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PhosContext2vec: a distributed 
representation of residue-
level sequence contexts and its 
application to general and kinase-
specific phosphorylation site 
prediction
Ying Xu1,2, Jiangning Song  2,3,4, Campbell Wilson1 & James C. Whisstock3,4

Phosphorylation is the most important type of protein post-translational modification. Accordingly, 
reliable identification of kinase-mediated phosphorylation has important implications for functional 
annotation of phosphorylated substrates and characterization of cellular signalling pathways. The 
local sequence context surrounding potential phosphorylation sites is considered to harbour the most 
relevant information for phosphorylation site prediction models. However, currently there is a lack of 
condensed vector representation for this important contextual information, despite the presence of 
varying residue-level features that can be constructed from sequence homology profiles, structural 
information, and physicochemical properties. To address this issue, we present PhosContext2vec which 
is a distributed representation of residue-level sequence contexts for potential phosphorylation sites 
and demonstrate its application in both general and kinase-specific phosphorylation site predictions. 
Benchmarking experiments indicate that PhosContext2vec could achieve promising predictive 
performance compared with several other existing methods for phosphorylation site prediction. We 
envisage that PhosContext2vec, as a new sequence context representation, can be used in combination 
with other informative residue-level features to improve the classification performance in a number of 
related bioinformatics tasks that require appropriate residue-level feature vector representation and 
extraction. The web server of PhosContext2vec is publicly available at http://phoscontext2vec.erc.
monash.edu/.

Phosphorylation is the most common type of protein post-translational modification (PTM), which plays an 
important role in almost all cellular processes in eukaryotes1,2. Accurate prediction of kinase-mediated phos-
phorylation sites is important for functional annotations of target substrates and elucidation of cellular signaling 
pathways underlying such phosphorylation events. A widely accepted concept during the development of com-
putational methods for phosphorylation site prediction is that most substrate proteins can be phosphorylated 
at specific sites with sequential and structural motifs or patterns3,4. Since sequence information is more accessi-
ble than structural information, high-throughput and accurate phosphorylation site prediction tools based on 
sequence information are highly desirable. According to previous studies, the prediction of phosphorylation sites 
is addressed in two ways, i.e. general phosphorylation site prediction and kinase-specific phosphorylation site 
prediction. The former only considers the difference between different phosphorylation site types, for example, 
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serine, threonine and tyrosine phosphorylation sites5,6, while the latter distinguishes different kinase-regulated 
phosphorylation sites in a kinase-specific manner3,5,7–10.

Word embedding is a useful technique in natural language processing that maps words to numeric representa-
tions in the vector space11. One of the most successful word embedding-based models is the word2vec model for 
generating distributed representations of words and phrases12. It was proposed to automatically generate con-
densed feature vectors for words and phrases by using a generative model that is pre-trained based on large-scale 
sequence databases. Asgari and Mofrad further proposed a continuous distributed representation for biological 
sequences, termed ProtVec, by summing up the distributed representations of biological words in each biolog-
ical sequence13. It was used as the input feature to address sequence- or segment-level prediction tasks such 
as annotating each protein sequence/segment as ordered/disordered or assigning each protein sequence to a 
protein family. Inspired by these representation techniques, in this study, we propose a distributed representa-
tion of residue-level sequence contexts, termed context2vec, for addressing residue-level prediction tasks, such 
as predicting the status of each residue as being phosphorylated or non-phosphorylated. More specifically, to 
take into consideration the dependence between phosphorylation sites and their sequential contextual patterns, 
we generated the distributed representation of the local sequence context for each potential phosphorylation 
site and then used it as a contextual feature vector to predict both general and kinase-specific phosphorylation 
sites. Different from the ProtVec method which maps a whole biological sequence to its distributed representa-
tion at the sequence-level, context2vec addresses an important issue related to the representation of residue-level 
sequence contexts and the selection of an appropriate task-dependent contextual window size. In particular, con-
text2vec enables the representation of more enriched contextual information than sequence-level features (such 
as ProtVec)13 and provides contextual information complementary to other commonly used residue-level features, 
such as position-specific scoring matrixes and secondary structures14–16.

Specifically, we propose two different implementation strategies to generate distributed contextual feature 
vectors for phosphorylation site prediction and compared their predictive performance. Firstly, we apply the 
word2vec-based summation strategy of ProtVet to residue-level sequence contexts, referred to as context2vec-
add in this paper. Secondly, we apply the doc2vec model17 to infer the distributed representation of residue-level 
sequence contexts directly from a pre-trained distributed memory network, referred to as context2vecinference. The 
major difference between context2vecadd and context2vecinference is that the latter considers the order of amino acid 
sequences in the context of each residue, while the strategy of representation summation used by the former 
implementation does not consider this important aspect. Nevertheless, a disadvantage of context2vecinference is that 
the quality of the inferred representations may decrease slightly during the process of approximate inference. In 
this study, we applied both context2vecadd and context2vecinference to generate the prediction models of phospho-
rylation sites (termed as PhosContext2vec), benchmarked the performance of PhosContext2vec for both general 
and kinase-specific phosphorylation site predictions, and constructed the corresponding best-performing models 
for each type of phosphorylation sites and kinase families.

To facilitate community-wide applications, we made available an online web server of PhosContext2vec for 
generating distributed representation of residue-level contextual feature vectors and predicting general and 
kinase-specific phosphorylation sites. To the best of our knowledge, this is the first time that the distributed 
representation of protein sequences is applied to address the problem of protein PTM (phosphorylation in this 
study) site prediction.

Methods
Datasets. In order to assess the performance of PhosContext2vec in comparison with other existing methods, 
we conducted cross-validation and independent tests for both general and kinase-specific phosphorylation site 
predictions.

For general phosphorylation site prediction, we used the same training and independent test datasets of 
annotated Serine (S), Threonine (T) and Tyrosine (Y) phosphorylation sites that were originally introduced in 
PhosphoSVM6. The training dataset, termed PELM, was constructed from the database Phospho.ELM (Version 
9.0)18 which included experimentally verified phosphorylation sites in animals such as Homo sapiens, Mus muscu-
lus, Drosophila melanogaster, and Caenorhabditis elegans. It had 6632, 3226, and 1,392 proteins containing 20,960, 
5,684, and 2,163 phosphorylation sites for S, T, and Y sites, respectively. The independent test set, named PPA, 
was extracted from the database PhosphAt (Version 3.0)19 which only contained plant phosphorylation sites from 
Arabidopsis thaliana. The PPA dataset contained 3,037, 1,359 and 617 substrate proteins with 5,449, 1,686, and 
676 annotated phosphorylation sites, for S, T, and Y sites, respectively.

