasma, the plasma temperature is not as high as the core so that the collisions between the plasma particles are 
not negligible in the plasma dynamics.

Set of Hasegawa-Wakatani equations1 is a minimal model that is suitable for the study of the edge plasma 
confined under strong magnetic field. At the equilibrium the electron temperature, which is isothermal, is much 
higher than the ion temperature and the particle density is non-uniform with a constant gradient length across 
the radius. After small random disturbance is introduced to the equilibrium, the evolutions of the fluctuating 
electric potential and the electron density are studied with fixed density gradient. The free energy associated with 
the non-uniform density is tapped into the plasma by the particle transport across the plane perpendicular to the 
magnetic field which is then dissipated by the resistive dissipation along the field. The plasma is assumed to be a 
slab where the Cartesian coordinates x and y represent the radial and the poloidal positions, respectively. The 
plasma is linearly unstable if the density perturbation of the resistive-drift wave lags behind the potential pertur-
bation. The linear growth rate is large at the scale of the order of the ion gyro-radius ρs that is associated with the 
electron temperature. The fact that the stability has a strong dependence on the cross phase between the pertur-
bations has a certain similarity to a damped harmonic oscillator enforced by the external harmonic force. The 
power supplied to the oscillator is proportional to sin2Δ where Δ is the phase difference between the force and 
the displacement. The similarity between the two problems ends here because the potential and the density in the 
plasma are coupled so that they are determined self-consistently by the dynamics. The strength of the perturba-
tion and the particle transport Γ, which is the product of both the particle density n and the E × B velocity vEx, 
initially grow exponentially, because of the linear instability. With the increase of the fluctuation level, the nonlin-
ear E × B advection becomes important to the evolution of the fluctuations. The energy of the fluctuation becomes 
saturated and the peak of the energy spectrum moves toward larger scale than ρs. Since Γ depends both on the 
fluctuation levels of the potential and the density and on the cross phase2–4 between them, Γ declines at a faster 
rate than the energy. It is because the cross phase relaxes toward 0 as larger-scale fluctuations carry most energy.

While running simulations of the resistive-drift plasma dynamics1, where the fluctuating electron density 
closely follows the Boltzmann distribution, an interesting result that had not been reported before was discovered 
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during the quasi-steady period of the saturation. It is found that the saturation of Γ does not proceed in mono-
tonic fashion. Instead, the fast-pace increase and decrease of Γ is found to repeat intermittently during the 
relaxation stage. Complete explanation of the observed non-uniform evolution of Γ would require quantitative 
information on how the energy and the phase, which are of course coupled to each other, evolve under the E × B 
energy fluxes. As the analytical evaluation of the nonlinear fluxes is of higher degree of difficulty, we intend to 
rely on the numerical data to elucidate their impact on the cross phase. A brief account of the results is as follows.

Figure 1 shows that in the early stage of the relaxation when the energies reach a plateau or change slowly, Γ 
monotonically decreases with shorter time scale. It may be suspected that the relaxation of the phase takes longer 
than the fluctuation intensity. When Γ is intermittently large at the later stage of the relaxation, its spectrum 
displays a distinct hump in the mesoscale, while the energy spectrum in the scale does not puff up, but is almost 
flat, or its gradient is less steep. This suggests that δ, which is the cross phase between the electric potential and 
the density, is not uniform across the spectral range, and that in particular, δ changes abruptly near the foot of the 
hump. Since E × B nonlinearity clearly controls the behavior of δ during the relaxation, it is natural to separate out 
its effect on δ. It may be better to divide δ into δ0 and δ1, where δ1 is driven by an advective part Q of the nonlinear 
E × B energy flux, and δ0 is the rest that includes the linear response. During the course of early development of 
the energy saturation, δ0 is almost cancelled out by δ1 in the scale where most energy is contained. As a result, Γ 
decreases continuously in time, until slowly changing Q turns the corner to make δ1 ineffective in blocking δ0 in 
the mesoscale. Then, a little hump in the spectra of Γ starts to grow, and it becomes larger as δ1 adds to, instead of 
subtracting from, δ0, as Q changes sign. After Q reaches a peak, it goes on decreasing, to change the sign. Then, the 
hump in the spectrum becomes lower, and drags Γ down. The same process repeats itself during the quasi-steady 
phase of the energy saturation.

