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Unravelling miRNA regulation in 
yield of rice (Oryza sativa) based on 
differential network model
Jihong Hu1,2, Tao Zeng3, Qiongmei Xia4, Qian Qian2, Congdang Yang4, Yi Ding2, Luonan Chen3 
& Wen Wang1,5

Rice (Oryza sativa L.) is one of the essential staple food crops and tillering, panicle branching and grain 
filling are three important traits determining the grain yield. Although miRNAs have been reported 
being regulating yield, no study has systematically investigated how miRNAs differentially function in 
high and low yield rice, in particular at a network level. This abundance of data from high-throughput 
sequencing provides an effective solution for systematic identification of regulatory miRNAs using 
developed algorithms in plants. We here present a novel algorithm, Gene Co-expression Network 
differential edge-like transformation (GRN-DET), which can identify key regulatory miRNAs in plant 
development. Based on the small RNA and RNA-seq data, miRNA-gene-TF co-regulation networks 
were constructed for yield of rice. Using GRN-DET, the key regulatory miRNAs for rice yield were 
characterized by the differential expression variances of miRNAs and co-variances of miRNA-mRNA, 
including osa-miR171 and osa-miR1432. Phytohormone cross-talks (auxin and brassinosteroid) were 
also revealed by these co-expression networks for the yield of rice.

MicroRNAs (miRNAs) are approximately 21 nucleotides small non-coding RNAs that regulate gene expression at 
the post-transcriptional level1. In plants, miRNAs are transcribed by pol II enzyme and the mature miRNA enters 
the RNA-induced silencing complex (RISC) and negatively regulates gene expression via perfect or near-perfect 
sequences complementary with their target mRNA resulting mRNA cleavage or inhibiting mRNA translation2. 
The basic biological function of miRNAs is that they interact with target mRNAs to interfere with the expression 
level of mRNAs, which can be encoding proteins or factors that control developmental and physiological process 
in plants and animals3,4. Due to the master modulators of gene expression, microRNAs (miRNAs) and their target 
genes can be exploited for improving agronomic traits in crops5.

As a key compontent of the gene regulatory networks, miRNAs have attracted increasing attention with 
respect to the mechanisms of miRNA-mediated gene regulation6. Transcription factors (TFs) are also paramount 
regulators of gene expression in plants, and thus, the triple-network among miRNA, target-genes and TFs (e.g. 
miRNA-gene-TF co-regulation network) may conceivably be an important system in regulating plant develop-
ment. Interaction networks between miRNAs, target genes and TFs are critical for an appropriate balance of gene 
expression in plants. Many studies integrated the miRNA-mRNA expression profile data for regulatory networks 
using miRNA target prediction. And the overlapped genes list of these targeted genes of differentially expressed 
miRNAs and differentially expressed genes in RNA-seq, as well as the mRNA-miRNA pairs exhibited opposite 
expression profiles, both provided important clues for plant development7,8. It is well known that miRNA mainly 
negatively regulates the expression of its target genes1. However, in some cases, the targets of a miRNA are not 
negatively correlated at the expression level9,10, suggesting that miRNA regulation in plant development may be a 
dynamics process and involve many other factors.
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Rice (Oryza sativa L.) is one of the essential staple food crops in the world, and improving the yield has 
been the focus of rice breeding programs. Tillering, panicle branching and grain filling are important traits 
determining the grain yield. It has been reported that OsmiR156 regulates the famous yield gene OsSPL1411 and 
over-expression of OsmiR397 can promote panicle branching, enhancing the grain yield12. And miRNAs have 
also been reported in different tissues or at a certain development stage of rice yield using small RNA sequenc-
ing9,10,13–16. However, regulation network of these miRNAs with target genes and the signal pathways cross-talk for 
yield of rice is still unknown. Both osa-miR397 and osa-miR396 invovled in regulating the brassinosteroid (BR) 
signalling to control grain size and affect yield in rice, their relationship is elusive5,12,17. Thus, extensive studies are 
needed for systematically elucidating the regulation networks in yield of rice, which will provide useful strategies 
for crop improvement.

Recently, the abundance of data from high-throughput sequencing has greatly facilitated plants research and 
makes to analyze the gene regulation on systemic level possible. And new challenges arise to effectively integrate 
the different omics data for studying the biological complexity of yield in rice. Mathematical models of biolog-
ical systems by integrating experimental and theoretical techniques are required to unravel the complexity of 
gene regulation in the complex processes18. Gene Regulatory Networks (GRNs) is aim to infer complex networks 
representing transcriptional regulatory relationships from gene expression profiles, such as RNA-seq data19,20. 
Using co-expression network analysis, thousands of genes/transcripts of special interest (e.g. differentially 
expressed) are utilized to construct the network, identifying key regulators/targets21. Using publicly available 
data and protein-protein interactions (PPIs), a Gene Co-expression Network (GCN) can be constructed on indi-
vidual sample for candidate gene or regulators selection and improving understanding of regulatory pathways. 
Although existing non-linearity in GRN, the linear correlation would be more effectively to approximate the 
network when the samples are not large, especially combining with prior-known background network. However, 
the linear correlation even might be less practical when the samples are few22. Thus, we propose novel edge-like 
correlations of gene-pairs even in one sample rather than original expressions of genes to reconstruct the GCN. 
Such correlation-based calculation would usually obtain undirected association, so that, as widely applied in inte-
grative study23, in this work, the prior-known miRNA-> Target gene, TF-> miRNA and TF-> gene information 
are combined with GCN analysis, which come from the well-established public interaction database. Therefore, 
our GCN can supply potential (directed) regulatory relationships consistent with prior-knowledge in a regulatory 
network screening manner.