For kinase-specific phosphorylation site prediction, we combined phosphorylation site data obtained from 
Phospho.ELM18 and UniProt20 and constructed training and independent test datasets according to the following 
steps. Firstly, we downloaded 555,594 reviewed proteins from the UniProt database and extracted all the proteins 
that had at least one annotated phosphorylation site, resulting in 14,458 proteins in total. Next, we collected 
triple-record annotations (i.e. containing protein, phosphorylation site position, and kinase annotations) from 
UniProt for the 14,458 proteins and removed 2,155 triple-record annotations that were labeled as ‘by similar-
ity’ in UniProt. The resulting 56,772 triple-record annotations contained 43,785 phosphorylated S sites, 10,397 
phosphorylated T sites, and 4,711 phosphorylated Y sites, among which 7,021, 2,515, and 2,066 were respec-
tively annotated with kinase types. Similarly, we extracted the triple-record annotations from the Phospho.ELM 
(version 9.0) database, resulting in 43,027 phosphorylated S sites, 9,556 phosphorylated T sites, and 4,723 phos-
phorylated Y sites, among which 2,961, 943, and 1,031 sites were respectively annotated with the corresponding 
kinase types.

In order to combine triple-record annotations from UniProt and Phospho.ELM, we employed the following 
procedures: (a) we cross-checked and renamed proteins extracted from the UniProt database whose sequences 
have been updated compared to those in the Phospho.ELM database; (b) we manually corrected the kinase names 
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according to the hierarchical structure of the kinase groups, families, subfamilies, and types (Refer to Table S1 
in the GPS 2.0 paper)9; (c) we removed redundant entries that were included in both two databases, and d) we 
excluded kinases that had less than 20 triple-record annotations. In total, we obtained consolidated phospho-
rylation sites for 138 kinase groups, families, subfamilies and protein kinases. In this study, we only performed 
cross-validation and independent tests on five kinase families that had more than 500 triple-record annotations. 
These included AGC/PKC, AGC/PKA, CMGC/CK2 (previsouly classified as member of the kinase group Other), 
CMGC/CDK, and TK/SRC with 962, 897, 668, 628, and 631 triple-record annotations, respectively. To obtain the 
training and testing datasets, we divided the triple-record annotations into five subsets, among which four were 
used as the positive samples in training data and the remaining one was used as the positive samples in testing 
data. At the same time, S, T, and Y sites that were not annotated as phosphosites were treated as negative samples. 
A statistical summary of the finally curated training and independent test datasets is shown in Tables S1 and S2 
in the Supplementary Material.

The curated phosphorylation site datasets are highly imbalanced, where the negative samples were hundreds 
of times more than the positive samples. In previous studies, the issue of imbalanced data set was addressed by 
down-sampling the negative samples5–7,21 or augmenting the positive samples22. For down-sampling, the negative 
samples can be randomly sampled from all [S, T and Y] sites that were not annotated as phosphorylation sites6,7,21. 
They can also be sampled from non-phosphorylated S, T, or Y sites depending on the type of site or kinase the 
model was trained for5. In this study, for the purpose of training, we included all [S, T, and Y] sites, that were 
not annotated as phosphosites, as negative samples for performing the down-sampling. Negative samples were 
randomly selected to train the prediction models with a ratio of 1:1 between the positives and negatives. For the 
purpose of independent test, we included S, T or Y sites depending on the type of sites or the kinase the model 
was trained for, without down-sampling. For example, for the model that was trained to predict phosphorylated 
Y sites, we only included all Y sites, which were not annotated as phosphosites, as negative samples. While for the 
model that was trained to predict sites that are specifically phosphorylated by the AGC/PKA kinase, we included 
non-phosphorylated S and T sites as negative samples.

Cross-validation and independent tests. We performed 10-fold cross validation tests using each of 
the aforementioned benchmark datasets where, in each iteration, nine folds were used for training the model 
while the remaining fold was used to validate the prediction performance of the trained model. This process 
was repeated 10 times so that each fold was used for both model training and validation. Based on 10-fold 
cross-validation results, we selected the model that achieved the best performance on the validation set and 
further tested its performance on the independent test datasets. Different from the cross-validation for which 
down-sampling was used to ensure selection of equal numbers of positive and negative samples, independent 
tests were performed against imbalanced datasets which contained more negative samples than positive samples. 
Therefore, although the performance on independent tests appeared to be worse than that in cross-validation 
tests, it resembled a real-world scenario more closely.

Performance evaluation. We evaluated the prediction performance of constructed models using four 
measurements, including sensitivity (Eq. 1), specificity (Eq. 2), the Matthews coefficients of correlation (MCC) 
(Eq. 3), and the area under the ROC curve (AUC)9. Except for the AUC, all the other three measures rely on the 
selection of the prediction cut-off thresholds for models to generate the final classification outcome. Because dif-
ferent predictors produced different ranges of predicted probability scores, we used the False Positive Rate (PFR) 
to determine positive predictions. According to GPS 3.03, the low, medium and high cut-off FPRs for S and T sites 
were respectively set as 2%, 6%, and 10%, while the low, medium and high cut-off FPRs for Y sites were set as 4%, 
9%, and 15%, respectively.
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where TP, TN, FP and FN represent the numbers of true positives, true negatives, false positives, and false nega-
tives, respectively.

Distributed representation of protein sequences and segments. We used a five-step procedure to 
generate the distributed representation of protein sequences and segments. Our procedure is detailed as follows:

 1. We constructed the training dataset from a large protein sequence database in order to train the model 
to generate distributed representation of protein sequences. A total number of 551,704 reviewed protein 
sequences were downloaded and extracted from the UniProt database20 in Aug, 2016;

 2. For each protein sequence in the dataset, we performed the overlapping n-gram split which produced a list 
of n-gram biological words13. Asgari and Mofrad showed that 3-gram split led to the best performance13; 
we thus produced all the 3-gram biological words for all the extracted 551,704 protein sequences based on 
the 3-gram split;
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 3. We fed the 3-gram biological words to the doc2vec algorithm to train a vector-generating model consisting 
of three components, including a trained distributed memory network N for future inference, a data-
base DBw that mapped the biological words to their pre-trained vectors, and a database DBp that mapped 
protein sequences to their pre-trained vectors. The doc2vec algorithm in Gensim12 was used in this training 
process;

 4. For any target protein sequence or sequence segment, we split it into n-gram biological words in the same 
manner as described in step (2);

 5. The distributed representation of the target protein sequence or sequence segment was then generated 
using two implementation strategies: (i) The representations of all biological words in the target protein 
sequence were directly fetched from the database DBw and summed up to form the protein sequence rep-
resentation, termed as prot2vecadd, and (ii) The resulting list of biological words was fed to the pre-trained 
model N to generate the other type of protein sequence representation, termed as prot2vecinference.

