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Accurate and Robust Non-rigid 
Point Set Registration using 
Student’s-t Mixture Model with 
Prior Probability Modeling
Zhiyong Zhou1, Jianfei Tu2, Chen Geng1, Jisu Hu1, Baotong Tong1, Jiansong Ji2 & Yakang Dai1

A new accurate and robust non-rigid point set registration method, named DSMM, is proposed for 
non-rigid point set registration in the presence of significant amounts of missing correspondences 
and outliers. The key idea of this algorithm is to consider the relationship between the point sets as 
random variables and model the prior probabilities via Dirichlet distribution. We assign the various 
prior probabilities of each point to its correspondences in the Student’s-t mixture model. We later 
incorporate the local spatial representation of the point sets by representing the posterior probabilities 
in a linear smoothing filter and get closed-form mixture proportions, leading to a computationally 
efficient registration algorithm comparing to other Student’s-t mixture model based methods. Finally, 
by introducing the hidden random variables in the Bayesian framework, we propose a general mixture 
model family for generalizing the mixture-model-based point set registration, where the existing 
methods can be considered as members of the proposed family. We evaluate DSMM and other state-
of-the-art finite mixture models based point set registration algorithms on both artificial point set 
and various 2D and 3D point sets, where DSMM demonstrates its statistical accuracy and robustness, 
outperforming the competing algorithms.

Registration of point sets is of great importance in many computer vision tasks, such as medical image registra-
tion, image analysis, computer graphics, and pattern recognition. Many problems in these fields can be solved by 
point set registration algorithms operating on points or landmarks extracted from the input images. In medical 
image analysis, point set registration is necessary to match points or landmarks in 3D images for disease diagno-
sis, motion models, point-set-based image registration, image fusion, and construction of image atlases. In this 
paper, we focus on the registration model which is a key problem in non-rigid point set registration.

Mathematically, the point set registration problem can be described as follows. Let X ∈ IRD and Y ∈ IRD 
be two point sets to be registered, where X is a D-dimensional point set labeled as the target set, while Y is a 
D-dimensional point set labeled as the template set. The general approach of point set registration is to estimate a 
mapping T from IRD to IRD, which yields the best transformation between the target set X and the template set Y.

Many algorithms have been proposed for point set registration. Iterative Closest Point (ICP) algorithm1 is 
the most popular algorithm owing to its low computation complexity. The traditional ICP algorithm defines the 
correspondences based on a closest neighbor principle. ICP finds a closest point yi in Y for each point xi in X. It 
subsequently estimates a transformation which best aligns X to Y by using a least-squares method. ICP iterates 
the cycle of correspondences establishment and alignment until it reaches the local minimum. However, the tra-
ditional ICP requires the initial position of the two point sets to be adequately close. ICP has been received a lot 
of attentions and several improved algorithms have been proposed2–5. Liu reviewed the improvements over ICP6.

Instead of aligning a one-to-one correspondence based on a closest distance criterion, the Robust Point 
Matching (RPM) algorithm7 proposed by Gold et al. and its variants8,9, alternatively estimate soft-assignment 
of correspondences and transformation, leading to allowing for fuzzy correspondences, and9 subsequently used 
Thin-Plate-Spline (TPS) to re-parameterize the transformation that resulted into the TPS-RPM algorithm. Tsin 
and Kanade10 proposed a kernel-correlation-based point set registration approach, considering the non-rigid 
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point set registration as an alignment between two distributions. This approach parameterizes the point sets using 
explicit TPS parameterizations, which is equivalent to a regularization of second order derivatives of the transfor-
mation. Their algorithm attempts to align the given two point sets without explicitly estimating the correspond-
ences, leading to a more robust algorithm against degeneration (such as missing correspondences and outliers).

Chui et al.11 pointed out that the processing of alternative correspondence estimate and transformation in 
the RPM algorithm is equivalent to the Expectation Maximization (EM) framework for Gaussian mixture model 
(GMM), in which one point set is considered as GMM centroids and the other one is considered as data12. GMM 
is a well-known mixture model, widely used to formulate non-rigid point set registration as it is a natural and 
simple way to describe the given point sets. Revow et al.13 represented the contour-like point sets using splines 
and modeled them by the probabilistic GMM formulation, where GMM centroids were uniformly positioned 
along the contours. This algorithm allows non-rigid transformation for point sets. Similar to9, Myronenko et al.14 
proposed a robust point set registration framework. Myronenko et al.15 later introduced the Coherent Point Drift 
(CPD) algorithm, which enforced the points drift coherently by regularizing the transformation following the 
Motion Coherence Theory (MCT)16,17. The major difference between the two algorithms proposed in9,15 is that9 
re-parameterizes the transformation via TPS, while15 re-parameterizes the transformation by using Gaussian radial 
basis functions (GRBF). However, the CPD algorithm aligns a same mixture proportion for all mixture compo-
nents and introduce an additional uniform distribution in mixture model for improving robustness against outli-
ers, noise and occlusion18. Jian and Vemuri19 modeled both point sets using GMM and introduced a general robust 
framework involving the minimization of the L2 distance between Gaussian mixtures. Tustison et al.20 also repre-
sented point sets by using a GMM with an anisotropy covariance. In addition, features such as mutual informa-
tion21 and shape22–24 extracted from images or point sets are incorporated into point set registration. Wang et al.25  
generalized a L2 divergence and obtained closed-form solutions for registration. Subsequently, Wang et al.26 used 
a similar model to simultaneously align multiple point sets. However, it is well known that the GMM-based 
non-rigid point set algorithms are sensitive to significant amounts of outliers and missing correspondences since 
they use an additional component to represent the heavy tail of the mixture model27.