The relations between miRNA-target genes enable users to derive co-expressed genes that may be involved 
in similar biological processes and functions in plants, similar to previous hypothesis and study in human24. 
The target genes of miRNAs may be co-expression when they are regulated by multiple miRNAs25. Using these 
co-expressed genes, we can theoretically reconstruct the GCNs related to plant development. In contrast to widely 
used analysis of differential expression in traditional studies, such dynamic regulations (i.e. sample-specific reg-
ulation or network) among different individuals (samples) can be characterized by the differential expression 
variances of miRNAs and co-variances of miRNAs-mRNAs, which would also be important phenotype-related 
and dynamics-related features in biological processes26. In the present study, we develop a new algorithm, called 
differential edge-like transformation (DET), to analyze the gene regulatory networks and identify key regulatory 
miRNA in plant development.

Results
Gene regulatory network based on DET. DET transforms original expressions of genes to the edge-like 
correlations of gene-pairs even in one sample (Fig. 1 and Supplemental Methods). From the statistic viewpoint, 
those edge-like correlations follow a correlated product distribution (Supplemental Methods), which can be used 
for significance test of gene-pair associations. This method can be used to not only characterize a single sample 

Figure 1. Identification of miRNAs invovled in rice yield using DET method. Workflow of the differential 
network model based on Differential Edge-like Transformation (DET).
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by its network according to the weights of edges (i.e. the edge-like correlations or gene-pair associations), but 
also estimate the dys-regulations of genes in one pair of samples according to their network changes (e.g. the 
topological differences between networks from control and case samples), thus opening a new way to study the 
molecular mechanism (e.g. regulatory miRNAs of rice yield) at a network level even with one sample. Using this 
novel differential network model based on DET, in the present study, the sample-specific miRNAs (SmiRNAs 
with sample-specific network structures rather than sample-specific expression) and their regulation networks 
for different tissues or samples were identified.

Although conventional co-expression analysis, e.g. WGCNA (Weight Gene Co-Expression Network 
Analysis)22, can be applied to study co-expression networks, those methods require many samples (N ≥ 10) and 
thus cannot be applied to the network or miRNA-mRNA interaction analysis with fewer or even two samples 
(Table 1). In many plant studies, the samples in the data are usually from different tissues or developmental stages, 
but there are only a few samples for each tissue/stage and thus the traditional network analyses failed.

Based on the theory of DET, a new differential network model by combining the miRNA-mRNA regulatory 
network and its edge-like correlations (Gene regulatory network with DET, GRN-DET) is proposed in this study 
(Fig. 1). In one condition or in one tissue, there is usually only one sample, we can apply DET to capture the sig-
nificant gene expression and correlation changes simultaneously in a dynamical and network manner.

Single sample analysis dependent on the statistics of edge-like correlations. From a viewpoint 
of statistics, the random variable, edge-like correlation Z (∈ [−∞, ∞]), can be described as the product of two 
random variables X and Y
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which follows a correlated product distribution of X and Y, i.e., a product distribution with correlation between X 
and Y. In particular, given X and Y are statistically independent, the edge-like correlation Z = XY follows a prod-
uct distribution, e.g., the probability density function of Z as:
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Given X and Y are independent normal distributions (e.g. X and Y are multivariate normal distribution with 
covariance as 0), Z is normal product distribution; and even when X and Y are statistically dependent (e.g. X and 
Y are multivariate normal distribution with covariance closed to 1 or −1), Z will be long-tail normal product 
distribution (Fig. 2).

Furthermore, when X and Y are standard normal distributions, the expectation of Z is just the Pearson’s cor-
relation coefficient ρX,Y between X and Y, i.e.
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To mimic such correlated product distributions, our numerical simulation is carried on by using matlab func-
tion ‘mvnrnd’ to produce multivariate normal distribution X and Y, where the parameter covariance is controlled 
by the inherentcorrelation between X and Y, i.e. the Pearson’s correlation coefficient between X and Y. Given aco-
variance matrix, N (N = 20, with 10000 times replication) samples are produced for X and Y, so that, 200000 sam-
ples of Z are also be transformed by above DET. Next, the distribution of Z can be estimated by Kernel smoothing 
function. Finally, the distribution landscape of Z determined by inherent correlation and edge-like correlation 
can be shown in the 3-D plot (Fig. 2A). Obviously, when the determinant as inherent correlation are from neg-
ative correlated (ρX,Y = −1) to independent (ρX,Y = 0), and to positive correlated (ρX,Y = 1), the distribution of 
edge-like correlation displays left long-tail product distribution (Fig. 2B), and symmetrical product distribution 
(Fig. 2C), and right long-tail product distribution(Fig. 2D) respectively. Thus, the Mann–Whitney U test is simply 
used to evaluate the statistic significance of edge-like correlations in this work.

In addition to above numerical validation on the work of edge-like correlation, the theoretical result of 
edge-like correlation on a single sample is also supplied in Supplemental Methods.

