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Chemotherapy agents can cause serious adverse effects by attacking both cancer tissues and normal 
tissues. Therefore, we proposed a synthetic lethality (SL) concept-based computational method to 
identify specific anticancer drug targets. First, a 3-step screening strategy (network-based, frequency-
based and function-based screening) was proposed to identify the SL gene pairs by mining 697 
cancer genes and the human signaling network, which had 6306 proteins and 62937 protein-protein 
interactions. The network-based screening was composed of a stability score constructed using a 
network information centrality measure (the average shortest path length) and the distance-based 
screening between the cancer gene and the non-cancer gene. Then, the non-cancer genes were 
extracted and annotated using drug-target interaction and drug description information to obtain 
potential anticancer drug targets. Finally, the human SL data in SynLethDB, the existing drug 
sensitivity data and text-mining were utilized for target validation. We successfully identified 2555 SL 
gene pairs and 57 potential anticancer drug targets. Among them, CDK1, CDK2, PLK1 and WEE1 were 
verified by all three aspects and could be preferentially used in specific targeted therapy in the future.

Synthetic lethality (SL) was first defined by Calvin Bridges in 19221, who noticed that some combinations of gene 
mutations in the model organism Drosophila melanogaster conferred lethality. This term now refers to the genetic 
interaction between two or more genes where only their co-alteration (e.g., by mutations, amplifications or dele-
tions) can result in severe loss of viability or death of the cell, although the cell remains viable when the individual 
genes are altered2. The term “SL” was coined in 1946 by Theodosius Dobzhansky, who was a geneticist and evo-
lutionary biologist and described a lethally genetic interaction as when two independently viable homologous 
chromosomes were allowed to recombine in Drosophila pseudoobscura3. In 1997, Hartwell et al. first proposed to 
apply the concept of SL and used chemical and genetic screening methods to develop selective anticancer drugs 
and anticancer drug targets4. Since then, SL has become a valuable concept that has led to an innovative approach 
for identifying specific anticancer drug targets5,6.

Serious adverse drug reactions are some of the main problems with cancer treatment. Conventional cancer 
chemotherapy that does not exploit the genetic differences between cancer tissues and normal tissues tends to 
produce toxic effects on normal cells. To solve the problem, targeted therapy has emerged as a hot spot in anti-
cancer drug research and development. In addition, the discovery of “SL” creates new hope in discovering an 
anticancer drug target for targeted therapeutics7. Cancer is caused by the inactivation or mutation of particular 
genes in normal cells. If specific mutant genes are involved in cancer, it is possible to specifically kill cancer cells 
without harming healthy cells by inhibiting the SL partner gene with anticancer drugs. Even if the distribution 
of the SL partner gene is not specific, it will not cause a serious impact on normal cells according to the concept 
of SL. A major breakthrough in the targeted therapy of BRCA1-mutant cancers was the finding that cells with 
BRCA1/2 mutations were exquisitely sensitive to poly (ADP-ribose) polymerase (PARP) inhibitors8,9, which was 
a great utility of SL. In addition, targeted therapy achieved a milestone success via the targeting of the PARP-1 
enzyme by Olaparib in ovarian cancer patients carrying a tumor BRCA1/2 mutation10,11.
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To identify SL interactions that could be efficacious in treating cancer, many approaches have been proposed. 
Current screening methods for potential SL gene pairs can be summarized in three categories. The first is based 
on model organisms (such as yeast or fruit flies). Their genomes are small and can be easily mutated and matched; 
therefore, gene silencing techniques are easier to conduct in model organisms. However, as with the homologous 
inference methods of all model organisms, most genes in SL gene pairs in model organisms do not have homol-
ogous genes in human genome. Even though homologous genes can be found in the human genome, their func-
tions have undergone great changes and cannot be directly converted into SL gene pairs12. The second screening 
method was gene silencing in mammals, and two types of gene silencing methods have been developed. One is 
based on the priori knowledge speculation13. The potential SL gene pairs contained two kinds of genes, namely, 
mutant cancer genes and SL partner genes. Therefore, the SL partner genes should be directly knocked down and 
tested one by one. The other is based on high-throughput experimental techniques for unbiased screening of the 
whole genome14. Ultimately, siRNA and CRISPR screenings proved to be the most reliable methods for detect-
ing SL gene pairs15. However, compared to model genetic systems, human cell systems face greater challenges 
for genome-wide siRNA or CRISPR screening. Moreover, these approaches are considerably more expensive, 
labor-intensive, time consuming and many of the essential genes so identified turn out to be either restricted to 
only these cell-line models or are in frequently overexpressed in cancers16. For these reasons, the third screening 
method based on computational methods has attracted more and more attention.