At the step (2), protein sequences can be split into overlapping or non-overlapping n-gram biological words13. 
We tested these two splitting strategies and found that a better performance was achieved when splitting the 
sequences into overlapping biological words. At the step (3), the hyper-parameters for the doc2vec algorithm were 
set as follows. The hidden unit size was set as 100, the window size set as 25, the initial training learning rate set 
as 0.25, the parameter for the negative sampling set as 5, and the iteration number set as 400. At the final step, 
the prot2vecadd representation was effectively equivalent to ProtVec that was originally introduced by Asgari and 
Mofrad13. To facilitate understanding and comparison between different methods, we renamed ProtVec to prot-
2vecadd (‘add’ indicates addition or summation), so that it could be better compared with and distinguished from 
prot2vecinference proposed in this study, from the perspective of feature vector generation strategies.

Feature vector construction for phosphorylation site prediction models. We constructed predic-
tion models for both general and kinase-specific phosphorylation sites using the Support Vector Machine (SVM) 
algorithm23. For each of the three phosphorylation site types S, T, and Y, and each of the five kinase families 
AGC/PKC, AGC/PKA, CMGC/CK2, CMGC/CDK, and TK/SRC, an independent SVM model was constructed 
based on the proposed contextual feature vector in conjunction with six other residue-level feature groups. The 
six residue-level features were the Shannon entropy, the relative entropy, protein disordered property, second-
ary structures, Taylor’s overlapping properties, and the average cumulative hydrophobicity, which are briefly 
described below:

 1. The Shannon entropy. It is a feature used for quantifying the conservation of potential phosphorylation 
sites24. It is calculated based on the weighted observed percentage (WOP), which can be generated by 
PSI-BLAST16;

 2. The relative entropy. It measures the conservation of amino acids compared to the background distribu-
tions, such as BLOSUM6225. It is also calculated based on the WOP;

 3. Protein disorder information (DISO). Certain regions of the protein do not form stable structures, and are 
called disordered regions. Previous studies indicate that incorporating protein disorder information is of-
ten useful for improving the prediction performance10,26–30. In this study, the protein disorder information 
was predicted using the DISOPRED3 program15;

 4. Protein secondary structure (PSS). It includes helix, strands and coil assignments in proteins. We used the 
PSIPRED program31 to predict the secondary structure information for each protein sequence;

 5. The Taylor’s overlapping property (OP). It describes amino acid groups with respect to physiochem-
ical properties. Each amino acid is encoded into 10 bits representing 10 physiochemical properties 
respectively32;

 6. The average cumulative hydrophobicity (ACH). A varying sliding window of sizes 3, 5, 7, …, 21 was used 
to extract the local sequence environment surrounding a potential phosphorylation site. The average hy-
drophobicity of all amino acids in the local window was calculated33. In this study, the Sweet and Eisenberg 
hydrophobicity index34 was used to encode this feature group.

The generation of contextual feature vector was based on the aforementioned distributed representation of 
protein sequences and segments. More specifically, we generated the distributed representation of residue-level 
sequence contexts within specific contextual window sizes. This residue-level sequence context was referred to 
as PSP (m, n) in previous studies, namely the Phosphorylation Site Peptide, which was composed of m upstream 
residues and n downstream residues of the target site21. In this study, we only considered the situation where an 
equal number of residues from the upstream and downstream of the target site was used, i.e. m = n. Thus, the 
contextual feature vector for a potential phosphorylation site ri can be generated as follows:

 1. We extracted the contextual window of size wi = 2m + 1 for a residue ri, which consisted of m upstream res-
idues and n = m downstream residues. The resulting contextual window was denoted as ci = ri−m+1, ri−m+1, 
…, ri, …, ri+m−1, ri+m;

 2. We performed n-gram split of the contextual window wi, resulting in a list of biological words;
 3. We generated the distributed representation of wi in two different ways: (i) by summing up the distributed 

representation of all its biological words, named context2vecadd, and (ii) by feeding the list of biological 
words to the pre-trained distributed memory network N, named context2vecinference.
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The final feature vector of the potential phosphorylation site ri was constructed by stacking all the seven 
aforementioned groups of feature vectors together, resulting in a 126-dimensional feature vector. Figure 1 demon-
strates the six groups of residue-level features and Fig. 2 provides a flowchart illustrating how the residue-level 
sequence contexts are represented as context2vecs for phosphorylation site prediction.

Results
We conducted comprehensive benchmarking experiments to compare the performance of PhosContext2vec and 
seven existing predictors for phosphorylation site prediction. More specifically, in the case of general phospho-
rylation site prediction, the prediction performance of PhosContext2vec was compared to that of GPS 3.03,9,21, 
MusiteDeep35, Musite 1.05, and NetPhos 3.122,36. While in the case of kinase-specific phosphorylation site predic-
tion, the performance of PhosContext2vec was compared to that of GPS 3.0, MusiteDeep, Musite 1.0, NetPhos 
3.1, KinasePhos 2.07,8, PhosphoPredict10, and PhosphoPick37. The corresponding algorithms, training data 
sources and features used by these methods are summarized in Table 1.

The effect of incorporating the distributed representation of residue-level sequence contexts 
on the predictive performance. To characterize the effect of distributed representation of sequence con-
texts on both general and kinase-specific phosphorylation site prediction, we performed 10-fold cross-validation 
tests and evaluated the performance of models trained using residue-level features only (Residue-level), the con-
text2vec generated with the inference strategy (Context2vecinference), the context2vec generated with the addition 
strategy (Context2vecadd), the combination of residue-level features and context2vecinference (Residue-level + Conte
xt2vecinference), the combination of residue-level features and context2vecadd (Residue-level + Context2vecadd), and 
the combination of residue-level features and ProtVec13 (Residue-level + prot2vecadd (ProtVec)). Figures 1 and 2 
show the generation of residue-level features and the context2vec representation, respectively. For the combined 
feature vectors, they were constructed by concatenating two feature vector representations for each target residue, 
respectively.