Co-expression network GRN-DET WGCNA

Model HMM Hierarchical clustering

Samples (N≥) 1 10

Gene expression Yes Yes

Pearson correlation coefficients Yes Yes

Expression variance Yes No

Expression covariance Yes No

Network changes Yes No

miRNA-mRNA interaction Yes No

Table 1. Comparison of GRN-DET and WGCNA methods.
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Validation of GRN-DET method using public rice grain filling data. Firstly, we conducted the GRN 
analyses based on DET using the public small RNA and gene expression dataset from NCBI, which was originally 
used to investigate rice grain filling. During grain development, poor grain-filling in inferior spikelets greatly 
decreased the yield of Oryza sativa spp. japonica cv. ‘Xinfeng 2’9. Grains of superior spikelets and inferior spike-
lets (10 days after flowering (DAF), 15DAF, 21DAF, and 27DAF, respectively) from rice cultivar ‘Xinfeng 2’ were 
collected and sequenced for small RNA and mRNA profiling by these two previous studies9,27. The co-expression 
analysis of superior spikelets and inferior spikelets showed that 47 differentially expressed miRNAs (DEmiRNAs) 
might influence grain-filling of rice, and the differential networks as co-variances of these miRNAs with mRNA 
were also constructed. For example, the expressions of the target genes regulated by osa-miR164 were decreased 
during the grain-filling. Meanwhile, these expression patterns were significantly different between superior and 
inferior spikelets. In addition, 20 SmiRNAs related to grain-filling between the two different spikelets were identi-
fied by DET (Fig. 3A and Table S1). Most of the SmiRNAs have been reported to be involved in rice grain-filling, 
including osa-miR444b, osa-miR1861, osa-miR172c, osa-miR1862 and so on28 (Fig. 3A). Using GRN-DET, 
we identified some miRNAs which are no differential expressions but have differential regulations (networks) 
between superior spikelets and inferior spikelets, including osa-miR395n, osa-miR164 a/b/f, osa-miR2102-5p, 
osa-miR1432 and osa-miR166k/l (Table S1 and Fig. S1). Our network analysis further showed that osa-miR1861 
regulated many genes or TFs in the superior spikelets and had cross-talk with the verified yield-associated 
osa-miR159a.1 (Fig. 3A). The results were consistent with previous studies, suggesting it could be an important 

Figure 2. The numerical simulation of the correlated product distribution of edge-like correlation. (A) The  
distribution of edge-like correlation with given inherent correlations. (B) The distribution of edge-like 
correlation with negative-correlation condition. (C) The distribution of edge-like correlation with independent 
condition. (D) The distribution of edge-like correlation with positive-correlation condition.
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regulator of rice yield9,13. GO enrichment analysis showed that the genes co-regulated by miRNAs identified by 
DET were involved in ‘nitrogen compound metabolic process’, ‘anatomical structure morphogenesis’, ‘cell differ-
entiation’ and ‘cell death’ (Fig. 3B). These results were consistent with previous studies about metabolic pathways 
from ‘embryo differentiation’ at the early phase to ‘senescence and dormancy’ at the late filling phase29.

Secondly, to validate the identified SmiRNAs by our network analysis based on DET in the grain filling, we 
also performed a conventional WGCNA study on 438 miRNAs from four published rice grain filling small RNA 
sequencing data9,10,13,28. On the combined 22 samples, WGCNA can be applied to obtain one network (e.g. com-
mon associations) for miRNAs across multiple samples, rather than individual samples. A total of 9 co-expression 
modules (e.g. common co-expression pattern across multiple samples) were obtained from highly correlated gene 
expression patterns (Fig. S2A,B). Eight miRNAs were both identified in DET network and WGCNA module, 
including osa-miR169a, osa-miR166l, osa-miR444b, osa-miR1432 and so on (Fig. S2C and Table S1). However, 
unlike WGCNA, different interactive networks of these miRNAs with other miRNAs or mRNAs were revealed 
by GRN-DET (Figs 3A and S1). Thus, osa-miR1432 and osa-miR444b might be the key yield-associated miRNA 
in grain filling of rice (Fig. 3A). Therefore, our method can actually detect sample-specific network and miRNAs 
(SmiRNAs), and some of them are also interactive on the conventional multi-sample based common network, 
which support the effectiveness of our method.

Indentify regulatory miRNAs for yield of rice using GRN-DET on in-house data. Using the effec-
tive method of GRN-DET, we can also analyze other important stages for yield of rice. Taoyuan, Yunnan, China, 
has been a well-known amazing place where the highest rice yield in the world was recorded30. We collected the 
tillers, young panicles and flag leaves from the rice variety IR64 at Taoyuan and the yield control place Jinghong. 
In order to investigate the miRNA regulation roles for ultra-high yield at Taoyuan, we sequenced small RNAs 
and mRNAs of tissues from three developmental stages (i.e. tillering, panicle branching and grain filling) of rice 
planted at Taoyuan and Jinghong, respectively. Totally, 234, 82 and 134 DEmiRNAs were identified between 
the three cases and their controls, respectively (Table S2). Moreover, using GRN-DET, 40, 35 and 34 SmiRNAs 
for tillers, panicles and flag leaves were identified, respectively (Table S1). Using the corresponding transcrip-
tome data, differential networks of the SmiRNAs and their regulated genes or TFs derived from our GRN-DET 
have also shown regulatory differences between Taoyuan and Jinghong rice (Figs 3C and S3, S4). Some of these 
SmiRNAs were not differential molecules which cannot be measured by traditional method but have differential 