There are also several algorithms that attempt to align two point sets using the Student’s-t mixture model 
(SMM) to improve the accuracy and robustness against outliers and missing correspondences. SMM has been 
introduced as an alternative to GMM, providing an effective and non-heuristic mean to handle degradations 
such as missing correspondences and outliers28. It is worth to point out that, mathematically, the Student’s-t 
distribution corresponds to a Gaussian distribution when the degree of freedom (DoF) γ → ∞, making the 
Gaussian mixture model be a special case of the Student’s-t mixture model27. The Student’s-t mixture model 
has heavily tails, leading to a natural and elegant model for modeling the given point sets with degradations29. 
Gerogiannis et al.30,31 proposed a SMM-based rigid point set registration algorithm which was more robust than 
the GMM-based algorithms. However, it is regretful that the proposed algorithm is limited to rigid point set reg-
istration. In previous work, we introduced a SMM-based non-rigid point set registration method (called pSMM 
in this paper) for contour-like and surface-like point sets32, subsequently, we apply it for matching surface-like 
points33. Unfortunately, pSMM utilized EM framework to directly calculate the prior probability, which is a 
least-square-based method for fitting parameters, whose lack of robustness is well known. Moreover, it is an ardu-
ous task to get closed-form solutions for the SMM-based non-rigid point set registration in the EM framework34. 
To overcome this problem, Peel and McLachlan considered34 SMM as an infinite mixture model of the scaled 
GMM integral form to get the closed-form solutions in EM framework35,36. Liu and Rubin indicated that conver-
gence of estimating parameters of SMM in EM framework is slow, they subsequently extended the EM frame-
work in the form of ECM and ECME algorithms37,38. Recently, the Student’s-t distribution and the Student’s-t 
mixture model also demonstrate their accuracy and robustness against outliers in various applications, such as 
data cluster39,40, data classification41, and image segmentation42–44. However, the prior distribution of SMM does 
not depend on the given point sets and the a same mixture proportion is assigned to all data in the existing 
approaches29,31,40. Additionally, the existing point set registration approaches do not take into account the local spa-
tial representation of the input point sets. In order to overcome the lack of local spatial representation, Ma et al.45  
introduced a novel transformation estimation method using L2E estimator for building robust sparse and dense 
correspondences. Some feature descriptors, such as shape context, are utilized for establish rough correspond-
ences in their work. Ma et al.46 considered point set registration as the estimation of a mixture of density, where 
the local feature is used to assign the membership probability of the mixture model.

In this paper, we proposed a more accurate and robust non-rigid point set algorithm, called DSMM, by using 
Dirichlet distribution in the Student’s-t mixture model to formulate the various mixture proportion and assign 
them to corresponding mixture components, instead the same value in the existing methods. Comparing with 
the existing state-of-the-art point set registration algorithms (include pSMM), the key contributions of our work 
are: (1) We introduce the idea of considering the mixture component label vector as random variables, which 
is a major difference from the existing point set registration, where the mixture proportions are considered as 
discrete labels. We consequently utilize the Dirichlet distribution as a natural model for formulating the mixture 
proportion in the Student’s-t mixture model, and assign various mixture proportion wmn for each observation 
xm belonging to corresponding component yn. It is worth to point out that the main difference between DSMM 
and pSMM is that pSMM mathematically use a least-squared method to estimate the prior probabilities, while 
DSMM utilities an Dirichlet distribution for modeling it, which is detailed in subsection 2.2. (2) We further 
propose a general mixture model family for point set registration based on the hidden variables in the Bayesian 
framework, which reveals the relationship of DSMM and the existing methods in subsection 2.3. We consider the 
Student’s-t mixture model as infinite mixture of scaled Gaussian mixture model as Peel and McLachlan did34, and 
subsequently parameterize the hidden variables using Dirichlet distribution. (3) In order to incorporate the local 
spatial relationship between neighboring points, we further formulate the mixture proportions by the parameters 
of Dirichlet distribution by representing the posterior probabilities in a linear smoothing filter.
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The rest of this paper is organized as follows. In the section 2, we present the main idea of the Dirichlet dis-
tribution for modeling the mixture proportions of the Student’s-t mixture model, and further propose a general 
mixture model family for point set registration, where DSMM and existing approaches can be considered as its 
member. Section 3 contains some qualitative and quantitative evaluations on 2D and 3D point sets with outliers 
and missing correspondences. Finally, we present a discussion in section 4 and a conclusion in section 5.

Method
Student’s-t mixture model for registration. In this section, we start with briefly reviewing our pre-
vious work on point set registration based on Student’s-t mixture model32. Let XM×D = (x1, … xM)T denotes a 
D-dimension point set considered as an observation, YN×D = (y1, … yN)T denotes the other D-dimension point 
set. Each point yn is considered as a component of the Student’s-t mixture model. The probability density function 
of the Student’s-t mixture model with N components is defined as

∑σ γ σ γ| = |
=

f x y w w S x y( , , , ) ( , , )
(1)m n n n

n
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n m n n
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where wn is a prior probability (mixture proportion) for yn, satisfying the following constraint
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S(xm|yn,σ2,γn) represents a probability density of multivariate Student’s-t distribution, which takes the form
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In the Eq. (3), d(xm,yn,σ2) = (xm−yn)T(xm−yn)/σ2 is the Mahalanobis squared distance between xm and yn, and 
Γ(·) is a Gamma function. In our registration method, each Student’s-t distribution S(xm|yn,σ2,γn), which is called 
a component of the mixture model, has its own parameter set Θn = {yn,σ2,γn} with its component centroid yn, 
variance σ2 (or precision 1/σ2) and degree of freedom γn.