Computational approaches, which can help to identify and prioritize potential SL gene pairs for further exper-
imental validation, represent an attractive alternative compared to genome-wide siRNA or CRISPR-based human 
cell line screening approaches. These methods include human orthologous gene pairs inference from yeast SL 
genes7,17; the use of robustness features in the cancer PPI network to evaluate the importance of gene pairs18; a 
mutual exclusivity calculation using statistical models from gene mutation/transcriptional expression data19,20; 
data-driven detection of SL (DAISY) that combined somatic copy number alteration, siRNA screening and cell 
survival and gene co-expression information and achieved a promising performance in data-driven SL gene pair 
identification21; and a learning-based pipeline for training and prediction, which combined the three features 
of mutation coverage, driver mutation probability and network information centrality into a manifolds ranking 
model to generate a ranking list of potential SL pairs16.

Furthermore, the methods mentioned above are not based on the human biological system or cannot be a 
good simulation of the human complex and staggered environments. The cells employ signaling pathways and 
networks to drive biological processes in which genomic alterations might result in malignant signaling, which 
then leads to cancer phenotypes22. In this article, the human system was abstracted into a human signaling net-
work. The specific mutant gene was defined as a cancer gene and its SL partner gene was defined as the non-cancer 
gene. Then, we proposed a computational method using a 3-step screening strategy to identify SL gene pairs from 
the perspective of a network system. Next, according to the SL gene pairs we identified, we extracted non-cancer 
genes to obtain anticancer drug targets. Finally, we used 3 different aspects of data to validate parts of our results. 
Overall, the SL strategy contributes to the identification of anticancer drug targets and drug redirection.

Results
Human cancer signaling network. This subject focused on high-frequency non-cancer genes that have a 
greater impact on biological systems. Thus, the frequencies of all non-cancer genes were counted according to the 
genes passing through the shortest path between all cancer gene and non-cancer gene pairs in the human signal-
ing network (Fig. 1(a)). All of the nodes in the human signaling network were sorted by frequency in descending 
order. Then, the top 30% (740) of non-cancer genes were obtained to construct a network named the human 
cancer signaling network (HCSN) for further research. As shown in Fig. 1(b), HCSN includes 6153 proteins and 
56976 protein-protein interactions, and 697 cancer genes were successfully mapped. Thus, non-cancer genes were 
paired with cancer genes to form 515780 (740 × 697) gene pairs, which were used as input data for the following 
3-step screening strategy for identifying SL gene pairs.

Figure 1. The illustration of the network. (a) The human signaling network. (b) The human cancer signaling 
network (HCSN). Blue nodes denote non-cancer genes; yellow nodes denote cancer genes; and edges represent 
protein-protein interactions. A larger node indicates a greater degree.
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SL gene pairs. We designed a 3-step screening strategy to predict the SL gene pairs in the HCSN, and the 
results are described herein.

First, we chose the network-based screening method to obtain the SL gene pairs. According to the stability 
score and 1000 randomized networks (P < 0.05), we obtained the significant SL gene pairs. Then, we screened 
the gene pairs based on the distance between non-cancer genes and cancer genes. The average distance between 
non-cancer gene and cancer gene was 2.90; therefore, we kept the gene pairs with distances no more than 2. After 
the first screening step, 9241 gene pairs were obtained.

Second, we chose the frequency-based screening method. We plotted the cumulative frequency percentage 
plot to obtain a reasonable frequency threshold (Fig. 2). As seen from the figure, the growth trend of the top 50% 
curve was faster. Therefore, 122 high-frequency non-cancer genes were focused on in our study. As a result, 4788 
gene pairs were obtained.