Figure 1. Extraction of residue-level feature groups for phosphorylation site prediction.

Figure 2. Generation of the distributed representation of residue-level sequence contexts for phosphorylation 
site prediction.
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Tables 2 and 3 shows the performance results of different models trained using the aforementioned input fea-
ture vectors for general and kinase-specific phosphorylation site prediction, respectively. For Context2vecinference, 
Context2vecadd, Residue-level + Context2vecinference, and Residue-level + Context2vecadd feature vectors, four differ-
ent contextual window sizes (ws) 7, 11, 15, and 19 were used to extract the local sequence contexts based on which 
the context2vec features were generated. It should be noted that the Residue-level features were representative of 
the special case of contextual window size 0, while the Residue-level + prot2vecadd (ProtVec) represents the special 
case of infinite contextual window size (including the whole sequence). In Tables 2 and 3, the best predictive 
performance for each phosphorylation site type or kinase family achieved by Context2vec-only feature vectors 
(including Context2vecinference and Context2vecadd) and Residue-level + Context2vec feature vectors (including 
Residue-level + Context2vecinference and Residue-level + Context2vecadd) with respect to different contextual win-
dow sizes was highlighted by underline and bold, respectively.

As clearly shown in Tables 2 and 3, the models trained using Residue-level + Context2vec features outper-
formed the models trained with Residue-level features across all three types of phosphorylation sites and five 
kinase families. For example, the models employing the combination of residue-level features and the context-
2vecinference (ws = 7) improved the average AUC scores by 0.045, 0.025 and 0.005 for phosphorylation site predic-
tion on S, T, and Y sites, and by 0.013, −0.002, 0.126, 0.027, and 0.004 for kinase AGC/PKA, AGC/PKC, CMGC/
CDK CMGC/CK2, and TK/SRC, respectively, compared with the models trained with residue-level features only. 
The only exception was the AGC/PKC kinase, for which the model trained with context2vecinference of window size 
7 performed slightly worse than the baseline model. However, the average AUC achieved with Residue-level + Con
text2vecinference feature vectors was increased from 0.897 to 0.909 when increasing the contextual window size from 
7 to 19, resulting in better performance than that was achieved by models trained with residue-level features only. 

Predictors Algorithms Data sources Feature groups G/K*
GPS 3.0 Hierarchical clustering9 Phospho.ELM18, PhosphoBase49 Phosphorylation site peptide (PSP) sequence similarities21 G/K

MusiteDeep Deep CNN, LSTM50 UniProt/Swiss-prot20, RegPhos51 One-of-K coding for 16 upstream and downstream residues G/K

Musite 1.0 Ensemble learning52 Phospho.ELM, UniProt, PhosphoPep53, PhosphAt19 K-nearest neighbour (KNN) scores5, disorder states, and 
amino acid frequencies54 G/K

NetPhos 3.1 Neural networks PhosphoBase Convolutional sparse encoding55 of local sequence contexts G/K

KinasePhos 2.0 SVM23 PhosphoBase, UniProt20 Local sequence patterns and local coupling patterns8 K

PhosphoPredict Random forest Phospho.ELM Amino acid type, PSS, DISO, solvent accessibility, and various 
protein functional features10 K

PhosphoPick Bayesian networks56 Phospho.ELM, HPRD57 Protein-protein interactions58 and protein cell-cycle types59 K

PhosContext2vec SVM Phospho.ELM, UniProt The Shannon entropy, the relative entropy, PSS, DISO, OP, 
ACH, and distributed contextual feature vectors G/K

Table 1. Summary of the algorithms, training data sources and feature groups used by different 
phosphorylation site predictors on the independent test. *G/K indicate General and Kinase-specific 
phosphorylation site prediction, respectively.

ws S T Y

Residue-level 0 0.842 +/− 0.008 0.896 +/− 0.007 0.933 +/− 0.007

Context2vecinference

7 0.512 +/− 0.005 0.557 +/− 0.016 0.854 +/− 0.036

11 0.845 +/− 0.005 0.861 +/− 0.011 0.871 +/− 0.016

15 0.841 +/− 0.006 0.848 +/− 0.010 0.849 +/− 0.017

19 0.835 +/− 0.006 0.836 +/− 0.014 0.833 +/− 0.017

Context2vecadd

7 0.852 +/− 0.008 0.884 +/− 0.009 0.909 +/− 0.011

11 0.850 +/− 0.011 0.867 +/− 0.009 0.875 +/− 0.017

15 0.843 +/− 0.013 0.853 +/− 0.011 0.856 +/− 0.018

19 0.841 +/− 0.006 0.840 +/− 0.014 0.840 +/− 0.018

Residue-level + Context2vecinference

7 0.887 +/− 0.008 0.921 +/− 0.007 0.938 +/− 0.008

11 0.889 +/− 0.008 0.926 +/− 0.008 0.938 +/− 0.008

15 0.889 +/− 0.008 0.927 +/− 0.009 0.939 +/− 0.008

19 0.887 +/− 0.008 0.926 +/− 0.008 0.939 +/− 0.008

Residue-level + Context2vecadd

7 0.887 +/− 0.008 0.920 +/− 0.008 0.937 +/− 0.008

11 0.892 +/− 0.008 0.927 +/− 0.007 0.938 +/− 0.008

15 0.892 +/− 0.008 0.929 +/− 0.006 0.939 +/− 0.008

19 0.891 +/− 0.008 0.929 +/− 0.005 0.939 +/− 0.008

Residue-level + prot2vecadd (ProtVec) inf 0.842 +/− 0.010 0.901 +/− 0.006 0.938 +/− 0.007

Table 2. Performance comparison between models trained with and without distributed contextual feature 
vectors for general phosphorylation site prediction. The prediction performance was evaluated in terms of the 
average AUC score and the standard deviation.
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These improved results demonstrate that, for both general and kinase-specific phosphorylation site prediction, 
the prediction performance achieved with the Residue-level + Context2vec features could be further improved 
when the contextual window sizes of Context2vec features were appropriately selected. This was more pronounced 
for phosphorylation site types S and T, and the CMGC/CDK kinase, with the average AUC scores significantly 
increased by 0.047, 0.031 and 0.126 (significant level: 5%), respectively.