Mathematically, the multivariate Student’s-t distribution is equivalent to Gaussian distribution when its 
γ → ∞. The Student’s-t distribution provides a heavy-tailed model for fit the degradations such as data with 
longer than normal tails, outliers, and missing correspondences.

Prior probability modeling with Dirichlet distribution. The prior probability wn in the Eq. (1) 
represents the mixture proportions of the n-th component in the mixture model. Unfortunately, in the pre-
vious work14,15,47, the mixture proportion wn is assigned to all correspondences, which is unreasonable as the 
observations vary in their locations. Moreover, the existing methods estimate the prior probabilities via a 
least-squared-based method in the EM framework, leading a well-known under-fitting problem for complex 
point set registration. Another limitation is that each observation is considered as an independent point to its 
neighbors. Therefore, these methods do not take into account the spatial correlation between the neighboring 
points in the decision process. In order to overcome the under-fitting problem and improve the robustness to 
noise, outliers and occlusion, we introduce Dirichlet distribution for modeling the prior probabilities and assign 
different prior probabilities between the observations and their correspondences.

Firstly, we rewrite the density function of Student’s-t mixture model at an observation xm, which takes the 
form
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Specially, the parameter wmn denotes the mixture proportion of the component yn belonging to its correspond-
ence xm.

Secondly, we introduce the hidden variables27 in the Bayesian approach to model the prior probabilities in our 
method. In the Bayesian approach, the complete-data vector, which composes of the hidden variables, is given by

= … ... ...v y y z z u u( , , , , , , , , ) (5)c N N N
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where the discrete label zn = (z1n, …, zMn)T denotes the component label vector, which defines the relation-
ships between xm and yn (n = 1, …, N; m = 1, …, M). zmn is 1 or 0 depending on whether xm belongs to the n-th 
component

=
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m

u1, …, uN represent the hidden variables associated with the scaling weights of the covariance of the equivalent 
Gaussian distributions, which is defined as

γ γ∼= Γu f ( /2, /2) (7)n z n n1mn
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where fΓ(x) is the Gamma function. According to the Eq. (7), u1, …, uN are independent variables if z1, …, zN are 
given. Consequently, xm is a random variable defined as34

σ| ∼=x f y u( , / ) (8)m u z N n n, 1
2

n mn

where fN(yn,σ2/un) is a Gaussian distribution with the mean yn and the covariance σ2/un. We now focus on the 
hidden variable zn, which is considered as an independent variable in pSMM. We now consider zn = (z1n, … zmn) 
as a probable label vector and formulate it by Dirichlet distribution and Dirichlet law44,48,49 for accurately mode-
ling the prior probabilities. Dirichlet distribution is a natural and power method for modeling complex data by 
varying its parameters.

According to29, we get the conditional probability of the probability label zn
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where ξn = {ξ1n, …, ξMn} (m = 1, …, M) is the Dirichlet parameter in the M-dimensional probability simplex, 
satisfying 0 < ξmn < 1 and ξ∑ == 1m

M
mn1 ; and αn = {α1n, …, αMn}, satisfying 0 < αmn < 1, is the vector of the 

Dirichlet parameters. p(zn|ξn) and p(ξn |αn) take the form of
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Combining the Eqs (9), (10) and (11), the probability label subsequently takes the form
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According to the property of the probability density function, p(ξm|αm) always satisfies the following condition
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Utilizing the Eq. (13) to rewrite the Eq. (12), we could obtain the probability
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We now consider the condition of discrete label zmn in the Eq. (6). Considering Γ(x + 1) = xΓ(x), the 
closed-form solution of prior probability wmn is finally given by
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However, the components in the mixture model are still assumed to be independent identically distributed, 
which brings an attendant trouble that there is no neighborhood information for registration process since xn is 
considered as an independent point to its neighbors. In order to solve the problem, we constraint the Dirichlet 
distribution with local spatial representation via defining parameter αmn of the Dirichlet distribution as42
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where pmn is a posterior probability, which is formulated as
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Nn stands for the number of neighbors locating in the window around the point yn, and yi ∈ ∂yn represents that 
yi locates in the neighborhood of the given point yn. α is a local spatial constraint coefficient of the Dirichlet dis-
tribution. αmn contains the neighborhood information that makes registration has a spatial constraint. Moreover, 
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only a parameter in the EM framework need to be calculated, not M × N parameters αmn in the traditional 
Student’s-t distribution mixture model, leading our method to be a computationally effective algorithm. We 
finally accurately model the prior probability wmn and incorporate the local spatial constraint in a simple way. 
Combining the Eqs (15) and (16), wmn gets its closed-form as

=
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In order to get a solution of α, we separate wmn from the probability density function (4) and estimate it by 
minimizing the negative log-likelihood function equivalently.
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We obtain the iterative solution of α by minimizing E(wmn), or equivalently solve the following equation
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Comparing to the mathematical expressions in the MRF method50, we find a connection between the pro-
posed Dirichlet-based spatial representation and the MRF method. The energy function UMRF in the MRF method 
in50 may degenerate to the prior probability in the Eq. (18) of our method if UMRF is set up as a diagonal matrix 
with the diagonal as −1, which implies that the Dirichlet distribution models the prior probabilities by using a 
spatial clustering method. A limitation of the previous methods is that they consider each point is independent to 
its neighbors, which results to the lack of a spatial correlation between the neighboring points.