There exist many reports of the experimental measurements of the cross phase2,3. In spite of its importance 
in the plasma transport by the drift-wave turbulence4 the cross phase has not been studied theoretically as much 
as the energetics of the fluctuations. For example, the spectrum of the fluctuations was theoretically predicted 
in refs5,6 and the energy transfer between the fluctuations was analyzed by Manz7. Naulin8 tried to compute 
the cross phase by modelling the non-adiabatic response. Camargo9 considered the cross phase in the linearly 
unstable regime. The role of E × B energy flux Q on the cross phase has been touched upon in the context of the 
turbulence under sheared flows. Terry10,11 estimated the suppressions of the turbulence and the cross phase by 
the flow shear. Experimental evidence that the sheared flow modifies the turbulent transport through the change 
of the cross phase has been reported12,13. Impact of the zonal flow on the cross phase was reviewed by Diamond 
and co-workers14.

The role of Q fluxes is not limited to the particle transport. For example, they are equally important in the ther-
mal energy transport because it depends on the cross phase between the electric potential and the pressure. We 
proceed by describing the evolutions of the energy and the cross phase based on the formalism that was recently 
developed15, followed by the presentation of the scenario based on the analyses of the numerical simulation, and 
the summary.

Results
Description of the model dynamics. The dynamics of the plasma are pedagogically described by the 
resistive-drift model that couples the evolutions of the electrostatic fluctuations of the electric potential φ and the 
electron density n. Through the model one may study the particle transport while the gradient of the background 
electron density is held fixed with the constant scale length Ln. Since the electron temperature does not fluctuate, 
the heat transport of the plasma is excluded in the model. Collisions between the ions and the electrons are 
included so that the steady state is achieved where the free tapped into the plasma is dissipated by the resistive 
loss. Utilizing the normalizations of the spatial scale ρs, the time Ln/cs, φ and n with (Teρs/eLn) and n0ρs/Ln, respec-
tively, where =c T M/s e i  is the sound speed and ρs = cs/Ωi, we have:

ϕ ϕ α ϕ ν ϕ∂ + × ∇ ⋅ ∇ ∇ = − − ∇⊥ ⊥ ⊥ ⊥ẑ n[ ( ) ] ( ) , (1)t
2 6

Figure 1. Evolutions of the kinetic energy ϕ= ∑→ →K kk k
1
2

2, the particle-density energy = ∑→ →P n ,k k
1
2

2  and 
the transport up to t = 105.
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ϕ ϕ α ϕ ν∂ + × ∇ ⋅ ∇ = −∂ + − − ∇⊥ ⊥ ⊥ẑ n n n[ ( ) ] ( ) (2)t y
4

The plasma is assumed to be a slab where the coordinate axes are chosen so that the equilibrium density gra-
dient is in the −x direction, the magnetic field along the z axis, and the electron diamagnetic drift along the y. 
Equation (1) describes the quasi-neutrality that the ion polarization current is balanced by the parallel electron 
current, where the parameter α quantifies the degree of closeness to the adiabatic state. Larger α means that the 
electron distribution is closer to be Boltzmann distribution. Equation (2) represents the electron continuity, as 
the perpendicular compression on the left-hand side equals the parallel compression. Hyper dissipations with 
coefficient ν are introduced to truncate the fluctuations of fine scale compared to ρs

16,17.
The energy-conservation laws in the Fourier space may be found by multiplying Eqs (1) and (2) by the 

complex-conjugates ϕ− →
⁎
k

 and →
⁎n
k

, respectively, and by taking the real parts, as follows:

 α β β δ ν∂ + = − − −ϕ→ → → → → → →K Q P cos k K( ) 2 ( ) 2 , (3)t k k k k k k k
4

 α β δ ν∂ + = Γ − − −→ → → → → → →P Q P cos k P( ) 2 (1 ) 2 (4)t k k
n

k k k k k
4

where, ϕ=→ →K kk k
1
2

2 is the kinetic-energy density, =→ →P nk k
1
2

2 the particle-density energy, the relative mag-
nitude β ϕ= | |→ → →n/k k k , the phase difference δ θ θ= −ϕ→ → →k k k

n  with θ ϕ ϕ=ϕ
→

− → →Itan [ ( )/ ( )]
k k k

1   and θ→
k
n  corre-

spondingly, and the particle transport β δΓ =→ → → →k P sin2k y k k k . In Eqs (3) and (4), ϕ ω= − → ⋅ ∇ϕ
→ → ⊥ →⁎Q v( )
k k E k  and 