Figure 3. Co-expression networks and GO enrichment of identified candidate yield miRNAs. (A) Co-
expression networks of identified candidate yield miRNAs with verified yield-associated miRNAs and their 
regulated genes or TFs in superior and inferior spikelets. (B) GO enrichment of the co-regulated genes with 
SmiRNAs identified by DET in the three key stages (tiller, panicle and grain filling) for rice yield. (C) Co-
expression networks of identified candidate yield miRNAs with verified yield-associated miRNAs and their 
regulated genes or TFs in Tao yuan ultra-high yield rice. (D) Quantitative real-time PCR (qRT-PCR) validation 
of osa-miR393a and osa-miR171a in tillers and young panicles at Taoyuan and Jinghong rice, respectively. The 
significant difference of expression level between Taoyuan and Jinghong in IR64 was determined by Student’s  
t test, **p < 0.01. 
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regulations or networks which were identified by our method, such as osa-miR396b-5p in tillers, osa-miR171a in 
young panicles and osa-miR812m in flag leaves, respectively (Fig. S3 and Tables S1, S2). At young panicle stage, 
the osa-miR171a regulated the expression levels of more target genes in Jinghong than that of Taoyuan, which 
may suppress some genes invovled in panicle development, leading to decrease yield of rice (Fig. S3B). In Taoyuan 
and Jinghong, the three miRNAs were regulated different targets and had differential networks, affecting the key 
development tissues for yield in rice (Fig. S3).

Two miRNAs (osa-miR393a and osa-miR171a) were randomly selected to validate the expression level by 
quantitative RT-PCR (qRT-PCR) in IR64 from tillers and panicles of Taoyuan and Jinghong rice, respectively, and 
the results are consistent with the sequencing data (Fig. 3D). In other words, the functions of those SmiRNAs are 
facilitated not at the expression level but at the network level. GO and KEGG enrichment analyses of the genes 
regulated by these SmiRNAs in Taoyuan rice showed that they involved in flower development, embryonic devel-
opment, nucleic acid metabolism, nitrogen compound metabolic process and so on (Figs 3B and S5).

Plant yield has demonstrated to be control by various plant hormones, including auxin, brassinosteroid, gib-
berellic and cytokinin31. In our study, we found that miRNAs invovled in two phytohormones, auxin and BR 
signaling pathways to affect rice yield (Figs 4 and 5). Auxin is mainly participate in the growth periods (vegetable 
and reproductive growth stages), while BR is invovled in grain filling, affecting the grain size (Fig. 5).

Discussion
MiRNA-mRNA interactions have been predicted by some toolkits or pipelines, including Mtide and Sparta32,33. 
Most of the packages or tools were made for animals or human which have much other information (for instance, 
validated gene-gene interactions) to integrate for identifying key miRNAs. However, the algorithm for key regu-
latory miRNA identification in plant development is lacking. Herein, the new algorithm of differential edge-like 
transformation (DET) was developed for effectively identifying the key regulatory miRNA for rice yield. Although 
miRNAs have been reported being regulating yield, no study has systematically investigated how miRNAs dif-
ferentially function in high and low yield rice, in particular at a network level. In this study, based on DET, we 
construct miRNA differential regulation networks in the three key developmental stages between high and low 
yield rice, which are further exploited to reveal novel regulatory roles of netted miRNAs in grain yield. The appli-
cation of DET to the grain-filling and yield of rice datasets demonstractes that GRN-DET provides high accuracy 
in identifying regulatory miRNAs using RNA-seq and small RNA sequencing.

Using GRN-DET, osa-miR171 and osa-miR1432 has been screened to be involved in panicle branching and 
grain filling (Figs 3 and S1, S3). Scarecrow (SCR) is a member of GRAS family which is essential for asymmertric 
cell division of shoot in Arabidopsis34. Many members of the osa-miR171 target the SCR transcription factor 
(Table S3). In tomato, over-expression of the target gene of miR171 (SlGRAS24) has been reported to cause alter-
ation of inflorescence architecture and lateral branch number35. The target gene of osa-miR1432 is alpha-amylase 

Figure 4. Co-expression networks of candidate yield miRNAs identified by differential edge-like transformation 
(DET) and reported yield miRNAs with their target genes for high yield in rice from tillering to grain filling 
stages. The bold line indicated the reported yield miRNAs and their confirmed targets (See Table S4). BR, 
brassinosteroid, GA, gibberellin.
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(LOC_Os08g36910) that is a starch-hydrolyzing enzyme. It’s reported that suppression of α-amylase can amelio-
rates the grains during the ripening period under high temperature36.

Some of the miRNAs showed cross-talks for yield in rice, for example LOC_Os02g53690 (GRF) targeted by 
osa-miR396 and LOC_Os03g52320 (GRF-interacting factor 1, GIF1) which is the target of osa-miR393 (Fig. 4). 
GIF genes have been reported to play important role in cell proliferation and shoot apical meristem, detemining 
organ size in Arabidopsis37. The two miRNAs (osa-miR396 and osa-miR393) are functionally characterized to 
be involved in tiller and panicle branching, respectively38,39. Thus, the cross-talk may provide a clue for better 
understanding the miRNA regualtion in rice yield.