Comparing the predictive performance achieved by the models trained with Context2vec-only and 
Residue-level + Context2vec features, it can be observed that the models trained with the latter outperformed those 
trained with the former (Tables 2 and 3). Taking kinase-specific prediction as an example, the best performance 
in terms of AUC scores was improved from 0.918, 0.865, 0.890, 0.893, and 0.913 to 0.938, 0.909, 0.925, 0.919, and 
0.966 for AGC/PKA, AGC/PKC, CMGC/CDK, CMGC/CK2, and TK/Src, respectively, when Context2vecinference 
was used in combination with Residue-level features. Similar improvements can be observed by comparing the 
results achieved by Context2vecadd and Residue-level + Context2vecadd. For example, the best AUC scores for the 
five kinase families were improved from 0.925, 0.885, 0.903, 0.901, and 0.931 to 0.940, 0.915, 0.907, 0.929, and 
0.964, respectively, when Context2vecadd was used in combination with Residue-level features. The results suggest 
that the Context2vec, as a useful contextual feature vector, can achieve better predictive performance when used 
in combination with residue-level features.

In terms of the effect of contextual window size, the performance (evaluated in terms of AUC scores) seemed 
to depend on the phosphorylation site type and kinase family. In general, with the increase of the contextual 
window size, the AUC score tended to increase until reaching the peak and then started to decrease. For example, 
the average AUC score of the models trained using Residue-level + Context2vec features was improved from 0.887 
to 0.892 and decreased to 0.891 when the contextual window size was increased from 7 to 15 and decreased from 
15 to 19, respectively, for S phosphorylation site prediction. For CMGC/CDK, the best AUC score of 0.926 was 
achieved using the contextual window size of 7, and then decreased to 0.899 when the window size was increased 
to 19. As aforementioned, Residue-level features can be seen as the special case where the contextual window 
size is set as 0, whereas the sequence-level representation prot2vecadd (i.e. ProtVec) is equivalent to the special 
case where the contextual window size is set as infinite. According to the results in Tables 2 and 3, models that 
were trained with these two types of feature vectors achieved worse performance compared to that of the models 
trained with Context2vec features. These results highlight the need and importance of developing specialized 
distributed representation of local sequence contexts that are more informative to address the residue-level pre-
diction tasks, such as phosphorylation site prediction in this study.

Comparison between the two implementation strategies of Context2vec. We further compared 
the predictive performance of models trained using the two implementation strategies context2vecadd and contex-
t2vecinference, respectively, based on the same group of results. Figures 3 and 4 plot the average AUC scores achieved 
by models trained with context2vecadd and context2vecinference for both general and kinase-specific phosphorylation 
site predictions. Models trained using different contextual window sizes 0, 7, 11, 15, and 19 (denoted as None, 
w3, w5, w7, and w9, respectively) are indicated by different colours. For each short line, the left side indicates the 
average AUC score achieved by the context2vecadd model, while the right side indicates the average AUC score 
achieved by context2vecinference model. The tilt angle of each short line thus indicates the performance difference 
between the two types of contextual feature vectors-based models.

ws AGC/PKA AGC/PKC CMGC/CDK CMGC/CK2 TK/Src

Residue-level 0 0.915 +/− 0.013 0.898 +/− 0.022 0.799 +/− 0.040 0.839 +/− 0.040 0.956 +/− 0.011

Context2vecinference

7 0.609 +/− 0.043 0.653 +/− 0.056 0.570 +/− 0.042 0.736 +/− 0.056 0.828 +/− 0.051

11 0.918 +/− 0.013 0.862 +/− 0.031 0.890 +/− 0.029 0.885 +/− 0.048 0.913 +/− 0.014

15 0.895 +/− 0.020 0.862 +/− 0.028 0.885 +/− 0.030 0.893 +/− 0.043 0.895 +/− 0.016

19 0.880 +/− 0.018 0.865 +/− 0.026 0.872 +/− 0.031 0.889 +/− 0.044 0.875 +/− 0.022

Context2vecadd

7 0.885 +/− 0.025 0.809 +/− 0.022 0.903 +/− 0.030 0.814 +/− 0.055 0.931 +/− 0.010

11 0.925 +/− 0.013 0.872 +/− 0.026 0.883 +/− 0.026 0.882 +/− 0.037 0.912 +/− 0.014

15 0.906 +/− 0.015 0.882 +/− 0.023 0.872 +/− 0.034 0.898 +/− 0.032 0.893 +/− 0.017

19 0.892 +/− 0.016 0.885 +/− 0.021 0.869 +/− 0.034 0.901 +/− 0.032 0.877 +/− 0.017

Residue-level + Context2vecinference

7 0.928 +/− 0.011 0.897 +/− 0.028 0.925 +/− 0.018 0.866 +/− 0.041 0.960 +/− 0.009

11 0.938 +/− 0.009 0.909 +/− 0.027 0.908 +/− 0.018 0.907 +/− 0.037 0.964 +/− 0.008

15 0.937 +/− 0.010 0.907 +/− 0.028 0.902 +/− 0.024 0.919 +/− 0.034 0.966 +/− 0.007

19 0.937 +/− 0.011 0.909 +/− 0.024 0.899 +/− 0.025 0.917 +/− 0.033 0.965 +/− 0.008

Residue-level + Context2vecadd

7 0.927 +/− 0.012 0.895 +/− 0.028 0.907 +/− 0.020 0.864 +/− 0.040 0.957 +/− 0.009

11 0.939 +/− 0.010 0.911 +/− 0.023 0.896 +/− 0.020 0.911 +/− 0.034 0.962 +/− 0.009

15 0.939 +/− 0.010 0.913 +/− 0.023 0.890 +/− 0.022 0.927 +/− 0.026 0.964 +/− 0.008

19 0.940 +/− 0.010 0.915 +/− 0.020 0.894 +/− 0.024 0.929 +/− 0.024 0.964 +/− 0.008

Residue-level + prot2vecadd(ProtVec) inf 0.908 +/− 0.013 0.874 +/− 0.022 0.738 +/− 0.042 0.827 +/− 0.036 0.954 +/− 0.010

Table 3. Performance comparison between models trained with and without distributed contextual feature 
vectors for kinase-specific phosphorylation site prediction. The prediction performance was evaluated in terms 
of the average AUC score and the standard deviation.
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According to Figs 3 and 4, two important observations can be made. The first observation is that, regardless 
of the selection of the contextual window size, one of the two implementations performed better than the other 
depending on the type of phosphorylation sites and kinase families. Specifically, in the case of S/T phospho-
rylation sites and most the of five kinases that phosphorylate S/T phosphorylation sites, models trained with 
context2vecadd performed better than those trained with context2vecinference, while in the case of Y phosphorylation 
sites, the TK/SRC kinase that phosphorylates Y sites, and the CMGC/CDK kinase that phosphorylates S/T sites, 
models trained with context2vecinference performed better than those trained with context2vecadd.