The parameter set of non-rigid point set registration is defined as Ψ = (w1, …, wn, γ1, …, γn, y1, …, yn, σ2), 
where wn = (w1n, …, wMn) represents the prior probability, whose solution has been discussed above. We subse-
quently separate parameters of SMM and estimate them by maximizing their log-likelihood, or by minimizing the 
negative log-likelihood function equivalently for calculating other parameters in the EM method. We now briefly 
reviews the solution of these parameter, which is detailed in our previous work32,33. Firstly, we consider the Eq. 
(19), umn can be calculated from the equation
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The solution of γn of k-iteration could be obtained by minimizing E(γn). The iteration of γn is given by

ϕ
γ γ

ϕ
γ γ

−






 + + +

∑ −

∑
+






+ 




−
+

==

=

− −p u u
p

D D
2

ln
2

1
(ln )

2
ln

2
0

(22)
n n n

M
mn mn mn

n
N

mn

n
k

n
k

1

1

( 1) ( 1)

where γ(k−1) is an optimization solution in (k−1)-iteration.
Finally, we calculate the transformation field Y15 as Y(k) = Y(k−1) + GW(k), where GM×M is a Gaussian kernel 

matrix with it element gij = exp(−|yi−yj|/(2β)2) in order to reduce the oscillating energy at high frequency. β is 
a width of smoothing Gaussian filter, defining the model of the smoothness regularization. G(m;) is the column 
vector of the kernel matrix GM×M, and WM×D is the weight matrix of GM×M. Using ∂E(yn, σ2)/∂W = 0, W is given 
by

λ σ= + −− − −ˆ ˆ ˆ1 1W diag P G I PX diag P Y( ( ) ( ) ) ( ( ) ) (23)k k2 ( 1) 1 ( 1)

where P̂ is a M × N matrix with its element =p̂ p umn mn mn, denoting the posterior probability density corrected by 
umn. 1 is a column vector of all ones; I is an identity matrix; diag(·) denotes a diagonal matrix. λ represents the 
trade-off between the goodness of maximum likelihood fit and regularization. Using ∂E(yn,σ2)/∂(σ2) = 0, σ2 is 
formulated as
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Generally speaking, the main advantages of our method are: (1) We model the prior probabilities by Dirichlet 
distribution in EM framework, which more accurately represents the mixture proportion of each component in 
the mixture model, leading an excellent method for degenerated point set registration. In the existing methods 
(includes pSMM), the prior probability wm is directly estimated as = ∑ =w p N/m n

N
mn1  in M-step of EM method. 

Mathematically, it is a least-squared solution, which gives a point estimate to the prior probabilities and disregards 
the remaining uncertainty in the estimation. Therefore, low robustness and under-fitting problem are introduced 
into the process of optimization. Dirichlet distribution and its mixture model could automatically determine the 
number of necessary mixture components based on the data51. In DSMM, we introduce the Dirichlet distribution 
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for modeling the prior probabilities, and then assign various mixture proportions (prior probabilities) wmn of n-th 
component to its m-th correspondence. Rather than taking a point estimate, we model the prior probabilities 
using Dirichlet distribution, where Dirichlet distribution gives the posterior probability distribution over all 
model parameters in E-step of (k + 1) iteration by using the observed data together with the prior distributions. 
Subsequently, we utility these posterior probability distributions to estimate the prior probabilities in M-step. In 
general, comparing to a least-square-based estimation, the estimate of the prior probabilities via Dirichlet distri-
bution could yield a robust and stable result, by including the resulting uncertainty into the estimation. (2) We 
incorporate the local spatial relationship between neighboring points into the Dirichlet distribution parameters 
in a simple and natural way by representing their posterior probabilities in a linear smoothing filter, leading to 
taking into consideration of the spatial correction in the registration process. Furthermore, it potentially supplies 
a universal approach to incorporate more ingenious filters for local spatial representation in the mixture model52.

In order to summarize the proposed method and theoretically reveal the differences between DSMM and 
pSMM, we represent the joint distribution of all random variables in our method via a directed graph model, 
as show in Fig. 1. Moreover, we will further quantitatively estimate performance of DSMM, pSMM and other 
competitive method in the following experiments, which will more intuitively reflect the power of modeling prior 
probabilities via Dirichlet distribution.

Family of the mixture-model-based registration. We tooe an interesting observation that the 
mixture-model-based registration methods (included the proposed method) can be generally modeled as infinite 
Gaussian mixture models at a single observation x for potential outliers or data with longer than normal tails, 
which takes the form

∫ σ| .f x y u dH u( , / ) ( ) (25)N
2

Now considering an N-component mixture for point set registration, a general mixture model family for 
registration is given by

∫∑Ψ σ| = |
=

( )f x y w f x y u dH u( , ) ( , / ) ( )
(26)m n

m

M

mn N m n n n
1

2

where fN is a general symbol for denoting a probability density function of Gaussian.
We now assume that H is a chi-squared distribution with the degree of freedom γn and its random variable 

un~(u|α,β) = αβuαe−βu, where G(u|α,β) is a symbol of Gamma distribution. In our method, we choose 
α = β = γn/2. According to27,34, it is obvious that we can rewrite Student’s-t distribution as an infinite mixture of 
scaled Gaussian mixture model. Therefore, we conclude that the Student’s-t mixture model is a member of the 
general mixture model family.