Phytohormones play vital roles in the plant growth and development, including yield in crops40. Auxin has 
demostrated to regulate stem elongation, lateral branching and vascular development31. Different miRNAs 
(osa-miR393a, osa-miR396b and osa-miR167) with their targets were involved in auxin signaling to affect till-
ering, panicle branching and grain filling in rice (Fig. 5). The results of our study also provide some insights to 
the cross-talk and co-expression network of osa-miR397 and osa-miR396 which involved in regulating the BR 
signalling to control grain size and affect yield in rice (Fig. 4). As the negative regulator of BR signalling, GSK2 
interacts with OsGRF4 (target of osa-miR396) and inhibits its transcription activation activity to mediate the 
specific regulation of grain length in rice17. And suppressing of osa-miR396 (MIM396) up-regulated many auxin 
synthesis and response genes (YUCCA, ARFs and GH3), revealing OsGRF6 is a positive regulator of auxin signal-
ling pathway38. Overexpression of osa-miR397 also altered lots of the brassinosteroid-related genes12. Therefore, 
we documented here that some key miRNAs via phytohormone (auxin and BR) involved in the regulation of 
yield in rice from tillering to grain filling stages (Fig. 5). Furthermore, BR can promote GA accumulation by reg-
ulating the expression of GA metabolic genes to stimulate cell elongation41. SCR (target of miR171) has also been 
reported to interact with DELLA porteins, mediating the GA-regulated chlorophyll biosynthesis42 (Fig. 4). Using 
GRN-DET, the phytohormone-related miRNAs and targets interactions as well as their networks were revealed 
(Fig. 4). Thus, the cross-talk of BR and auxin or BR and GA may play important roles in the yield of rice.

Based on the small RNA, RNA-seq and reported verified miRNA-target interaction data, highly reliable and 
biologically meaningful co-expression networks based on DET have been constructed for better elucidating the 
regulatory roles of miRNAs in high yield of rice. This work not only identified new regulatory miRNAs affecting 
the yield of rice, but also provides a method to systematically reveal miRNA regulation networks in limited but 
key samples. The results also provide clues for future efforts of increasing rice yield using non-coding RNAs.

Materials and Methods
Plant materials and high-throughput sequencing. Small RNA and transcriptome sequencing were 
performed for the variety IR64 in Taoyuan (ultra-high yield) and Jinghong (natural yield) at three different 
stages (tillering, panicle branching and grain filling) for the yield of rice. Total RNA was extracted from three 
tissues (tillers, young panicles and flag leaves) of rice IR64 using the Trizol (Invitrogen). Libraries were generated 
according to the manufacturer’s recommendations and sequenced by Illumina HiSeq2500 platform (Supporting 
Information). Bioinformatic analysis of small RNA-sequencing and RNA-seq data were as previous studies2,43 
(Supporting Information). All the small and RNA sequencing data were deposited in the NCBI Short Read 
Archive (SRA) (http://www.ncbi.nlm.nih.gov/sra) under the accession number: SRP134071 and SRP144409, 
respectively.

Data sources. To collect the miRNAs and target genes involved in rice yield, we conducted literature search 
for studies that directly assessed miRNA regulation in tiller, young panicle, flag leaf and grain filling13,16,39,44. Then, 
a total of 150 yield associated conserved miRNAs were retrieved from miRBase (release 21; http://www.mirbase.
org/)45. The degradome sequencing data from different tissues in rice (GSM434596, GSM455938, GSM455959 
and GSM476257) were also used in this study. The targets of these miRNAs by predicted, degradome sequencing 
and experimentally verified were merged46 (Table S3). In addition, the small RNA and transcriptome sequencing 
data from superior and inferior spikelets in ‘Xingfeng2’ rice grains reported previously were also collected for 
methold validation13,16,27.

Figure 5. The potential regulatory network model of miRNAs for yield at three stages (tillering, panicle 
branching and grain filling) in rice. Solid and dashed arrows are the verified and predicted regulatory 
relationships, respectively.

http://www.ncbi.nlm.nih.gov/
http://www.mirbase.org/
http://www.mirbase.org/
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Gene regulatory networks with DET (GRN-DET). Generally, the differential co-expression analysis is to 
see if or not the expression correlation of a gene-pair (e.g. two genes or molecules) changes between control and 
case samples22,47. Thus, the Pearson correlation coefficient (PCC) between genes i and j in control or case samples 
can be calculated as:
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where, there are mx control samples and my case samples; for a control sample k, its expressions on genes i and j 
are xik and xjk; the expression average and variance for gene i (or gene j) on control samples are μxi and σxi (or μxj 
and σxj); and conveniently, the sample in case has these similar variables and annotations but with index y. Note 
that a gene can be replaced by a molecule in this mathematical framework.

DET transforms the expression of genes to the edge-like correlation of gene-pairs in one sample, and the mean 
of edge-like correlation of a gene-pair in all control and case samples is just the Pearson correlation coefficient on 
all samples, so that this measurement has equivalent numerical meaning for any control or case sample.

For each tissue, the selected miRNAs or mRNAs and their edge-like correlations will consist of a tissue-specific 
network and displayed in a topological structure, where the strength of each pair of molecules (e.g., molecules i 
and j) in the network is the corresponding edge-like correlation (e.g., edge between molecules i and j). Besides, 
for any miRNA, its average PCC (i.e. the edge-like correlation) with other relevant miRNAs or mRNAs in control 
or case is defined as APcontrol and APcase, then a factor as PCC induced key associated score for this miRNA is 
computed as |APcase − APcontrol|.

miRNA-TF-gene network analysis and key miRNAs identifying. Based on RiceNetDB48 and 
RiceNet49 (version 2), the TF-gene/miRNA regulatory relations were deciphered. To further illustrate the regula-
tory structure of miRNA-TF-gene, we re-analyzed the topological structures among miRNA-targets, miRNA-TF 
and TF-gene associations. Known yield-associated miRNAs from literatures were collected (Table S4). The key 
miRNAs selection was performed by Pearson correlation coefficient (PCC) between each pair of miRNAs or 
genes and known yield-associated miRNAs calculated based on their edge-like correlation profiles, and the 
sample-specific miRNAs, (SmiRNAs) (i.e. with highest key-associated score) were found in tillers, panicles, flag 
leaves and grains, respectively.