Third, the function-based screening method was performed. The 4788 gene pairs from the second screening 
contained 749 genes and these genes were significantly enriched in 47 pathways (Fig. 3). These pathways could be 
divided into seven biological process categories, namely, cell growth and death, cell motility, signal transduction, 
endocrine system, immune system, cell community and growth. Many biological pathways in our results were 
found to be closely related to SL. For example, the HIF-1 signaling pathway, which activated the transcription of 

Figure 2. The cumulative percentage of frequency. The X-axis was the number of non-cancer genes. The Y-axis 
was the cumulative percentage of frequency. (122, 0.5) represented the cumulative frequency of the first highly 
frequent 122 genes account for 50% of the cumulative frequency of the total genes.

Figure 3. The significant enrichment pathways. Different colors denoted different pathway categories.
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genes involved in angiogenesis, cell survival, glucose metabolism and invasion, was used as a screening pathway 
for the discovery of SL gene pairs23. The PI3K-AKT signaling pathway24, the RAS signaling pathway25, the P53 
signaling pathway26, and the mTOR signaling pathway27 were also widely considered promising pathways for SL 
recognition and have attracted the interest of many researchers.

In addition, after function-based screening, we obtained 395 significantly enriched genes conformed 2555 
SL gene pairs, which included 81 non-cancer genes and 314 cancer genes (Fig. 4). The average degree of the light 
blue nodes and red nodes were 8.14 and 31.54, respectively. According to the concept of SL, we think that these 
81 non-cancer genes should be potential and specific anticancer drug targets. Designing drugs against these 
non-cancer genes in cancer with specific cancer gene mutations could improve the therapeutic efficiency and 
reduce side effects. However, at the same time, many aspects need to be considered before a protein that could 
be used as a drug target such as molecular weight, polarity, and tissue distribution in the body. Therefore, we 
focused on the existing drug target information and our non-cancer genes in the SL gene pairs to explore adaptive 
anticancer drug targets.

Potential anticancer drug targets. We used the existing drug-target interaction data and 81 non-cancer 
genes in SL gene pairs to extract specific anticancer targets and drugs, which might be used in cancer treatment. 
After we annotated the 81 non-cancer genes with the drug-target information, 57 known drug targets (Table 1) 
were identified, of which 27 had been used as anticancer drug targets in clinical treatment. Using these 27 targets, 
we expected specific and low-risk cancer therapies to be achieved. In our opinion, the rest of the 30 targets, which 
are closely related to the occurrence and progression of cancer, such as immune-related and anti-inflammatory 
targets, have the potential to become anticancer drug targets and will be used in anticancer drug re-positioning.

In addition, the average degree of the 57 drug targets was 33.81, which indicates those nodes had interactions 
with more red nodes in the network (Fig. 4). Meanwhile, some light blue nodes showed a large degree, but they 
weren’t known drug targets such as PAK1 and IL4. The frequencies of PAK1 and IL4 were 269 and 60, respectively. 
PAK1 encodes a family member of the serine/threonine p21-activating kinases, also known as the PAK proteins. 
This specific family member regulates cell motility and morphology. In addition, PAK1 could be mapped into 
many promising SL recognized pathways such as the MAPK signaling pathway, focal adhesion, and the ErbB 
signaling pathway. The protein encoded by the IL4 gene is a pleiotropic cytokine produced by activated T cells. 
This cytokine is a ligand for the interleukin 4 receptor. In addition, it could be mapped into the T cell receptor 
signaling pathway and the Fc epsilon RI signaling pathway. Therefore, those light blue nodes that had large degree 
also tend to have great effects in specific anticancer therapy in combination with the SL gene pairs we identified.

Validation of the anticancer drug target. To verify the results, three aspects of the data were used. The 
first was SynLethDB28, which contained SL pairs information collected from biochemical assays, computational 
predictions, text mining results and other related databases. We used the overlap gene data between SynLethDB 
and our predicted anticancer drug targets information to validate the results. Because of the limitation of the SL 
gene pair data, 20 of the 57 known drug targets that we found were not included in SynLethDB. As a result, 18 
of the 37 anticancer drug targets were validated as SL partner genes in this database. These targets with corre-
sponding cancer genes constitute 35 SL gene pairs in our predicted results (Supplementary Table S1). The second 
was the known drug sensitivity data. Among the data of drug targets that was used, 13 were overlapped with 
our result. In different cancer cell lines, a smaller IC50 value indicates higher drug sensitivity and the corre-
sponding drug target tends to have better effects in cancer therapy. More information is shown in Supplementary 
Table S2 (only IC50 values less than 0 are shown). Finally, we conducted text-mining to determine the relation-
ship between the anticancer drug targets that we found and the genes related to cancer (or SL). The results showed 

