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Synthesis and Characterization of 
a Nano-Polyplex system of GNRs-
PDMAEA-pDNA: An Inert Self-
Catalyzed Degradable Carrier for 
Facile Gene Delivery
Ali Dinari1, Tahereh Tohidi Moghadam1, Mahdi Abdollahi   2 & Majid Sadeghizadeh1,3

Engineering molecules at nano-scale is a promising approach in targeting and curing diseases. In 
this research, fabricated new hybrid system called nano-polyplex represents an example of the 
molecular engineering at nano-scale. Polymer of PDMAEAs with four different molecular weights 
were synthesized using the RAFT method, attached onto the gold nano-rod surface, which modified 
and produced a safe novel system with an average size less than 100 nm. The hybrid system was 
characterized by ultra violet-visible spectrophotometer (UV-Vis), dynamic light scattering (DLS), 
1H NMR, gel permeation chromatography (GPC), Fourier transform-infrared (FT-IR) spectroscopy, 
Zeta potential analyzer and transmission electron microscopy (TEM). Features of higher transfection 
and lower toxicity compared to the previously reported polyplex of PDMAEA, as well as the gold 
standard PEI, have been shown in all molecular weights and defined N/P ratios (10–200). The ideal 
physicochemical properties for escaping from the cell barriers, covering the large volume of genetic 
material (pDNA) and high efficiency of loading polyplexes on GNRs’ surface make it an ideal carrier. The 
results of this effort pave way in designing a new generation of nanoparticle-based delivery systems for 
nucleic acid therapy and gene editing.

Biotechnology has introduced molecular cloning methods to alter the genetic information of cells and living 
organisms in the context of gene therapy, for treatment of both acquired and inherited diseases such as Alzheimer 
and cancer. Nucleic acid-based therapy has emerged as a promising treatment strategy in repairing or substituting 
defective genes, disrupting gene expressions and gene editing in its mature form1. Nevertheless, there are some 
problems that limit the use of such types of treatments. First, the efficiency of nucleic acid therapeutic agents is 
remarkably reduced by electrostatic repulsion within the cell membrane. Furthermore, the presence of nuclease 
enzymes in cellular environments destroys these molecules before they reach the target area2. Hence, the design 
of an ideal carrier is required to properly protect, transport and release the cargo at the target site. So far, viral and 
non-viral vectors have been used to transfer foreign DNA to cells of interest. Viral vectors are known to present 
the best transfection efficiency. However, due to the lack of safety, i.e., toxicity and immunogenicity, their medical 
application is limited. On the other hand, non-viral vectors have shown advantages of low immune response, 
unrestricted gene size, ease of production and functionalization, etc. The simplest method of the non-viral 
gene transfer system uses naked DNA. However, the main problem of the transfected gene associated with this 
method is its exposure to degradation by nucleases and minimum cellular uptake3. Liposome vesicles are another 
non-viral vector with simple and facile formulation as well as ease of functionalization. Nevertheless, it presents 
some disadvantages which include reproducibility, cell shrinkage, colloidal instability, low transfection efficiency 
and relative toxicity4. Cationic polymers with amine groups in their backbone can easily be folded with DNA 
phosphate groups and assembled to form polyplexes which protects DNA during the transfection procedure. In 
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fact, condensing DNA into nanoparticles can be considered as a promising feature of cationic polymers5. There 
are a variety of natural (e.g., dextran, gelatin and chitosan) and synthetic (e.g. L-lysine (PLL), polyethylenimine 
(PEI), poly (2-N,N-dimethylaminoethyl methacrylate) (PDMAEMA)) polymers employed as DNA carriers. 
Among these polymers, chitosan and polyethylenimine (PEI) are most often used in gene therapy research, exhib-
iting better gene delivery responses than their counterparts6,7. Recently, an acrylic acid-based polymer called poly 
dimethylaminoethyl acrylate (PDMAEA) has attracted significant attention as an excellent candidate for gene 
delivery purposes. The key features of this polymer include: I) sustenance of ionic strength for a specific period of 
time for efficient transfection of cells, II) binding with nucleic acids (DNA & siRNA) through ionic interactions 
and forming complexes, III) degrading to nontoxic building blocks/byproducts, IV) gradual change in ionic state 
(from cationic to anionic state), and V) degrading in aqueous environments autonomously, without responding 
to cellular stimuli (e.g., pH, redox potential, or presence of enzymes)8,9.