Identified key miRNAs for yield of rice using GRN-DET. To estimate the accuracy of GRN-DET, 
we have analyzed the small RNA sequencing data for yield in rice. To construct a miRNA-target gene-TF 
co-regulation network for the trait of rice yield by DET, the GRN was conducted in the following ways (see the 
detail methods in Supporting Information): (i) a set of 150 reported sequencing-screened yield related miR-
NAs and target genes from literatures or degradome data were collected, including 12 experimentally verified 
yield-associated miRNAs (Tables S3 and S4); (ii) DET was used to transform the original gene expression profiles 
(i.e. gene v.s. sample data matrix) to edge-like correlation profiles (i.e. gene-pair v.s. sample data matrix); (iii) 
the correlation between each pair of miRNAs or mRNAs (target genes or TFs) and 12 verified yield-associated 
miRNAs on each sample were further obtained based on such edge-like correlation profiles (the correlation of 
a gene-pair in a sample is significant when its edge-like correlation is large, otherwise non-significant when 
the edge-like correlation is small, where the difference significance of edge-like correlation in one v.s. multiple 
samples can be evaluated by Mann–Whitney U test); (iv) on the edge-like correlation weighted miRNA-target 
gene-TF co-regulation network, the key regulatory SmiRNAs related to rice yield were identified according to the 
PCC-induced key-associated scores (Supporting Information).

GO and KEGG pathway enrichment analysis. According to their degrees of nodes, network hubs were 
determined and the top 5% of miRNAs, TFs and genes were considered as hub components. Functional classify-
ing the targets of these miRNAs was enriched by AgriGO (Gene Ontology) (http://bioinfo.cau.edu.cn/agriGO/)50 
and KEGG database (/ftp.genome.jp/pub/kegg/pathway/). A p-value with 0.05 as the cutoff for enriched terms or 
pathways in GO and KEGG.

Weighted correlation network analysis (WGCNA). Based on a group of the collected miRNA profiles 
for grain filling (DAF, day after flowering) in rice9,10,13,28, a R package WGCNA22 has been carried on and several 
co-expression modules have been identified. The miRNA expression profilings were included at the three filling 
stages: milk-ripe (5DAF, 10DAF), soft-dough (12DAF, 17DAF) and hard-dough (21DAF, 27DAF). Using Pearson 
correlation coefficient, the gene co-expression similarity were identified and clustered into network modules.

Stem-loop RT-PCR and quantitative real-time PCR. Total RNA was extracted from tillers and young 
panicles of the variety IR64 in Taoyuan and Jinghong. For each reverse-transcription (RT) reaction, 2 μg of total 
RNA was reverse transcribed into cDNA using a miRNA specific stem-loop primers and reverse transcriptase 
(Takara, Dalian, China) as previously described51. Reverse transcription was performed with pulsed RT: the reac-
tions were incubated for 30 min at 16 °C, followed by 60 cycles at 30 °C for 30 s, 42 °C for 30 s and 50 °C for 1 s 
and finally the reactions were terminated at 70 °C for 5 min. Real time qRT-PCR analysis of the miRNA and 
their targets was performed using the FastStart Universal SYBR Green Master Mix (Roche) on the StepOne plus 

http://bioinfo.cau.edu.cn/agriGO/
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PCR platform (AppliedBiosystems). U6 snRNA was used as an endogenous control. The primers were listed in 
Table S5. To avoid non-specific amplification, melting curve was carried out for each PCR product. All qRT-PCR 
reactions were performed with three biological replicates and the relative gene expression level was analyzed 
using comparative 2−ΔΔCt method52.

References
 1. Bartel, D. P. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116, 281–297 (2004).
 2. Hu, J. H., Jin, J., Qian, Q., Huang, K. K. & Ding, Y. Small RNA and degradome profiling reveals miRNA regulation in the seed 

germination of ancient eudicot Nelumbo nucifera. BMC Genomics 17, 684 (2016).
 3. Carrington, J. C. & Ambros, V. Role of microRNAs in plant and animal development. Science 301(5631), 336–8 (2003).
 4. Mallory, A. C. & Vaucheret, H. Erratum: Functions of microRNAs and related small RNAs in plants. Nat.Genet. 38(Suppl), 

e471–e471 (2006).
 5. Tang, J. Y. & Chu, C. C. MicroRNAs in crop improvement: fine-tuners for complex traits. Nat. Plants. 3, 17077 (2017).
 6. Willmann, M. R. & Poethig, R. S. Conservation and evolution of miRNA regulatory programs in plant development. Curr. Opin. 

Plant Biol. 10, 503–511 (2007).
 7. Yang, F. et al. Integrated mRNA and mircroRNA transcriptome variations in the multi-tepal mutant provide insights into the floral 

patterning of the orchid Cymbidium goeringii. BMC Genomics 18(1), 367 (2017).
 8. Zhang, J. et al. Small RNA and transriptome sequencing reveal a potential miRNA-mediated interaction network that functions 

during somatic embryogenesis in Lilium pumilum DC. Fisch. Front. Plant Sci. 8, 566 (2017).
 9. Peng, T. et al. Differential expression of the microRNAs in superior and inferior spikelets in rice (Oryza sativa). J Exp. Bot. 62, 

4943–54 (2011).
 10. Yi, R. et al. Identification and expression analysis of microRNAs at the grain filling stage in rice (Oryza sativa L.) via deep sequencing. 