The second observation is that the performance of context2vecadd improved faster than that of the context2vecinference  
with the increase of the contextual window size. This is manifested by the relative change of the tilt angle with 
respect to different contextual window size in Figs 3 and 4. For example, for CMGC/CK2 (represented by the sky-
blue lines in Fig. 4), the tilt angle had a transition from slightly favoring context2vecinference to gradually rising up on 
the side of context2vecadd with the increase of the contextual window size. For CMGC/CDK, the performance of 
both context2vecadd and context2vecinference decreased with the increase of the contextual window size, but the per-
formance of context2vecinference decreased faster than that of context2vecadd, resulting in shrinking of the tilt angle 
with the increase of the contextual window size. The performance difference between the two implementations of 
context2vecs can be better explained by the advantages and disadvantages of context2vecadd and context2vecinference 
(Refer to the Introduction section).

According to the AUC scores and their standard deviations shown in Tables 2 and 3, Figs 3 and 4, we finally 
selected context2vecadd with the window size of 15, context2vecadd with the window size of 15, and context2vecinference  
with the window size of 19 for predicting S, T, and Y phosphorylation sites, respectively, and context2vecadd with 
the window size of 19, context2vecadd with the window size of 19, context2vecinference with the window size of 7, 
context2vecadd with the window size of 19, and context2vecinference with the window size of 15 for predicting phos-
phorylation sites of AGC/PKA, AGC/PKC, CMGC/CDK, CMGC/CK2 and TK/SRC kinases, respectively. The 

Figure 3. Performance comparison between the models trained based on context2vecadd and context2vecinference 
feature vectors for general phosphorylation site predictions, evaluated in terms of the AUC score. evaluated in 
terms of the AUC score.

Figure 4. Performance comparison between the models trained based on context2vecadd and context2vecinference 
feature vectors for kinase-specific phosphorylation site predictions, evaluated in terms of the AUC score. 
evaluated in terms of the AUC score.
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results suggest that this new distributed representation of contextual features improved the prediction of both 
general and kinase-specific phosphorylation sites. According to the 10-fold cross-validation results, the overall 
predictive performance was improved by 0.051, 0.033, and 0.006 for the prediction of S, T, and Y phosphorylation 
sites, and improved by 0.025, 0.017, 0.127, 0.009, and 0.001 for the prediction of AGC/PKA, AGC/PKC, CMGC/
CDK, CMGC/CK2, and TK/SRC phosphorylation sites, respectively, compared with those of the models that 
were trained with residue-level feature only.

Determination of hyper-parameters. We trained independent SVM models for each of the three phos-
phorylation site types and five kinase families, for which two hyper-parameters could influence the predictive 
performance and hence needed to be determined. The two hyper-parameters were the kernel type, which deter-
mined the kernel that was used for training the model and the penalty parameter C of the error term that affected 
the trade-off between the complexity and proportion of non-separable examples38. We tested the performance 
of the models trained with two most commonly used kernel types including the linear kernel and the rbf kernel 
(rbf was the default kernel), as well as five different values (including 1.0, 3.0, 5.0, 7.0, and 9.0; 1.0 was the default 
value) of the penalty parameter C. Note that a larger penalty C indicates a stronger penalty on non-separable 
examples, which will result in more complex models that fit the data more strictly. However, it may also cause 
overfitting at the same time. Based on the optimal contextual window sizes and context2vec implementation strat-
egy selected from the aforementioned experiments, we performed 10-fold cross-validation tests to compare the 
performance of models trained with different kernel types and values of penalty parameter C. The corresponding 
results are shown in Figure S1.

As we can see from Figure S1, for general phosphorylation site prediction, the rbf kernel performed better for 
S phosphorylation sites, while the linear kernel performed better for T and Y phosphorylation sites. The best per-
formance for S, T, and Y phosphorylation site prediction was achieved when the value of the penalty parameter C 
was set to 3.0, 7.0, and 7.0, respectively. For kinase-specific phosphorylation site prediction, the rbf kernel clearly 
performed better than the linear kernel across all the five kinase families. Accordingly, the best performance was 
achieved when the values of C were set to 5.0, 9.0, 9.0, 3.0 and 3.0 for the AGC/PKA, AGC/PKC, CMGC/CDK, 
CMGC/CK2, and TK/SRC kinase families, respectively.

General phosphorylation site prediction performance in independent tests. In order to validate 
the performance of PhosContext2vec for general phosphorylation site prediction, we further performed inde-
pendent tests. Using the optimized contextual window size, context2vec representation implementations and 
hyper-parameters selected on the cross-validation, we trained the models for S, T, and Y sites using the PELM 
training datasets and then evaluated the performance using the curated PPA datasets. To compare the perfor-
mance of PhosContext2vec with other existing methods, we submitted the same datasets to the other predictors 
including GPS 3.0, MusiteDeep, Musite 1.0, and NetPhos 3.1 and collected the corresponding prediction results. 
Figure 5 shows the ROC curves and AUC scores of all the compared methods for general phosphorylation site 
prediction.

According to the results shown in Fig. 5, MusiteDeep achieved the best predictive performance in terms 
of AUC scores amongst all the compared methods for general phosphorylation site prediction. In particular, 
MusiteDeep achieved an overall best performance for S, T and Y phosphorylation site prediction with an AUC 
score of 0.809, 0.701, and 0.647, respectively, while Musite 1.0 achieved the second-best AUC scores of 0.754 and 
0.647 for S and T phosphorylation site prediction and PhosContext2vec achieved the second-best AUC score of 
0.600 for Y phosphorylation site prediction. PhosContext2vec achieved the third-best performance for S and T 
phosphorylation site prediction with an average AUC score of 0.737 and 0.639, respectively.

Among the five compared methods, MusiteDeep is the only method that was developed based on the deep 
learning architecture. It used raw amino acid sequence as the input, extracted high abstract representations from 
a peptide of 33 residues centered around a potential phosphorylation site using convolutional layers and the 
attention mechanism, and performed phosphorylation site prediction based on the extracted representations35. 