Figure 4. SL gene pairs. Light blue nodes denoted non-cancer genes; red nodes denoted cancer genes. Larger 
node indicates greater degree.
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that 52 of the 81 non-cancer genes had been shown to be significantly associated with cancer (p < 0.05) and 16 
of the 81 non-cancer genes had been shown to be significantly correlated with SL. Furthermore, 12 anticancer 
drug targets were closely associated with both SL and cancer (see Supplementary Table S3). In total, 27 of the 57 
anticancer drug targets were verified through three different aspects and 4 targets have been verified in all three 
aspects of the data, as shown in Fig. 5(a).

In particular, the four overlap non-cancer genes (CDK1, CDK2, PLK1 and WEE1), which were validated by 
the three data resources, were all known anticancer drug targets and clinical trial targets. Furthermore, CDK1, 
CDK2, PLK1 and WEE1 were also predicted to be promising anticancer targets in BRCA2-ovarian cancers by 
Bueno’s research29. Therefore, we focused on the analysis of these four overlap genes. Above all, the CDK1 and 
CDK2, which can be promising specific anticancer target, are both family members of the serine/threonine 
protein kinases that participate in cell cycle regulation. Firstly, CDK1 can be the SL partner gene of the cancer 
genes KRAS and MYC. As reported, KRAS mutations have been found in approximately 20% of human can-
cers, but there is currently no therapy targeting them30. Thus, targeting the SL partner gene CDK1 in ovarian 
cancer patients carrying a KRAS mutation could be a good choice in anticancer drug research and develop-
ment. Although the cancer gene MYC is a very attractive therapeutic target in the treatment of breast cancer, 
the direct inhibition of the MYC gene is still a great challenge and has not yet provided a clinically effective 
drug to target it31. In the MYC-dependent breast cancer, another alternative is to target MYC’s SL partner gene 
CDK1, as reported in some small interfering RNA (siRNA) experiment31. Secondly, CDK2 was predicted to be 
SL partner gene with p53 and MYCN by RNA interference techniques32,33. In p53 defective cells, CDK2 can sep-
arate mitogenic from anti-apoptotic signaling for SL33. The SL relationship between CDK2 and MYCN indicates 
CDK2 inhibitors as potential MYCN-selective cancer therapeutics32. Furthermore, CDK1 and CDK2 are both 
drug targets of the investigational drug Alvocidib which is a synthetic flavonoid based on an extract from an 
Indian plant for the potential treatment of cancer. It works by inhibiting CDK, arresting cell division and causing 
apoptosis in non-small lung cancer cells34. According to the concept of SL, using Alvocidib to target CDK1 may 
selectively kill specific gene mutant tumor cells. Then, PLK1, which was a drug target studied in acute myeloid 
leukemia, non-small cell lung cancer, and pancreatic cancer34, could be a SL partner gene of many cancer genes 
in our results. In the drug sensitivity validation, some cells are sensitive to the drug target PLK1, which indicates 
that PLK1 can participate in various cancers by forming SL gene pairs with many cancer genes. Furthermore, 