Considering the current problems and concerns of traditional gene delivery systems, nano-biotechnology 
has paved the way to solve many challenges in versatile biomedical applications. Today, building up functional 
agents for theranostic systems is based on nanoparticles with unique properties. Tiny particles of gold with sets 
of shapes and sizes have introduced many outstanding features in a variety of biomedical and bio-sensing arenas. 
So far, synthesis of different gold nanoparticles such as spheres, cages, wires, prisms and rods has been reported. 
Among these, gold nanoparticles of rod morphology with unique optical properties have been remarkably noted 
in theranostic applications. Facile synthesis and high surface-area-to-volume ratio, as well as ease of functionali-
zation with various biomolecules and polymers are some of the key features of gold nanorods (GNRs) that makes 
them promising candidates for drug/gene carrier systems10. In this regard, this effort focuses on fabrication of 
a biocompatible, hybrid nanocarrier system containing GNRs and PDMAEA, with the aim of achieving maxi-
mum therapeutic efficiency in gene delivery with minimal adverse effects. PDMAEA was synthesized using the 
reversible addition fragmentation chain transfer (RAFT) method and functionalized with GNRs. The binding, 
protection, transfection, release profile, cytotoxicity, and stability of hybrid complexes were studied using valid 
assays. To the best of our knowledge, transfection of the full length of pDNA by PDMAEA-GNRs has not been 
previously reported.

Results and Discussion
Characterization of GNRs.  Surface plasmon resonance bands of gold nanorods were monitored in the vis-
ible and near infrared region, representing oscillation of the conduction band electrons along the short and long 
axis of GNRs (Fig. 1a). Appearance of a strong longitudinal surface plasmon resonance band (LSPR) at 720 nm, 
along with a transverse SPR band of weaker intensity at 520 nm is characteristic of formation of nanostructure 
with rod morphology. Figure 1b depicts the transmission electron microscopy image of the nanostructures. The 
mean aspect ratio of GNRs was estimated to be 3.2 ± 0.6, with average dimensions of 38.38 nm in length and 
12.00 nm in width.

Characterization of PDMAEA.  RAFT polymerization is known to offer many advantages for biomedical 
applications. For instance, controlled molecular weight and length as well as polydispersity, ability to design a 
wide range of compounds with a variety of reactive end-groups for modification and functionalization are con-
sidered to be some benefits of this method. According to the vast majority of studies, versatility of RAFT agents 
can be proof of the superiority of this technique11,12. In this study, PDMAEA was synthesized with four different 
molecular weights using the RAFT polymerization technique, as shown in Table 1. For the sake of convenience, 
polymers with different molecular weights have been marked as I, II, III and IV for all data representations. 
Analysis of the polymers by 1H NMR and GPC showed controlled behavior of RAFT polymerization (Table 1).

Figure 1.  Absorption spectra of GNRs, (b) TEM micrograph of GNRs.
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Functionalization of GNRs with PDMAEA.  Previous studies have shown that the presence of an excess 
amount of cationic surfactant provides notable positive surface charge for GNRs, which in turn can result in 
nonspecific cell uptake and protein adsorption upon interaction with cells, disruption of their membranes and 
eventually cell death13. This is an important issue that limits the utilization of GNRs for biocompatible medical 
purposes. Therefore, displacement of CTAB with a more biocompatible molecule is necessary for further fruitful 
biomedical applications. So far, a number of strategies have been proposed to reduce the toxic effect of CTAB 
molecules, which include modification of GNRs with different ligands or polymers such as PEG, PSS, etc.14.

In order to modify the surface of GNRs with polymer, PDMAEA was attached to the GNRs based on a modi-
fied protocol15,16. Figure 2 displays a summary of the synthesis reactions of PDMAEA (a), GNR (b) and attaching 
of PDMAEA to GNR surface (c).

Typically, in this study, a “grafting to” approach was employed for functionalization of the nanostructures with 
PDMAEA, based on the high affinity of gold atoms for sulfur16. As a result, gold can form stable bonds with sulfur 
compounds such as thiols, dithioesters and trithiocarbonates. Figure 3 depicts the FT-IR spectra of bare GNRs 
and PDMAEA as well as their complex forms. The characteristic peaks in the GNRs-PDMAEA complex appeared 
as C=O (1734.00 cm−1), stretching bonding of C-S (1473.72 cm−1), and C-H bonding (2850–2950 cm−1) at the 
same position of the corresponding peaks observed for bare PDMAEA. The C-H bonding refers to C-H of mon-
omers in the backbone of the polymer. Resonance binding of Au-S (1386.61 cm−1) indicated valuable evidence 
for the process of binding. Hence, the comparison of the FT-IR spectrum of the bare PDMAEA with its complex 
form with GNRs confirmed conjugation of the polymer to the matrix of nanostructures.