Figure 5. ROC curves of PhosContext2Vec and four other methods on the independent test for general 
phosphorylation site prediction. The ROC curves of different methods are indicated by different colours. An 
AUC score of 0.5 indicates a random prediction.
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In comparison, PhosContext2vec was developed based on a traditional way of decoupling the process of feature 
extraction and model training. The SVM algorithm used has a comparatively less expressive power39, which may 
partially explain the inferior performance of PhosContext2vec compared to that of MusiteDeep. Nevertheless, the 
representation extracted by MusiteDeep purely rely on the neighboring residues of the target residue, while the 
contextual feature vectors used by PhosContext2vec also involve the information that is distributed in large pro-
tein sequence databases, thereby presenting some advantages in terms of contextual feature vector representation.

Compared with GPS 3.0 and NetPhos 3.1, both Musite 1.0 and PhosContext2vec considered protein disor-
der information as the input feature for training the models. In addition, Musite 1.0 also considered amino acid 
frequencies and used an ensemble learning strategy to perform the final prediction, which might be superior to 
individual SVM models or neural network models. GPS 3.0 was designed to predict phosphorylation sites in a 
way that kinases were clustered in a hierarchical structure, where the training samples of other related kinases 
can be reused for training better models. In the case of general phosphorylation site prediction, where models 
were respectively trained for S, T, and Y sites (i.e. not in a hierarchical manner), the hierarchical clustering of 
kinases did not appear to help improve the predictive performance. NetPhos 3.1 predicted phosphorylation sites 
by exploiting local sequential patterns in combination with neural network learning. However, different from 
NetPhos 3.1, PhosContext2vec incorporated both residue-level and contextual-level feature vectors in an inte-
grated manner. In addition, the contextual feature vectors were generated from a number of different contextual 
patterns present in large protein sequence databases, which might explain why PhosContext2vec achieved a bet-
ter performance compared to NetPhos 3.1.

Among the three types of phosphorylation sites, we found that the performance of the S site was better than 
that of the T site, while the performance of Y site was the worst. According to a previous study22, PROSITE motifs 
could only recognize 10% of annotated Y phosphorylation sites40, while being able to recognize 48% and 38% of 
the respective S and T phosphorylation sites. This indicates that the local patterns of phosphorylated tyrosine sites 
are much more difficult to capture, making them more challenging to be predicted.

Kinase-specific phosphorylation site prediction performance in independent tests. In this sec-
tion, in order to validate the performance of PhosContext2vec and compare it performance with other methods 
for kinase-specific phosphorylation site prediction, we further performed an independent test using the testing 
datasets extracted from UniProt and Phospho.ELM (Refer to the Methods section). The compared models include 
GPS 3.0, MusiteDeep, Musite 1.0, NetPhos 3.1, KinasePhos 2.0 PhosphoPredict, and PhosphoPick. Figure 6 shows 
the ROC curves and the AUC scores of these methods.

As shown in Fig. 6, different methods achieved varying performance for the five tested kinase families. Among 
all the compared methods, the most recently developed MusiteDeep method outperformed all other methods, 
demonstrating an outstanding performance across all the four tested kinase families, with an AUC score rang-
ing between 0.934 and 0.973. For AGC/PKA, MusiteDeep achieved the best AUC score of 0.976, while Musite 
1.0 performed the second-best with an average AUC of 0.956, followed by PhosContext2vec which achieved an 
AUC of 0.950. GPS 3.0 achieved an AUC score of 0.934, while PhosphoPredict achieved an AUC score of 0.911. 
Compared to the five other predictors that achieved an AUC score of >0.90, KinasePhos 2.0 and PhosphoPick 
achieved the worst AUC scores in a range of between 0.6 and 0.7.

For AGC/PKC and CMGC/CDK, PhosContext2vec achieved the second-best AUC scores of 0.939 and 0.960, 
respectively, secondary to MusiteDeep which achieved an AUC score of 0.954 and 0.973, respectively. Musite 1.0 
and GPS 3.0 also performed relatively well compared with the rest of the benchmarked predictors. For CMGC/
CK2, PhosphoPick could not predict the potential phosphorylation sites for this kinase family, while all the other 
predictor achieved a similar performance. Among these predictors, MusiteDeep achieved the best AUC score 
of 0.950 and PhosphoPredict achieved the lowest AUC score of 0.840, respectively. Finally, for TK/Src, GPS 3.0 
achieved the best performance with an AUC score of 0.830, while PhosContext2vec achieved the second-best 
performance with an AUC score of 0.794. Overall, MusiteDeep, Musite 1.0, GPS 3.0 and PhosContext2vec were 
evaluated as the top four best-performing predictors among all the compared methods, while PhosphoPick and 
KinasePhos 2.0 performed the worst in the independent test.

The inferior performance of KinasePhos 2.0 may be explained partly by the incomplete results obtained 
from its web server. The current web server of KinasePhos 2.0 only predicted phosphorylation sites with scores 
above the given specificity thresholds (four options are available: default, 80%, 90% and 100%). NetPhos 3.1 
performed well for CMGC/CK2 and TK/Src and relatively well for other kinase families, for example AGC/PKA. 
PhosphoPick achieved inferior performance for most tested kinases. It is the only predictor developed based on 
integrating protein functional features such as protein-protein interactions. However, on the other hand, it did 
not consider any features from amino acid sequences37. We would recommend that it should be used in combi-
nation with other sequence-based predictors to achieve a better performance. To quantify the performance of 
different predictors in terms of other measurements, we also calculated sensitivity, specificity, and MCC values. 
As mentioned in the Performance evaluation section, the low, medium and high cut-off FPRs for S/T sites were 
set to 2%, 6% and 10%, while the low, medium and high cut-off FPRs for T sites were set to 4%, 9% and 15%, 
respectively. In Tables S3 and S4, we used the same cut-off FPRs for comparing the different predictors.

It is noteworthy that MusiteDeep represents the only method available to date that employed the deep learning 
technique. We would like to point out that its superior performance over all other methods was consistent despite 
of its use of raw protein sequence as the direct input to train the deep learning models35. As an effective contextual 
feature vector, we hope that PhosContext2vec can be used as a side channel41 to further improve the performance 
of deep learning frameworks such as MusiteDeep in future work.
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Comparison between different methods in terms of time efficiency. To better understand the 
processing efficiency of different methods, we measured the elapsed time for processing the same 200 protein 
sequences using each predictor. The five compared predictors included GPS 3.0, Musite 1.0, MusiteDeep, NetPhos 
3.1, KinasePhos 2.0, and PhosphoPick. For these predictors, we tested the standalone Java programs of the former 
two, the python source codes of MusiteDeep, and the online web servers of the latter three. For PhosContext2vec, 
we tested both the standalone CPU time and the response time of the web server.