We subsequently simplify the infinite mixture to a finite mixture with two different components by placing the 
mass ε at the point un = 1 and mass (1−ε) at the point un = 1/c. The Eq. (25) therefore transforms to a Gaussian 
scaled mixture that takes the form as

ε σ ε σ| + − |f x y c f x y( , ) (1 ) ( , ) (27)N m n N m n
1 2 2 2

Figure 1. Representation of the Student’s-t mixture model with Dirichlet distribution as a directed graphical 
model. The M-box denotes the M observations xm, and the N-box denotes the N mixture components. Note that 
the random variable umn, wmn, and zmn belong to both M-box and N-box, indicating that they are corresponding 
random variables for the Student’s-t mixture components and the observations. (a) pSMM for point set 
registration, (b) DSMM for point set registration.
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where fN(x|y,σ2) denotes the Gaussian distribution with its mean y and variance σ2; ε is a small value, representing 
the small proportion of observation in the mixture and c is a relatively large value for representing the potential 
degeneration that has a relatively large variance. In the two components mixture, the first term denotes the prob-
ability density of potential degeneration, while the second term denotes the probability density of normal data. 
Comparing to the Student’s-t mixture model, the major limitation of Gaussian scaled mixture is lack of robustness 
to degeneration due to its additional Gaussian components to capture the tail of the distribution, as shown in the 
Eq. (27).

We further simplify the Gaussian scaled mixture model. We now assume that φ1 is a uniform distribution, 
which is given by φ1 = N/M; φ2 is a Gaussian distribution, and simultaneously fix wmn as a constant, satisfying 
wmn = 1/M. The Eq. (26) finally transforms to ε/N + (1−ε)(fN(x|y,σ2))/M, which takes the same form as CPD. It 
is obviously to find that CPD is a member of the large family, which is formulated by the Eq. (26). Moreover, it is 
worthy to point out that RPM-based registration methods, such as RPM-TPS and RPM-RBF are mathematically 
equivalent to CPD in the EM framework, which leads RPM-based methods to be members of the mixture model 
family. Theoretically, the discrete latent variable zmn specifies which component of the Student’s-t mixture model 
generates the observation xn, and the continuous latent variable umn specifies the scaling of the corresponding 
equivalent Gaussian distribution. Consequently, pSMM will transform to CPD if zmn = 1, umn = 1, and γn→∞ 
simultaneously. The degrees of freedom γn is a trade-off between robustness and efficiency. A small DoF γn can 
appropriately assign a small weight to the outliers or missing correspondences depending on the input data, while 
a relative larger value of DoF tends to fit a Gaussian mixture model to the data. Actually, the degree of freedom 
reflects the assumption on the amount of noise in the point sets, which plays an important role in point matching. 
For the initialization of the degrees of freedom, we always use the value 1 (multivariate Student’s-t distribution 
reduces to Cauchy distribution when γ = 1) to maximize the robustness at the beginning of registration process.

In the existing methods, the major disadvantage is that the parameter zmn is considered as a discrete label 
zmn = {0,1}. Another limitation of the existing mixture-model-based method is their under-fitting for prior proba-
bilities. It is easily understood by recalling the maximization of prior probabilities in the EM framework. The esti-
mation of prior probabilities in these methods mathematically is a least-square solution, leading to a well-known 
under-fitting problem. In order to get a more precise model, we consider the label zmn as a random variable 
following a multinomial distribution with its probability vector ξn = {ξ1n, … ξMn}. According to the multinomial 
definition, the conditional distribution takes the form as

∏ξ ξ| =
∏ = =

p z K
z

( ) !
( )!

( )
(28)

n n
m
M

mn m

M

mn
z

1 1

mn

where ξmn > 0 and ∑nξmn = 1. The multinomial model represents the probability ξmn of observation xm belonging 
to the component yn with K realizations, satisfying = ∑ =K zm

M
mn1 . When the multinomial distribution is used to 

generate the correspondences, the distribution of the number of emissions (i.e., counts) of an individual compo-
nent follows a binomial law53,54

ξ ξ ξ| = − .−( )p z K
z( ) ( ) (1 )

(29)mn mn mn mn
z

mn
K zmn mn

The above equation reveals that it is a small probability to a point corresponding to multi-component under 
the multinomial model, since the count of a single point corresponding to components decays exponentially. A 
better approach is hierarchical: the probabilities of correspondences between point xm and component yn is gen-
erated by multinomial, whose parameters are formulated by Dirichlet distribution, which is also called Dirichlet 
compound multinomial55. As discussed in the subsection 2.2, we finally formulate the mixture proportion by 
using parameters of Dirichlet distribution. Jian et al.19 revealed the relationship between point set registration 
methods from the view of the divergence function.

Generally, we generalize a family of mixture-model-based point set registration from the view of hidden vari-
ables in the Bayesian framework, and summarize a relationship between DSMM and the existing mixture-model 
methods in the Table 1.

Data availability statement. All data was obtained from public data collections, including dir-lab (https://
www.dir-lab.com/index.html) and ADNI(http://www.adni-info.org/), all these database allow researches repro-
duce their images and data.

∫ φ σ∑ |= ( )( )w x y u dH u, / ( )m
M

mn m n n n
2

1

wmn φ H u

DSMM p(zmn = 1|ξn)p(ξn|αn) Gaussian mixture chi-squared u~(u|γn/2, γn/2)

SMM p(zmn = 1|xm) = {0,1} Gaussian mixture chi-squared u~(u|γn/2, γn/2)

PR-GLS τ/|I| or (1−τ)/(N−I) Gaussian mixture discrete value constant

CPD 1/M Gaussian mixture discrete value constant

RPM-RBF 1/M GRBF discrete value constant

RPM-TPS 1/M thin plate spline discrete value constant

Table 1. Relationship between the general family of mixture model registration and the existing methods.

https://www.dir-lab.com/index.html
https://www.dir-lab.com/index.html
http://www.adni-info.org/
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Ethical approval. All data used in our experiments are from public image bases, and permit researches use 
images for algorithm research. All clinical data has been approved by the Medical Ethics Committee of Lishui 
Central Hospital and Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, 
and has been allowed for carrying out experiments.