= → ⋅ ∇→ → ⊥ →⁎Q n v n( )
k
n

k E k  are the E × B fluxes for the kinetic and the particle-density energies, respectively, and the 
vorticity ω ϕ= −→ →kk k

2  was used for the derivation. It is clear from Eqs (3) and (4) that, for linearly unstable 
f luc tuat ions ,  β δ<→ →cosk k  and β δ α β δ> −→ → → →k sin cos(1 )y k k k k ,  resp ec t ive ly.  As  δ→

 1k  and 
β δ− >→ →(1 ) /2k k

2  in the case of highly adiabatic state (α ≫ 1), linearly unstable modes should follow δ α<→ k /k y .
Let Δk1 be the range of k where the modes are most unstable. As the fluctuations grow, the nonlinear energy 

fluxes develop to slow down the growth of the fluctuations by taking the energy away from the range Δk1 to the 
modes of larger scale Δk2. While ϕ

→Q( )
k

  at Δk1 is approximately α β δ β−→ → → →P cos2 ( )k k k k , it is now negative in 
Δk2. In order for the modes of Δk2 to stay nearly steady, β→

k  becomes larger than δ→cos k , so that ϕ > | |→ →nk k . 
Then, the resistive α term in equation (4) reverses sign so as to strengthen | |→n k . Since  →Q( )

k
n  is negligibly small 

for the quasi-adiabatic plasma, it is too weak to hamper the increase of | |→n k . For the modes in the scale of Δk2, 
| |→n k  soon exceeds ϕ→

k  and, thus, the α term in equation (3) becomes positive to raise the kinetic energy. The 
excessive energy is transferred to the modes of neighboring scale Δk3, and the process repeats.

One way of obtaining the equation for δ→
k  is as follows15: First, Eqs (1) and (2) are multiplied by the 

complex-conjugates ϕ− →
⁎
k

 and →
⁎n
k

, respectively. By dividing the imaginary part of each result by →K k  and →P k , 
respectively, and by subtracting from each other, one obtains:
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where, the terms that are directly related to δ→
k  are bundled up into →

k , where:
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It is convenient to separate the cross phase as δ δ δ= +→ → →
k k k0 1, where δ→

k 0 is defined as:
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After replacing δ→
k 0 in equation (6) by using equation (7), →

k  becomes:
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when the electron response is close to be adiabatic, β→
k  is almost unity, and β∂ →t k  may be approximately negli-

gible. Equation (5) becomes
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The first term on the right-hand side of equation (9) has the desirable property of keeping δ→
k 1 close to zero, if 

the second term is negligible. Since →I Q( )
k
n  is small relative to ϕ

→I Q( )
k

, and δ∂ ≈→ 0t k 1  at quasi-steady state, δ→
k 1 is 

positive if →I Q( )
k
n  is negative. As a result, δ→

k  is larger than δ→
k 0, and Γ→

k  is enhanced.

Numerical results. Figure 1 shows the evolutions of the kinetic energy = ∑→ →K Kk k  and the particle-density 
energy = ∑→ →P Pk k  up to t = 105. The exponential growths of K and P due to the linear instability in the range 
kρs≤1 begin to slow down around t = 1.7 × 103. K becomes steady at t ≈ 5 × 103, when the E × B energy flux 

ϕ
→Q( )
k

  counters the destabilizing α term in equation (1), to move the spectral peak of K to kρs ≈ 0.1. On the other 
hand, P is still increasing beyond t = 105, albeit slowly, because →Q( )

k
n  is so weak for highly adiabatic state 

(α = 10) that the relocation of →P k  to reach saturation takes longer18. Also plotted in Fig. 1 is the particle transport 
Γ = ∑ Γ→ →k k  on the right vertical axis. Unlike K and P, there seem to be two stages in the evolution of Γ after the 
linear growth. First, when the energies enter the saturation phase, Γ starts to drop fast, and monotonic decay of Γ 
follows, as a result of both the energy peak moving toward small kρs, and δ→

k  gradually becoming small, due to the 
action of ϕ

→I( )Q
k

 in equation (9). After t ≈ 2.5 × 104, Γ stops falling, and begins the second phase of aperiodic 
repeat of going up and down. Around t = 8 × 104, it jumps four times higher in time Δt = 3.5 × 103.