As shown in Fig. 7, among the four tools PhosContext2vec, GPS 3.0, MusiteDeep, and Musite 1.0 that were 
evaluated in terms of the CPU time, MusiteDeep provided the fastest computing speed and completed the task 
within 16 seconds. In particular, the CPU time of Musite 1.0 was calculated given that protein disorder infor-
mation has been cached. Similarly, the CPU time of PhosContext2vec was calculated on the assumption that 
the BLAST results were cached. It took Musite 1.0~45 seconds to process 200 protein sequences, while it took 
PhosContext2vec about 25 seconds to complete the same prediction task. In terms of the web server response 
time, NetPhos 3.1 benefited from the use of multiple threads and achieved the fastest speed within 25 seconds. As 
a comparison, it took KinasePhos 2.0 and PhosphoPick ~35 seconds and more than 40 seconds, respectively, for 
processing the same 200 sequences. It took the PhosContext2vec web server approximately 28 seconds to com-
plete the prediction of 200 protein sequences.

Implementation of the PhosContext2vec web server. The PhosContext2vec web server is cur-
rently configured and hosted on a virtual server machine deployed in the Monash e-Research Centre at Monash 
University, equipped with four cores, 12 GB memory and a 110 GB hard disk. It is implemented using the 
Python-Django framework42 and consists of three major components, i.e. the client interface, the backend server, 
and the asynchronous task scheduler. The user interface interacts with the clients, collects protein sequence 
inputs, parameter settings, and email addresses and forwards the submitted requests to the backend server. The 
backend server interacts with the client interface and determines the logic of each request. Following the sub-
mission of each request, the backend server starts a running job and forwards the generated results to the client 
interface once the job is completed. For long-running jobs, we employed a third component, which is an asyn-
chronous task scheduler, for optimizing the allocation of computational resources. With this architecture, the 
backend server can return a real-time task status before the task is completed, which sets the server threads free to 
deal with more requests. Figure S2 shows the architecture of the PhosContext2vec web server.

Figure 6. ROC curves of PhosContext2vec and seven other existing methods for kinase-specific 
phosphorylation site prediction on the independent test. The ROC curves of different methods are indicated 
by different colours. Five panels correspond to the prediction results of AGC/PKA, AGC/PKC, CMGC/CDK, 
CMGC/CK2, and TK/Src kinase families, respectively. The performance of a method was denoted as “N/A” if 
such method does not provide pre-trained models to predict the phosphorylation sites for the corresponding 
kinase family.
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The PhosContext2vec web server provides three different but complementary functions for users, including 
contextual feature vector generation, general phosphorylation site prediction and kinase-specific phosphoryla-
tion site prediction. Users can submit their protein sequences of interest through either entering the sequence 
information in the text area provided at the web page, or uploading the sequence file in the FASTA format, or 
supplying a concise list of UniProt IDs of query proteins. In terms of contextual vector generation, four contextual 
window sizes (i.e. 7, 11, 15, and 19) are available as options. For general and phosphorylation site prediction, the 
contextual window sizes for different types of phosphorylation sites (including S, T and Y) and kinase families 
(including AGC/PKA, AGC/PKC, CMGC/CDK, CMGC/CK2, and TK/Src) were set to the optimal values based 
on the empirical results. Users are allowed to adjust the prediction cut-off and output thresholds for generating 
customized prediction results in order to meet their specific requirements. Potential phosphorylation sites pre-
dicted with scores larger than the output threshold will be included in the prediction output; however, only those 
with scores larger than the prediction cut-off threshold will be considered as a positive prediction. On task com-
pletion, users can download the text-based results, browse the web page-based result summaries and visualize the 
graphical statistics. Alternatively, for users who provide their email address, an email with the output links and 
file attachments will be sent. Detailed examples of using the PhosContext2vec web server and descriptions of the 
generated outputs are provided in Figures S3 and S4 in the Supplementary Material.

Discussions
In this study, we have proposed an effective distributed representation of contextual feature vectors for gen-
eral and kinase-specific phosphorylation site prediction. Compared to previous contextual patterns for potential 
phosphorylation sites3,5,9,21 the distributed contextual feature vector has several attractive advantages. First, the 
distributed representation is automatically generated from a pre-trained feature extraction model that synthesizes 
patterns from all possible contexts in large protein sequence databases; Second, the implementation of contextual 
feature vector comes in two complementary flavors where context2vecadd has higher accuracies for individual 
biological words while context2vecinference additionally models the internal order of the biological words; Third, 
the resulting contextual feature vector is represented as a one-dimensional real-valued vector with fixed vector 
size, thereby making it more convenient to be used in combination with other feature vectors; Finally, such con-
textual feature vector can be used for any residue-level protein property prediction that fully or partially relies on 
extraction of local sequence contexts, for example, protein secondary structure prediction43,44, protein disorder 
prediction15,45, protein torsion angle prediction46,47 as well as other types of protein PTM sites26,44 and protease 
cleavage sites29,48.

Based on the distributed contextual representation, we applied the contextual feature vectors to solve the 
prediction problems of both general and kinase-specific phosphorylation sites. We conducted cross-validation 
tests for optimizing the selection of contextual window sizes, contextual representation implementations, and 
hyper-parameters. Improved performance was achieved for all the three types of phosphorylation sites and five 
kinase families when the contextual feature vector was incorporated. When evaluated on the independent test 
and compared to several other state-of-the-art predictors, the developed PhosContext2vec model based on the 
distributed contextual feature vector achieved a relatively superior performance for predicting Y phosphorylation 
sites, and also for the AGC/PKC and CMGC/CDK kinase families. It also achieved promising performance for S 
and T phosphorylation sites, and for AGC/PKA and TK/SRC kinase families.

As for kinase-specific phosphorylation site prediction, the PhosContext2vec online webserver was designed 
to predict the potential phosphorylation sites of the 138 kinase groups, families, subfamilies, and protein kinases 
arranged at different hierarchical levels; however, we only performed benchmarking tests for five kinases that had 
more than 500 experimentally validated phosphorylation sites. In future work, more kinases will be included in 
the online web server of PhosContext2vec when more experimentally validated phosphorylation data become 
available for such kinases.

Figure 7. Elapsed time comparison between different phosphorylation site predictors for predicting 200 
protein sequences. Due to the limited availability of the external predictors, we calculated the CPU time 
(denoted by light blue) for those predictors with available standalone programme. For those predictors with 
only web servers available, we measured their response time (denoted by dark blue). For PhosContext2vec, both 
the CPU time and the web server response time was provided.
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