Results
In this section, we qualitatively and quantitatively evaluate DSMM on various point sets, such as artificial data, 
points extracted from various medical images, and points form surface scan models. These point sets have var-
ious shapes, including 2D contour-like point sets, 3D cloud-like and surface-like point sets. In order to show 
the performance of our method, we compare DSMM with other state-of-the-art non-rigid point set registration 
(PR-GLS46, pSMM32, GMM-L219, CPD15, RPM-TPS9, and its variety RPM-RBF) in the following evaluations. The 
performance of DSMM and pSMM will be intuitively shown in these evaluations. It is worth to point out that we 
directly perform DSMM on all point sets without any preprocessing (including rigid registration initialization), 
except data normalization. We only simply set β = 2, initial value of DoF γ = 1 in all tests, which is also a reflection 
of the robustness of DSMM.

Qualitative evaluations. We firstly demonstrate the qualitative evaluation of DSMM on 2D contour-like 
point sets. Specifically, Fig. 2 shows three examples of 2D contour-like Corpus Callosum (CC), which are from 
http://www.nitrc.org/. Each point set contains 63 points extracted from outer contour of CC in brain MR images 
of several normal subjects. The top row in Fig. 2 shows three pairs of Corpus Callosum point sets before registra-
tion and figures on bottom row show the performance of DSMM.

We add various numbers of additional random outliers with uniform distribution. Examples of such point 
sets (with additional 32%, 48% and 63% outliers) are respectively shown in the top row of Fig. 3. The middle row 
shows the final registration results, which demonstrates the data points accurately match to their correspond-
ences, resisting the impaction of the outliers. In order to intuitively show the displacement vector of outliers, we 
overlap the warp of outlier on the point sets before registration, which demonstrates the transformation maps the 
most outliers to the sound positions, except few points who are much closed to the data points.

Quantitative evaluations. We perform quantitative evaluations on 2D counter-like datasets, 3D cloud-like 
and 3D surface-like datasets for DSMM and other competing non-rigid point set registration algorithms. To take 
quantitative evaluations, we use the mean 3D Euclidean magnitude distance and standard deviation between 
correspondences as a statistical measure. In the quantitative evaluations, we show the performance of DSMM, 
PR-GLS46, pSMM32, GMM-L219, CPD15, RPM-TPS9, and its variety RPM-RBF. Comparing to the existing meth-
ods, the major difference of our method is that DSMM models the prior probabilities by using Dirichlet distribu-
tion and assigns the various prior probability values for components, while the existing methods estimate a prior 
probability by a least-squared solution. PR-GLS assigns the membership probability wmn based on shape context 
feature, so that the local structure information can also be used to achieve good performance.

We perform the first quantitative evaluation on 2D Chinese characters46 with deformation, noise, outliers 
and occlusion (the ratio of noise, outliers, and occlusion is from 10 to 50%). Each point set contains 105 normal 
points. The superimposed points of Chinese character are respectively shown in the top row of Fig. 4. The goal 
of our experiments are to align the template points (black “+”) to their correspondences in the red point set (red 
“o”). The performance of DSMM seems good, which accurately and robustly matches the correspondences. The 
registration results are intuitively shown in the bottom of Fig. 4. Figure 5 shows the statistical registration results 
of DSMM and other completing methods. The y axis of bar in Fig. 5 indicates the mean registration error of each 
method, where a small error value indicates a good performance. We break the one-to-one correspondence by 
add noise, outliers, and removing points in these datasets. Benefitting from Dirichlet distribution and Student’s-t 
mixture model, the statistical results show that DSMM performs the best results, which are slightly better than 
PR-GLS and significantly better than other five methods.

The second quantitative evaluation is performed on 20 samples of real 3D cloud-like lung datasets with 10 
point sets extracted from thoracic 4D CT images55,56 and the other 10 point sets extracted from COPD images56, 

Figure 2. Performance of DSMM on 2D Corpus Callosum data. The target points are denoted as red “o” and 
the template points are denoted as black “+”. Each point set contains 63 points respectively. We align the black 
“+” to the red “o” by using DSMM. The point sets before registration is superimposed in the top row, and the 
performance of DSMM is shown in the bottom row.

http://www.nitrc.org/
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shown in Fig. 6. Each sample has a pair of 3D lung point set, one is identified from the maximum inhalation phase 
image and the other is identified from the maximum exhalation phase image. Each 3D lung point set respectively 
has 300 points, which are selected by experts to make the two point sets correspond to each other. It is a herculean 
task for non-rigid registration algorithms to match cloud-like point sets accurately due to lack of topological 
structures or geometry structures in such data. Table 2 demonstrates the mean 3D Euclidean distance between 
correspondences for each point set before registration. Figures 7 and 8 respectively show the performance of 

Figure 3. Performance of DSMM on 2D Corpus Callosum data with outliers. The data has been break up 
one-to-one correspondence by adding different number of additional uniform distribution outliers both 
in the template set and the target set. In the top row, the red “o” represents the data points in the target set, 
and the black “+” represents the correspondence in the template sets. For clarity, we denote outliers in the 
target set with red “∇”, and the outliers in the template set with black “∆”. The figures of middle row show the 
transformations that map all data points in the template set to their correspondences, resisting the influence of 
the outliers in the target set. In the bottom row, we overlap the transformations of outliers on the template set on 
the degenerated points before alignment, demonstrating that our method has an ability to handle most outlier, 
except few points very closed to the black “+”. The results intuitively show that DSMM is accurate and robust 
against significant number of outliers.