Non-cancer Gene Target Target Type Non-cancer Gene Target Target Type

CCL2 P13500 Anticancer drug target IL18 Q14116 Anti-Inflammatory target

CDK1 P06493 Anticancer drug target VCAM1 P19320 Anti-Inflammatory target

CDK2 P24941 Anticancer drug target CD4 P01730 Immune-related target

CDK5 Q00535 Anticancer drug target CSF2 P04141 Immune-related target

CSF1 P09603 Anticancer drug target GRB2 P62993 Immune-related target

CSNK2A1 P68400 Anticancer drug target IL10 P22301 Immune-related target

E2F1 Q01094 Anticancer drug target ITGB1 P05556 Immune-related target

F2 P00734 Anticancer drug target TH P07101 Immune-related target

FGF2 P09038 Anticancer drug target APAF1 O14727 other

HDAC1 Q13547 Anticancer drug target ARAF P10398 other

HGF P14210 Anticancer drug target ARF6 P62330 other

IL6 P05231 Anticancer drug target ATF2 P15336 other

LYN P07948 Anticancer drug target ATF4 P18848 other

MAPK3 P27361 Anticancer drug target BDNF P23560 other

MMP9 P14780 Anticancer drug target CASP3 P42574 other

NFKB1 P19838 Anticancer drug target CD40 P25942 other

NOS3 P29474 Anticancer drug target CDC42 P60953 other

PRKCZ Q05513 Anticancer drug target CXCL12 P48061 other

PTGS2 P35354 Anticancer drug target EDN1 P05305 other

PTK2B Q14289 Anticancer drug target F2R P25116 other

TNF P01375 Anticancer drug target GJA1 P17302 other

TNFRSF1B P20333 Anticancer drug target IGF1 P05019 other

VEGFA P15692 Anticancer drug target INS P01308 other

XIAP P98170 Anticancer drug target KAT2B Q92831 other

YES1 P07947 Anticancer drug target NPR2 P20594 other

PLK1 P53350 Anticancer drug target NPY P01303 other

WEE1 P30291
Anticancer drug target PIK3CG P48736 other

Anti-Inflammatory target; SGK1 O00141 other

PPARA Q07869
Analgesics drug target;

PRKAB1 Q9Y478
Analgesics drug target

Immune-related target Anti-Inflammatory target;

Table 1. The potential anticancer targets and corresponding non-cancer target.
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some researches has identified PLK1 as a gene whose depletion was particularly detrimental to the viability of 
PIM1-overexpressing prostate cancer, which was particularly sensitive to PLK1 inhibition and suggests that PIM1 
might be used as a marker for identifying patients who will benefit from PLK1 inhibitor treatment35. Finally, 
WEE1 kinase could regulate CDK1 and CDK2 activity to facilitate DNA replication during S-phase and prevent 
unscheduled entry into mitosis, and cancers with defects in the FA and HR pathways may be targeted by WEE1 
inhibition, which provides a basis for a novel SL strategy for cancers harboring FA/HR defects36. In addition to 
the four intersection genes, many of the other non-cancer genes that we identified have already been predicted as 
the anticancer drug targets. For example, in the drug sensitivity experiment, IL6, which could be the SL partner 
gene of CDKN2A, RB1, STK11 and TP53, was a specific anticancer drug target in the prostate cancer DU-145 cell 
line when targeted by VX-70237.

Discussion
With the development of molecular biology, biological research has entered the post-genome era and has made 
it possible to understand the function of the organism from an overall level. Synthetic biological systems (human 
protein interaction networks) are complex, and each protein element is a node in the complex network that 
accomplishes each biological process by synergizing the interactions of the nodes. Thus, the biological network 
can be abstractly seen as a human biological system and provides pre-screening for in vitro and in vivo follow-up 
anticancer drug targets screening. It can also save financial and material resources and time.

The existing approach, which also used networks to identify SL gene pairs, was proven to be effective18. 
However, they only took the efficiency changes of knocking out two nodes in the network into account. Since 
this change may sometimes be caused by knocking out a single gene node rather than the pair, we improved the 
method by considering the knockout of both a single node and two nodes, which was more reliable in our opin-
ion. Furthermore, we took a multi-step screening strategy from many perspectives to obtain the SL gene pairs, 
which might get better results.

Although this study has many advantages, there are some shortcomings. The most significant one is that the 
data resources we used. On one hand, it is the original data we used for this study. Although we integrated the 
cancer gene data and drug-target interactions data from different databases, more data should be included in the 
future to obtain more useful results. This way, we will improve the accuracy of our results and reduce data limi-
tations. On the other hand, it is the limitation of the validation data. The genes and drugs in the drug sensitivity 
experiment are relatively small, so we could only validate the overlapping genes between the existing data and 
our studies. The SynLethDB database, which we used to validate, included 16976 SL gene pairs composed by 
5157 genes. Only 7088 SL gene pairs (7088/16976 = 41.75%) that composed by 2174 genes (2174/5157 = 42.16%) 
were found in our network data. At the same time, we made a comparison between all 5157 genes in SynLethDB 
and our 697 input cancer genes, the overlap genes were only 369 (52.94%), which constituted 8582 SL gene 
pairs (8582/16976 = 55.55%) in SynLethDB. As can be seen from above, the data contained in the SynLethDB 
were very different from our input data. As a result, we can only validate the overlap part between SynLethDB 
and ours. We also tried to make a comparison with other state-of-the-art computational SL finding methods. 
However, various computational methods provided potential SL gene pairs from different data resources and 
perspectives, such as the correlation of gene expression with mutations, gene co-expression in related biological 
processes, robustness in the cancer network or human conserved SL gene interactions, which may be the reason 
for the low coincidence rate of the SL gene pairs obtained from different computational methods. At the same 