Figure 2 shows the cross phases at times around the transition from the monotonic decline of Γ to the 
up-and-down period starting at t = 2.4×104 and ending at t = 2.7 × 104 with the time interval t = 1×103 over the 
range of k between 0 and 1.2. The plotted data δJ and δJ1 are the average values of δ→

k  and δ→
k 1, respectively, in the 

bin of J ≤ |
→

|k | < J + Δk with the width Δk = 2π/L. δJ’s are small but positively finite, while δJ1’s are negative, and 
larger than their respective δJ’s. Note that in the spectral range kρs ≥ 0.6, δ→

k  is approximately zero at t = 2.4 × 104, 
but is small but finite of order 10−2 at t = 2.7 × 104. It turns out that ϕ

→I( )Q
k

 has δ→
k 1 almost cancel out δ→

k 0, which 
is nearly constant in time, at t = 2.4 × 104, but that it is too small to complete the cancelation at t = 2.7 × 104. 
Figure 3 shows the spectra Kk and Γk of the kinetic energy and the particle transport over the half plane ky ≥ 0 at 
the transition from t = 2.4 × 104 until t = 2.9 × 104. The Kk’s are the larger of the two, and are plotted in the upper 
group of lines, while the Γk’s are in the lower. Around kρs = 0.7, Γk is rising after t = 2.5 × 104, and the hump 
becomes higher and wider onward. At kρs = 0.8, Γk jumps about three orders of magnitude relative to the time 
t = 2.4 × 104. Meanwhile, Kk does not show appreciable change in time until t = 2.8 × 104, and it becomes nearly 
flat at t = 2.9 × 104 in the range. Since Γk drives Kk through Pk as in Eqs (3) and (4), Kk lags Γk in response to the 
change of δk.

Figure 2. Cross phases δk and δk1 during the period of the transition from the monotonic decline of Γ to the up-
and-down stage, between t = 2.4 × 104 and t = 2.7 × 104: δk’s in the upper group of lines, and δk1’s in the lower.

Figure 3. Spectra of Kk and Γk during the period of the transition from the monotonic decline of Γ to the up-
and-down stage, between t = 2.4 × 104 and t = 2.9 × 104: Kk’s in the upper group of plots and Γk’s in the lower.
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Figures 4 and 5 show corresponding plots of the cross phase δk and δk1 and the spectra Kk and Γk in the 
up-and-down period of Γ at four different times, two each when Γ is high and low, denoted as top and bot, 
respectively. In Fig. 4, the differential of δk between the times when Γ is strong and weak is typically about 0.01. 
For example, at kρs = 0.8, δk changes from 0.01 to 0.02. In Fig. 5, the peaks of Kk and Γk are seen to move toward 
slightly smaller kρs, and their slopes in the range 0.2 ≤ kρs ≤ 0.45 are not as steep as the transient cases of Fig. 3. 
The ratio of Kk’s at t = 8.25 × 104 (strong transport) and at t = 8.5 × 104 (weak transport) is about five in the mesos-
cale. Yet the ratio of Γk’s at the same times is of the order of 10. Therefore, it agrees with the difference of δk 
between the times. Note that at t = 6.05 × 104 and 8.25 × 104, when the transport is strong, Γk of the broad second-
ary peak is well within an order of magnitude of the primary peak around kρs = 0.1. Considering the width of the 
peaks and the number of modes involved, the secondary peak contributes more than the primary peak to push up 
the transport at t = (6.05 × 104 and 8.25 × 104). By contrast, the primary peak of K is still two orders of magnitude 
higher. As a result, Γ fluctuates more than K in time.

As noted in Fig. 4, δk1 in the mesoscale is of opposite sign between strong and weak transport: positive in the 
former, and negative in the latter. As equation (9) suggests, this is because ϕI Q( )J , which is the sum of ϕ

→I Q( )
k

 in the 

bin J ≤ |
→
k | < J + Δk on the half plane ky ≥ 0, changes sign. Figure 6 clearly shows that in the range of k between 

0.45 and 0.85, ϕ
→

−
I( )Q 10

k
4 is positive for low transport, whereas ϕ

→I Q( )
k

 is of the order of 10−4, and negative 
for high transport. On dimensional grounds, ϕ

→I Q( )
k

 may be approximated as ky times a certain velocity Vy and 
k2|ϕk|2, where Vy is interpreted as an advecting velocity19. Vy is to be negative, i.e. along the direction of the ion 
diamagnetic drift, in the mesoscale to achieve large transport, which Fig. 6 confirms.