Figure 4. Performance of DSMM on 2D Chinese character shapes with deformation, noise, outlier and 
occlusion. We align the template point set (black “+”) to the target set (red “o”). For each sample, the figures 
in the top row show superimposed points of template point set and the target data before registration, and the 
figures in bottom show the registration results.
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DSMM and other non-rigid point set algorithms on samples of datasets from 4D CT and COPD. From the sta-
tistical measure shown in Figs 9, 10 and Table 3, we can intuitively see the performance of DSMM is better than 
other mixture-model-based algorithms on real 3D cloud-like point sets.

In order to evaluate the performance of our method on the various distortion, we then perform the third 
quantitative evaluation on 4D CT point sets identified from thoracic 4D CT images56. Each 4D CT point set 
consists of six expiratory phases (T00, T10, T20, T30, T40 and T50) and there are 75 points (a subset of the point 
set containing 300 points) in each sample. The T00 point sets are identified from the maximum inhalation phase 
images, and the T50 point sets are identified from the maximum exhalation phase images. The T10, T20, T30, 
and T40 point sets are respectively extracted from the expiratory phase images between the maximum exhalation 
phase and the maximum exhalation phase. As shown in Fig. 10, the red “o” denotes the point in T00 image, the 
black + denotes the point in T10~T50 images. We show transformation vectors between correspondences in 
Fig. 10. Table 4. demonstrates the performance of DSMM on T00 and T50 of each subject.

We further test the ability of our algorithm to handle outliers and missing correspondences in the subsequent 
evaluation on the point sets from 4D CT images. In order to break up the one-to-one correspondence between 
the given point sets and add missing correspondences, we randomly delete the increasing number of points both 
in the target point sets and template points sets, as shown in the top row of Fig. 11. In the first subfigure, we do not 
delete any point, while in other subfigures, we respectively remove 15, 30, 45, 60, and 75 points both in the target 
set and the template set, which means only 270, 240, 210, 180, and 150 correspondences existing in figure (b)~(f). 
In order to explicitly reveal the outliers, we use red “∇” for denoting the outliers in the target set, whose corre-
spondences having been removed in the template sets, and use black “∆” for denoting the outliers in the template 
set. Subsequently, we test DSMM and other algorithms on these pairs of incomplete samples. Figure 11 shows the 
performance of our method on these incomplete data. For clarity, we only show the correspondences in the result 
subfigures, which clearly shows that only few points diverge from the ground truth even though 75 points are 
removed in the data sets. In the evident from Fig. 11, our method shows its excellent performance in the presence 

Figure 5. Comparison of DSMM with PR-GLS, SMM, GMM-L2, CPD, RPM-RBF and RPM-TPS on Chinese 
characters with deformation, noise outliers and occlusion. The y axis of error bar indicates the statistical 
registration error, where a small value reveals a good performance.

Figure 6. Examples of 3D cloud-like point sets extracted from thoracic 4D CT images. Each subject contains 
a pair of 3D lung point sets with 300 points both in template set and target set respectively. The target point 
sets are extracted from images of the maximum inhalation phase and the template point set are extracted from 
images of the maximum exhalation phase. We denote the target points with red “o” and the template ones black 
“+”. (a) An example of the 4D CT lung dataset used in the quantitative evaluation. (b) An example of the COPD 
dataset.
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of significant amounts of missing correspondences and outliers due to the local spatial representations and the 
prior probability modeling of each component in the mixture model. Figure 12(a–e) respectively show the mean 

1 2 3 4 5 6 7 8 9 10

4D CT 4.01 ± 2.91 4.65 ± 4.09 6.73 ± 4.21 9.42 ± 4.81 7.10 ± 5.14 11.10 ± 6.98 11.59 ± 7.87 15.26 ± 9.11 7.82 ± 3.99 7.63 ± 6.54

COPD 25.90 ± 11.57 21.77 ± 6.46 12.29 ± 6.39 30.90 ± 13.49 30.90 ± 14.05 28.32 ± 9.20 21.66 ± 7.66 25. 57 ± 13.61 14.84 ± 10.01 22.48 ± 10.64

Table 2. Mean 3D Euclidean magnitude distance and standard deviation (unit: mm) for all subjects of 3D point 
sets before registration.

Figure 7. Performance of non-rigid point set registration algorithms on the point set extracted from 4D CT, 
which is shown in Fig. 6(a). (a) DSMM, (b) PR-GLS, (c) pSMM, (d) GMM-L2, (e) CPD, (f) RBF-RPM, (g) TPS-
RPM.

Figure 8. Performance of non-rigid point set registration algorithms on the point set extracted from COPD, 
which is shown in Fig. 6(b). (a–f) show the final registration results of DSMM, PR-GLS, pSMM, GMM-L2, 
CPD, RBF-RPM, and TPS-RPM respectively.
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3D Euclidean magnitude distance between correspondences for different algorithms on the incomplete data sets, 
which indicates the statistical accuracy and robustness of our method.

Finally, we conduct the last quantitative experiment for matching 3D surface-like “wolf ” shapes. Each point 
set typically contains about 5000 points, and there is absence between template point and target points. We show 
only 1600 points in the top row of Fig. 13 for clarity. In order to evaluate the robustness of DSMM on occlusion 
and outliers, we remove about 25 percentage of total number of points for representing occlusion, and add about 
25 percentage of total number of points for representing outliers, which are respectively shown in the middle and 
right columns. The figures in top row of Fig. 13 show the superimposed points before registration, and the bottom 
figures show the matching results of DSMM. Figure 14 shows quantitative comparisons of DSMM and other 
competitive methods on wolf data, where DSMM performs the best results on ideal data and degeneration data.