Figure 5. Illustration of our validations. (a) Anticancer drug targets validated by three aspects of the data. In 
the SynLethDB validation, drug sensitivity validation and text-mining validation, we validated 18, 13 and 12 
anticancer drug targets, respectively. In addition, 4 targets could be validated using all three aspects. (b) The 
Venn diagram was drawn based on the overlap of the predicted SL gene pairs in four previous reports and our 
results. The methods with extremely low concordance of the results are not shown in the figure, which was 
drawn with the online tool http://bioinformatics.psb.ugent.be/webtools/Venn/.

http://bioinformatics.psb.ugent.be/webtools/Venn/
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time, we compared the 2555 predicted SL gene pairs (81 non-cancer genes and 314 cancer genes) with the results 
of the other seven previous computational methods7,16,18,20,21,38,39. As shown in Fig. 5(b), the overlap SL gene pairs 
of these methods was very rare (the details are shown in the Supplementary Table S4).This was not the case with 
our results, but also with others. The results from the different methods were complementary to each other in 
predicting the SL gene pairs16.

The 57 known drug targets that we found might be targets for anticancer drugs and could be used in drug 
re-positioning. Focusing on these targets can accelerate the development of anticancer drugs. The other 
non-cancer genes, which have not been drug targets previously, may also have potential in cancer therapy. 
Moreover, in different cancer cells, mutations in the same cancer gene can also lead to various functions; there-
fore, our follow-up study will focus on the different mutant types of the same genes, which are dedicated to 
finding more specific anticancer drug targets and corresponding sensitive drugs through the combination of the 
SL strategy.

Materials and Methods
Data sources. In this paper, the human signaling network, including 6306 proteins and 62937 protein-pro-
tein interactions, was collected and curated manually by Zaman22 from previous studies40–42. The cancer genes 
were downloaded from the F-Census43 and Cancer Gene Census44. We obtained 697 cancer genes after remov-
ing the redundant ones. Drug-target interaction data was collected from the DrugBank45, Therapeutic Targets 
Database (TTD)34 and PROMISCUOUS databases46. In addition, we obtained 16976 human SL genes pairs from 
the SynLethDB database28. The drug sensitivity data and the gene mutation backgrounds of 639 cancer cell lines 
were gathered from the research37, which contained 88 cancer genes and 130 drugs under clinical and preclinical 
investigation in the experiment.

SL screening. The overall workflow of our method is shown in Fig. 6. Above all, we constructed the human 
cancer signaling network (HCSN). Next, a 3-step screening strategy was used to obtain the SL gene pairs. Then 
we extracted the non-cancer genes from the SL gene pairs and analyzed them with the drug-target interactions to 
find the targets that were suited for anticancer drugs. Finally, we conducted the validation with prior data.

Construction of HCSN. To get the HCSN, we removed the orphan nodes, peripheral interactions, self-loop 
and redundant interactions of the human signaling network and mapped the cancer genes into it. The human 

Figure 6. The workflow of anticancer drug targets identification. The human cancer signaling network (HCSN) 
was constructed to obtain SL gene pairs using a 3-step screening strategy. The data of non-cancer genes and 
drug-target interactions data were obtained to identify the anticancer drug targets. Some validations were made 
to validate our results.
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signaling network and HCSN could be explored using the freely available Cytoscape software (version 3.3.0)47. 
Nodes represent proteins and edges represent protein-protein interactions.

Obtainment of SL gene pairs. In this study, we designed a computational approach to predict SL gene pairs 
in the HCSN, which were mainly composed of a 3-step defined screening strategy, network-based screening, 
frequency-based screening and function-based screening.

Network-based screening of gene pairs.