PloS One 8, e57863 (2013).
 11. Jiao, Y. Q. et al. Regulation of OsSPL14 by OsmiR156 defines ideal plant architecture in rice. Nat. Genet. 6(42), 541–544 (2010).
 12. Zhang, Y. C. et al. Overexpression of microRNA OsmiR397 improves rice yield by increasing grain size and promoting panicle 

branching. Nat. Biotech. 31, 848–852 (2013).
 13. Peng, T. et al. Characterization and expression patterns of microRNAs involved in rice grain filling. PloS One 8, e54148 (2013).
 14. Wang, L. et al. Coordinated regulation of vegetative and reproductive branching in rice. Proc. Natl. Acad. Sci. USA 112(50), 15504–9 

(2015).
 15. Yue, E., Li, C., Li, Y., Liu, Z. & Xu, J. H. MiR529a modulates panicle architecture through regulating SQUAMOSA PROMOTER 

BINDING-LIKE genes in rice (Oryza sativa). Plant Mol Biol. 94, 469–480 (2017).
 16. Zhang, L. et al. Small RNAs as important regulators for the hybrid vigour of super-hybrid rice. J Exp Bot. 65, 5989–6002 (2014).
 17. Che, R. H. et al. Control of grain size and rice yield by GL2-mediated brassinosteroid responses. Nature plants 2, 15195 (2015).
 18. Hecker, M., Lambeck, S., Toepfer, S., Someren, E. & Guthke, R. Gene regulatory network inference: Data integration in dynamic 

models – A review. Biosystems. 96, 86–103 (2009).
 19. Bansal, M., Belcastro, V., Ambesi-Impiombato, A. & di Bernardo, D. How to infer gene networks from expression profiles. Mol Syst 

Biol. 3(1), 78 (2007).
 20. Zhang, B. & Horvath, S. A general framework for weighted gene co-expression network analysis. Stat Appl Genet Mol Biol. 4, 1128 

(2005).
 21. Roy, S. et al. Reconstruction of gene co-expressionnetwork from microarray data using local expression patterns. BMC 

Bioinformatics 15(7), 1–14 (2014).
 22. Langfelder, P. & Horvath, S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics 9, 559 (2008).
 23. Zhang, C. L. et al. sPAGM: inferring subpathway activity by integrating gene and miRNA expression-robust functional signature 

identification for melanoma prognoses. Sci. Rep. 7(1), 15322 (2017).
 24. Özgür Cingiz, M., Biricik, G. & Diri, B. ARNetMiT R Package: association rules based gene co-expression networks of miRNA 

targets. Cell Mol Biol (Noisy-le-grand). 63(3), 18–25 (2017).
 25. Wang, Y., Li, X. & Hu, H. Transcriptional regulation of co-expressed microRNA target genes. Genomics 98(6), 445–52 (2011).
 26. Yu, X., Zeng, T., Wang, X., Li, G. & Chen, L. Unravelling personalized dysfunctional gene network of complex diseases based on 

differential network model. J Transl. Med. 13, 189 (2015).
 27. Sun, H. Z. et al. Dynamic analysis of gene expression in rice superior and inferior grains by RNA-Seq. PLoS one. 10(9), e0137168 

(2015).
 28. Lan, Y. et al. Identification of novel miRNAs and miRNA expression profiling during grain development in indica rice. BMC 

Genomics 13, 264 (2012).
 29. Okawa, S., Makino, A. & Mae, T. Effect of irradiance on the partitionong of assimilated carbon during the early phase of grain filling 

in rice. Ann. Bot. 92, 357–364 (2003).
 30. Katsura, K. et al. The high yield of irrigated rice in Yunnan, China ‘A cross-location analysis’. Field Crops Res. 107, 1–11 (2008).
 31. Liu, L. C. et al. Activation of Big Grain1 significantly improves grain size by regulating auxin transport in rice. Plant Cell 35(112), 

11102–11107 (2015).
 32. Kakrana, A., Hammond, R., Patel, P., Nakano, M. & Meyers, B. C. sPARTA: a parallelized pipeline for intergrated analysis of plant 

miRNA and cleaved mRNA data sets, including new miRNA target-identification software. Nucleic Acids Res. 42(18), e139 (2014).
 33. Zhang, Z., Jiang, L., Wang, J., Gu, P. & Chen, M. MTide: an integrated tool for the indetification of miRNA-target interaction in 

plants. Bioinformatics 31, 290–291 (2015).
 34. Kamiya, N., Itoh, J. I., Morikami, A., Nagato, Y. & Matsuoka, M. The SCARECROW gene’s role in asymmetric cell divisions in rice 

plants. Plant J. 36, 45–54 (2003).
 35. Huang, W. et al. Overexpression of a tomato miR171 target gene SIGRAS24 impacts multiple agronomical traits via regulating 

gibberellin and auxin homeostasis. Plant Biotechnol. J. 15, 472–488 (2017).
 36. Hakata, M. et al. Suppression of α-amylase genes improves quality of rice grain ripened under high temperature. Plant Biotechnol. J. 