Zeta potential is another useful technique for monitoring PDMAEA interaction with GNRs. According to the 
DLS results shown in Table 2, there was notable decrease in the zeta potential value for all the nano-polyplexes 
(GNR-PDMAEA-pDNA) compared to that of the untreated GNRs (without PDMAEA), which had a much 
higher value due to the presence of cationic surfactant (CTAB), i.e. +37.8 mV. Such changes in the zeta potential 
values can represent interaction of the GNRs with PDMAEA and formation of the nano-polyplexes.

In addition to the mentioned analytical techniques, TEM image which is shown in Fig. 2(c) approved the 
attachments of PDMAEA on GNRs surfaces. The arrows in the image clearly define the attachment process.

DNA-binding and Protection Assay of PDMAEA.  The prominent feature of an ideal gene delivery carrier 
system is the capability to transport the foreign gene to its target without any damage. In this regard, capability is 
defined as the ability of the carrier to escape the processes that affect the natural state of exogeneous DNA7. Covering 
and condensing the DNA molecule with polymers is considered as a useful protection strategy against nuclease 
digestion. Recently, PDMAEA is found to have shown excellent properties as well as degradation in an independ-
ent manner in the presence of external or environmental triggers. The self-catalyzed hydrolysis mechanism of this 
polymer in a defined time interval is useful in the delivery of genes and drugs. To study the role of PDMAEA in 
condensing pDNA molecules and also measurement of the size of polyplexe, pDNA (GFP and luciferase separately) 
was mixed with polymers of four molecular weights (as shown in Table 1) at different N/P ratios (10 to 200 as men-
tioned). Figure 4 depicts the capability of PDMAEA for DNA binding/condensing by agarose gel retardation assay. 
The gel images have been obtained with time intervals of 30 min, 24, 72 and 120 hours, respectively, after formation 
of the polyplexes. From Fig. 4, it can be seen that the migration of the polyplexes in the agarose gel is retarded. This 
indicates the strong binding of pDNA with four different molecular weights with all N/P ratios (10 to 200). As shown 
in Fig. 4(a1–a4), the binding capability is gradually reduced until completion of pDNA release. Based on the running 
pattern in the gel, it is presumable that increasing the molecular weight and N/P ratios leads to formation of durable 
complexes that provides a better coverage as well as a better release of pDNA.

Previous reports on the effect of molecular weights and charge ratios of another polymer, i.e., chitosan, have 
shown similar results17. A study on PEI as a popular cationic gene carrier system has provided valuable infor-
mation about the role of molecular weights and N/P ratios on polyplex formation, durability and dissociation 
(release of DNA from polymer)18. The main release mechanism for DNA molecules is based on a self-catalyzed 
degradation pattern of polymer in water, leading to the formation of the negatively charged poly acrylic acid 
and N, N-dimethylamino ethyl ethanol. The average size of the nano-polyplex system (pDNA-PDMAEA-GNR) 
and its distribution was measured using the dynamic light scattering technique (see Table 2). According to DLS 
data, the size of the nano-polyplex was estimated to be 100 nm without a noticeable difference at different N/P 
ratios. This could be due to the presence of GNRs which act as matrix-making dense polyplex structures (Fig. 1a). 
However, larger complexes were also observed, independent of molecular weight and N/P ratio. It seems that the 
larger size of such complexes resulted from the misconnection of polyplexes on GNRs surface and assemblies 
of the polyplexes by themselves. Comparison of the bare polyplexes (PDMAEA- pDNA) with nano-polyplexes 

Polymer 
number

1H NMR GPC
RAFT reation [1000]:[10]:[1] 
Monomer: Raft agent: AIBN

Temperature Time Solvent AntisolventRepeating unit Mn (g/mol) PDI Mn (g/mol) Monomer Raft agent AIBN

I 23.75 3401 1.18 3922 14.1252 ml 352.26 mg 30.552 mg 60 °C 2 h Dioxane n-hexan

II 36.62 5244 1.39 4208 7.0626 ml 176.13 mg 15.276 mg 60 °C 5 h Dioxane n-hexan

III 49.15 7038 1.16 5612 3.5313 ml 88.065 mg 3.81 mg 60 °C 6 h Dioxane n-hexan

IV 76.29 10924 1.22 8324 3.5313 ml 88.065 mg 3.81 mg 60 °C 7 h Dioxane n-hexan

Table 1.  1H NMR and GPC data for RAFT Polymerization of PDMAEA with four different molecular weights.



www.nature.com/scientificreports/

4SCIENTIFIC REPOrTS |  (2018) 8:8112  | DOI:10.1038/s41598-018-26260-4

revealed that the latter has a smaller size (Table 2). It should be noted that sizes of all samples at an N/P ratio 
of 10 and 50 were smaller, especially at the higher molecular weights. The remarkable difference between the 
average size of nano-polyplexes and polyplexes implies the positive impact of GNRs in condensing the overall 
nano-polyplex system.