Discussion
Point set registration is a key problem in various applications. We focus on the model of point set registra-
tion which is a core point that has been received sustaining attentions in the recent years. In this work, we 
introduce a SMM-based non-rigid point set registration approach, named DSMM, which models the prior 
probabilities by using Dirichlet distribution and Dirichlet law. The main motion of our method is that we want 

Figure 9. Quantitative evaluations of non-rigid point set registration algorithms on twenty 3D lung point 
sets, in which 10 samples are extracted from 4D CT and the other 10 samples are extracted from COPD. Mean 
3D Euclidean magnitude distance between correspondences is used as a statistical measure for quantitative 
evaluations. The mean distance of each sample before registration is demonstrated in Table 3. (a) Performance 
of the non-rigid point set registration algorithms on 3D point sets extracted from thoracic 4D CT images. 
(b) Performance of each algorithm on the dataset extracted from COPD images. DSMM outperforms other 
competing algorithms both on the datasets from thoracic 4D CT images and COPD images.

Figure 10. Performance of DSMM on a 4D point set from 4D CT for thoracic motion modeling. 75 points 
are identified from each expiratory phase image (T00, T10, T20, T30, T40 and T50), where T00 are from the 
maximum inhalation phase, and T50 are from the exhalation phase image. We also denote the points from the 
maximum inhalation phase with red “o” and points from other phase with black “+”. (a) Performance of DSMM 
on a point set between T00 and T10, (b) T00 and T20, (c) T00 and T30, (d) T00 and T40, (e) T00 and T50.
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DSMM PR-GLS pSMM GMM-L2 CPD RBF-RPM TPS-RPM before warp

4D CT 0.455 ± 0.169 0.685 ± 0.173 0.792 ± 0.444 0.849 ± 0.490 1.205 ± 0.285 1.449 ± 0.671 3.620 ± 1.219 8.52 ± 5.56

COPD 0.917 ± 0.4766 1.326 ± 0.7966 1.576 ± 0.9214 1.660 ± 0.9630 1.852 ± 1.0993 2.017 ± 1.3862 11.099 ± 5.5439 23.46 ± 10.31

Table 3. Mean 3D Euclidean magnitude distance (unit: mm) for all 3D point sets after registration.

1 2 3 4 5 6 7 8 9 10

before 3.89 ± 2.78 4.34 ± 3.90 6.94 ± 4.05 9.83 ± 4.86 7.48 ± 5.51 10.89 ± 6.97 11.03 ± 7.43 15.00 ± 9.01 7.92 ± 3.98 7.30 ± 6.35

after 0.05 ± 0.03 0.04 ± 0.03 0.03 ± 0.02 0.04 ± 0.02 0.09 ± 0.04 0.28 ± 0.06 0.05 ± 0.02 0.36 ± 0.13 0.03 ± 0.02 0.04 ± 0.03

Table 4. Mean 3D Euclidean magnitude distance (unit: mm) between correspondence of T00 and T50 by using 
DSMM.

Figure 11. Performance of DSMM on the incomplete 3D lung data pairs identified from 4D CT images. 
We randomly remove increasing number of points both in the target point set and the template point set, 
which breaks up the one-to-one correspondence between the given data. For clarity, the red “∇” denote 
the missing correspondences, whose correspondences are removed in the template set, and the black “∆” 
denotes the missing correspondences in the template set. Our method shows its stable performance on the 
missing correspondences and occlusion. The top image in the each subfigure shows the initial configuration of 
incomplete data, and the bottom ones show the result of our method.
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Figure 12. Quantitative evaluations of the non-rigid point set registration algorithms on the incomplete 3D 
lung data pairs of 4D CT images. (a) complete data, (b) 15 points removed, (c) 30 points removed, (d) 45 points 
removed, (e) 60 points removed, (f) 75 points removed.

Figure 13. Preformation of DSMM on 3D wolf shapes with deformation, occlusion and outliers. We align 
the template points (black “+”) to the target points (red “o”) For each sample, the figures in the top row show 
template points and the target data before registration, and the figures in bottom show the registration results.
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to use a Bayesian framework to estimate the prior probabilities since the existing methods estimate them via 
a least-square method, which is a well-known method lack of robustness. Fortunately, Dirichlet distribution 
and its mixture models are fully Bayesian framework, which could automatically determine the model com-
plexity (in terms of the total number of necessary mixture components) based on the data, not depend on any 
prior knowledge. Concretely speaking, we firstly consider the non-rigid point set registration as a probability 
density estimation, where one point set is represented as Student’s-t mixture model centroids, the other one is 
represented as data set. The main advantage of multivariate Student’s-t distribution is that it is heavily tailed 
than the Gaussian distribution, hence it is more robust against degradations than GMM. Secondly, we explic-
itly exploit Dirichlet distribution and Dirichlet law to incorporate the local spatial representation in the given 
point sets. We later assign various prior probability values of prior distribution depending on the input point 
sets, instead of the same value to all points, leading DSMM be more accurate than other existing algorithms. 
Thirdly, we formulate the SMM as an infinite scaled GMM integral form in order to obtain closed-form solu-
tions. Subsequently, we iteratively fit the SMM centroids to the data set by using EM framework and estimate 
the posterior probabilities of centroids, which provides correspondence probabilities between the target point 
set and the template set. Finally, we calculate all registration parameters and transformation via the EM frame-
work. We perform qualitative and quantitative evaluations for DSMM on various shapes. These evaluations 
intuitively indicate the favorable performance of DSMM.

Conclusion
We have tested DSMM on various shape (2D contour-like, 3D cloud-like and 3D surface-like) point sets, and 
compared it with pSMM, PR-GLS, GMM-L2, CPD, RBF-RPM, and TPS-RPM. The results demonstrate that 
DSMM is robust against significant amount of missing correspondences and outliers, and is more accurate and 
robust than the other existing non-rigid point set registration methods.
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