10, 1110–1117 (2012).
 37. Lee, B. H. et al. The Arabidopsis GRF-Interacting Factor gene family performs an overlapping function in determining organ size as 

well as multiple developmental properties. Plant Physiol. 151(2), 655–668 (2009).
 38. Gao, F. et al. Blocking miR396 increases rice yield by shaping inflorescence architecture. Nat. Plants 2, 15196 (2015).
 39. Xie, K. et al. OsTIR1 and OsAFB2 downregulation via OsmiR393 overexpression leads to more tillers, early flowering and less 

tolerance to salt and drought in rice. PloS one 7, e30039 (2012).
 40. Liu, Q. et al. Expression analysis of phytohormone-regulated microRNAs in rice, implying their regulation roles in plant hormone 

signaling. FEBS Lett. 583, 723–728 (2009).
 41. Tong, H. N. et al. Brassinosteroid regulates cell elongation by modulating gibberellin metabolism in rice. Plant Cell 26(11), 

4376–4393 (2014).
 42. Ma, Z. X. et al. Arabidopsis miR171-targeted scarecrow-like proteins bind to GT cis-elements and mediate gibberellin-regulated 

chlorophyll biosynthesis under light conditions. PLoS Genet. 10(8), e1004519 (2014).



www.nature.com/scientificreports/

1 0SCIENtIFIC RepoRts |  (2018) 8:8498  | DOI:10.1038/s41598-018-26438-w

 43. Wang, A. H. et al. Comparative transcriptome analysis reveals heat-responsive genes in Chinese cabbage (Brassica rapa ssp. 
chinensis). Front. Plant Sci. 7, 939 (2016).

 44. Fang, R. Q. & Li, L. Y. Spatial and temporal expression modes of microRNAs in an elite rice hybrid and its parental lines. Planta 238, 
259–269 (2013).

 45. Kozomara, A. & Griffiths, J. S. miRBase: integrating microRNA annotation and deep-sequencing data. Nucleic Acids Res. 42, 
D68–D73 (2014).

 46. Li, Y. F. et al. Transcriptome wide identification of microRNA targets in rice. Plant J. 62, 742–759 (2010).
 47. Zeng, T. et al. Edge biomarkers for classification and prediction of phenotypes. Sci.China Life Sci. 57(11), 1103–14 (2014).
 48. Liu, L. et al. An integrative bioinformatics framework for genome-scale multiple level network reconstruction of rice. J. Inegr. 

Bioinform. 10(10), 2390 (2013).
 49. Lee, I. et al. Genetic dissection of the biotic stress response using a genome-scale gene network for rice. Proc. Natl. Acad. Sci. USA 

108, 18548–53 (2011).
 50. Du, Z. et al. Agrigo: a GO analysis toolkit for the agricultural community. Nucleic Acids Res. 38, W64–W70 (2010).
 51. Varkonyi-Gasic, E. et al. Protocol: a highly sensitive RT-PCR method for detection and quantification of microRNAs. Plant Methods 

3, 12 (2007).
 52. Livak, K. J. & Schmittgen, T. D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta 

C(T)) Method. Methods 25, 402–8 (2001).

Acknowledgements
This work was supported by the National Basic Research Program of China (2013CB835200, 2013CB126900), 
National Natural Science Foundation of China (31200987), Opening Foundation of State Key Laboratory of 
Genetic Resources and Evolution (GREKF14-02) and Natural Science Foundation of Shanghai (17ZR1446100). 
We would like to thank Ms. Wenting Wan of the Kunming Institute of Zoology, Chinese Academy of Science, for 
helpful in small RNA library construction.

Author Contributions
W.W., L.C. and Y.D. managed and organized the project; W.W., L.C., J.H. and T.Z. designed the experiments. T.Z. 
and J.H. conducted modeling and analyzed the data; J.H. and Q.Q. performed the experiments; Q.X., C.Y., and 
J.H. carried out the phenotypic analyses and collected materials; J.H., T.Z., L.C. and W.W. wrote the manuscript.

Additional Information
Supplementary information accompanies this paper at https://doi.org/10.1038/s41598-018-26438-w.
Competing Interests: The authors declare no competing interests.
Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2018

http://dx.doi.org/10.1038/s41598-018-26438-w
http://creativecommons.org/licenses/by/4.0/

	Unravelling miRNA regulation in yield of rice (Oryza sativa) based on differential network model
	Results
	Gene regulatory network based on DET. 
	Single sample analysis dependent on the statistics of edge-like correlations. 
	Validation of GRN-DET method using public rice grain filling data. 
	Indentify regulatory miRNAs for yield of rice using GRN-DET on in-house data. 

	Discussion
	Materials and Methods
	Plant materials and high-throughput sequencing. 
	Data sources. 
	Gene regulatory networks with DET (GRN-DET). 
	miRNA-TF-gene network analysis and key miRNAs identifying. 
	Identified key miRNAs for yield of rice using GRN-DET. 
	GO and KEGG pathway enrichment analysis. 
	Weighted correlation network analysis (WGCNA). 
	Stem-loop RT-PCR and quantitative real-time PCR. 

	Acknowledgements
	Figure 1 Identification of miRNAs invovled in rice yield using DET method.
	Figure 2 The numerical simulation of the correlated product distribution of edge-like correlation.
	Figure 3 Co-expression networks and GO enrichment of identified candidate yield miRNAs.
	Figure 4 Co-expression networks of candidate yield miRNAs identified by differential edge-like transformation (DET) and reported yield miRNAs with their target genes for high yield in rice from tillering to grain filling stages.
	Figure 5 The potential regulatory network model of miRNAs for yield at three stages (tillering, panicle branching and grain filling) in rice.
	Table 1 Comparison of GRN-DET and WGCNA methods.