 1) Calculation of the stability score
Herein, the stability score was defined as the stability changes of HCSN when knocking out a pair of nodes 
and just one node. Therefore, according to the concept of SL, gene pairs, which have higher stability scores, 
should more likely be the SL gene pairs. A stability change may be caused by just one node rather than 
the combination effects of gene pairs. Therefore, we proposed a network information centrality-based 
approach by knocking out both a pair of nodes and the single one, respectively. Then, the network informa-
tion centrality-based stability score S was scored in formula (1):

=
− −

S
D D

D
2D

(1)
m n m n,

0

where D0 was the average shortest path length of HCSN; Dm and Dn represent the average shortest path 
length of HCSN after removing the cancer gene node m and the non-cancer gene node n, respectively; 
and Dm,n was the average shortest path length of HCSN after removing both the cancer gene nodes m and 
non-cancer gene nodes n. D was the average shortest path length of the network (calculated by the closeness 
in R package igraph48) and it was defined as follows in formula (2):

∑=
− >D

N N
d1

( 1) (2)
i j ij1

2

here, dij refers to the shortest path between the nodes i and j; N represents the total number of nodes in the 
network.

 2) Network randomization
To evaluate the significance, we calculated the probability values p for each of the gene pairs using 1000 
degree-preserving randomized networks (constructed by R package tnet49). The formula to calculate the P 
values was as follows:

= <p
N

1000 (3)
S Sobs random

where Sobs refers to the S score obtained from HCSN and Srandom refers to the S score obtained from 
randomized network. <NS Sobs random

 represents the numbers when the S score in the randomized network was 
larger than that in HCSN.

 3) Distance-based screening of the gene pairs
 Distance-based SL screening played a vital role in network analysis in our study. We thought that the human 
signaling network was very important in tumorigenesis and cancer progression. In the network, proteins next to 
each other may have some similar functions and will participate in certain similar biological progresses. In other 
words, two proteins might more likely be SL partners if they were closer in distance in the network. Therefore, we 
calculated the distance between every non-cancer gene and cancer gene, and then computed the average distance 
of those nodes. Then, we discarded the pairs for which the distance was larger than the average.

Frequency-based screening of gene pairs. The development of cancer is often quite complex and usu-
ally involves multiple genes and pathways. We defined the nodes in HSCN with high degree as high frequency 
genes. We assumed that the higher frequency non-cancer genes in HCSN are more important in the biological 
progress. Therefore, we used the frequency of non-cancer genes as a filter for further screening. According to the 
cumulative frequency percentage, we filtered out the low frequency non-cancer genes and kept high frequency 
ones for further analysis.

Function-based screening of gene pairs. The occurrence and progress of cancer are closely related to 
cell survival, signal transduction, cell growth and death, etc. The SL genes were closely associated with cancer, 
and so, we thought that they played important roles in these cancer-related functions. To further identify SL gene 
pairs, we applied the genes from the above step for pathway enrichment analysis with DAVID Bioinformatics 
Resources 6.850. Afterwards, we got the final SL gene pairs and some significant pathways which helped to exploit 
the identification of SL gene pairs.

Identification and validation of anticancer drug targets. The identification of anticancer drug tar-
gets. We assumed that the anticancer drug target was a protein, which could be targeted by at least one anti-
cancer drug. To identify potential anticancer drug targets, we applied the drug-target interactions and drug 
description information to annotate the identified non-cancer genes in the SL gene pairs we identified above.
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The validation of the anticancer drug targets. We validated our identified anticancer drug targets with three data 
sources. Firstly, the human SL gene pair in the SynLethDB database was used. Secondly, the SL gene pair can be 
validated by Garnett et al.’s drug sensitivity experiment results. A SL gene pair could be seen as a specific mutated 
cancer gene and a drug targeted non-cancer gene. The cell line with the specific mutated cancer gene should have 
poor survival condition when added drugs to target the SL partner of the specific mutated cancer gene. That is, 
the cell line was highly sensitive to the drug. Thus, Garnett et al.’s drug sensitivity experiment was used be used 
to validate the anticancer drug target we obtained. Thirdly, text-mining validation was applied to validate our 
results. For gene G (the non-cancer gene in the SL pair), the number of studies that mentioned gene G in PubMed 
was K. The number of cancer-related (or SL-related) studies was M. The total number of studies in PubMed was 
N. By using hypergeometric test, we calculated the probability that at least x of the K articles containing gene G 
demonstrated that gene G is associated with cancer (or SL).

∑= −

−
−

=

− ( )( )
( )

P

M
i

N M
K i

N
K

1

(4)
i

x

0

1

The significance threshold was set to 0.05 and all of the genes with a significant P-value of less than 0.05 were 
verified to be cancer-related (or SL-related) genes.
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