Summary
Aperiodic manifestation of very strong particle transport of the resistive-drift plasma turbulence at highly adia-
batic state is understood by the coupled dynamics between the fluctuation energies and the cross phase. The E × B 
energy flux plays dual roles in the plasma transport. Its foremost role, which has been well studied, is the transfer 
and reallocation of the kinetic energy through cascade. At the same time, it can indirectly influence the evolu-
tion of the energy, by controlling the cross phase through advection. It turns out that the latter effect is strong 
in the mesoscale of kρs, roughly between (0.5 and 0.9). As a result, the cross phase is large in the mesoscale. A 
secondary broad peak in the mesoscale appears in the spectrum of the plasma particle transport that exceeds the 
contribution of the primary peak, where most of the energy resides. The energy spectrum becomes flat, instead of 
decreasing, in the mesoscale, because the particle transport pushes up the plasma energy.

Although the cross phase between the fluctuations is an integral part in the determination of the transport 
flux, there exist not many works that deal with it on the same footing as the fluctuation energy20. It is stressed 

Figure 4. Cross phases δk and δk1 at the times of strong transport (top), t = 6.05 × 104 and 8.25 × 104, and at the 
times of weak transport (bot), t = 7.85 × 104 and 8.5 × 104: δk’s in the upper group of plots and δk1’s in the lower.

Figure 5. The spectra of Kk and Γk at the times of strong transport denoted as top and weak transport denoted 
as bot at the same time set of Fig. 4: Kk’s in the upper group of lines and Γk’s in the lower.
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in this work that studying the cross phase between the electrostatic potential and the plasma density, in addi-
tion to the energy evolution, is crucial to understanding the particle transport near the adiabatic state in the 
Hasegawa-Wakatani resistive-drift plasma model. Since the electrons in the fusion plasmas are almost adiabatic, 
the particle transport may be presumed to be small. Yet, it may intermittently become strong, as indicated in the 
simulation. Advection of the kinetic energy in the same direction as the ion diamagnetic drift produces large 
cross phase and the particle transport. In other models of the plasma turbulence, if the transport and the energy 
relax by different rates from each other in the nonlinear saturation stage, it may indicate that the relaxation of the 
cross phase between the fluctuations is important in the prediction of the plasma confinement. Analytical work 
is desirable to supplement the present results, by approximating the advective E × B flux in terms of the energy 
and the cross phase, to close the dynamic chain between the energy and the cross phase. The evolution of the 
cross phase is believed to be similarly worked out inside the fusion plasmas. When the zonal flow is present with 
the turbulence, the advective E × B flux by the non-zonal fluctuations may be negligibly small compared to the 
advection by the zonal flow. As far as the cross phase is concerned, the latter advection is canceled out and the 
non-zonal E × B advection may lead to the disparity between the distributions of the fluctuations and the trans-
port. Extensions to the transport of both the particles and the thermal energy in the plasmas with the presence of 
the zonal flows are in progress.

Methods
Numerical analyses. Eqs (1) and (2) are numerically integrated on the square domain of the length L = 80π 
that is evenly divided by N2 grid points, with N = 256. BOUT +  + platform21 is used, employing PVODE with 
adaptive time stepping to advance in time, and the Arakawa scheme22 for the treatment of the Poisson brackets. 
For the present work, the periodic boundary conditions are imposed, and the coefficient of the hyper-dissipation 
is ν = 3 × 10−3, while the adiabaticity parameter α = 10. Initially, the fluctuations are set as n = 0 and ϕ∇⊥

2  to be 
the modulation of θ θ+ +π π− ( )( )10 sin sinx

L x
y

L y
2 8 8  with pseudo-random phases θx and θy by 13 other small-am-

plitude harmonics of box size L in both x and y.

Data availability. The datasets generated during the current study are available from the corresponding 
author on reasonable request.
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