Assessment of the potential of PDMAEA to protect pDNA was investigated and compared with the PEI (25 
kDa-branch) as gene transfers agents. In this regard, experiments showed an excellent potential of PDMAEA for 
protecting pDNA from nuclease digestion (Fig. 4b). Treatment of polyplexes (PDMAEA-pDNA) with DNase I 
was carried out in tow separate parts as following: (1) the first part comprised the samples treated with DNase 
I immediately after half an hour of complex formation. The obtained results showed an excellent protection of 
polymer for covering pDNA samples as well as an enhanced parallel protective effect upon increase in the molec-
ular weight (Fig. 4(b1)). (2) The second part comprised the samples stored at room temperature for one week and 
subsequently treated with DNase I. The results showed no pDNA band upon exposure to DNase I, and full diges-
tion of pDNA occurred reflecting the gradual changing nature of the PDMAEA (Fig. 4(b2 and b3)). Different 
molecular weights of PDMAEA with N/P ratios of 10 and 100 were evaluated. The protective effect was found to 
increase with increase in the molecular weight of the polymer. Furthermore, in all the molecular weights, there 
was no perceptible difference between N/P ratios of 10 and 100. On the other hand, comparison of PDMAEA 
with PEI (N/P ratios of 5, 10) showed that the PDMAEA ability for gene protection was higher than that of PEI. 
All obtained results were similar to the results of previous researchers9.

Based on previous studies, packaging and protecting of nucleic acids (DNA, siRNA) and the stability of their 
complexes are the main parameters to protect them against cellular compartments such as endosomal/lysosomal 
and nuclease degradation19,20. Cationic polymers such as PEI, chitosan and PDMAEMA are good candidates for 

Figure 2.  Summary of the processes involved in the synthesis of PDMAEA (a), and GNRs (b) and also 
attaching PDMAEA onto GNRs surface (c). 1H NMR spectrum, and TEM images represents evidences for 
accuracy of above processes.
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masking the anionic charges of nucleic acids. Complexes generated by these polymers have an appropriate protec-
tion against degradation21. The point that should not be forgotten is that the strength of complexes and balance of 
electrostatic interactions between polymer and DNA are important issues that affect the release pattern of DNA 
inside the cells22. However, defective release of DNA has common problems associated with the above-mentioned 
polymers. Meanwhile, strong electrostatic interactions (which are used to make durable polyplexes), conversion 
of the ionic composition, and full dissociation and release of DNA inside the cell without limitation, are superior 
features of PDMAEA.

MTT-assay.  Conversion of tetrazolium salt to formazan in MTT assay represents mitochondria activity and 
cell survival in abnormal conditions such as drugs treatments. Therefore, this assay is useful in investigating 
the safety or toxicity of pharmaceutical agents23. In addition, cytotoxicity of vector-mediated gene transfer can 
be evaluated by MTT assay. The toxic effect of a cationic gene carrier refers to their positive charge, and influ-
ences their capability and efficiency in gene therapy attempts4. Previous research on cytotoxicity of PDMAEA has 
shown that polymers with a molecular weight of 5600 or lower do not induce toxic effect. The cell cytotoxicity 
increases with increase in the N/P ratio as well as the molecular weight of the polymer9. To monitor the safety 
of the nano-polyplex system, all four different molecular weights (I, II, III, and IV) with the specified N/P ratios 
were treated with the HEK293 cell line. As shown in Fig. 5, toxicity and cellular damage increased with increase 

Figure 3.  The above figure depicts FT-IR spectra of bare GNRs and PDMAEA as well as their complex forms. 
The characteristic peaks in the GNRs-PDMAEA complex appeared at the same position of corresponding peaks 
observed for bare PDMAEA. Comparison of the three FT-IR spectrum confirmed conjugation of the polymer 
to the matrix of nanostructures.

N/P ratio

Polymer I Polymer II Polymer III Polymer IV

Size (nm) Zeta (mV) Size (nm) Zeta (mV) Size (nm) Zeta (mV) Size (nm) Zeta (mV)

Polyplexes 
of DNA-
PDMAEA

10 215.94 (0.17) 6.7 378.7 (0.61) 7.7 178.20 (0.38) 9.8 158.22 (0.51) 21.1

50 274.74 (0.86) 3.11 269.1 (0.71) 17.3 300.39 (0.63) 16.3 276.72 (0.55) 5.1

100 436.9 (0.22) 1.79 475.3 (0.22) 3.3 880.3 (0.34) 22.8 539.3 (0.25) 13.9

200 597.81 (0.48) 4.5 527.5 (0.33) 11.3 306.30 (0.83) 5.14 513.2 (0.35) 6.98

Nano-
polyplexes 
of DNA-
PDMAEA-
GNRs

10 87.66 (0.43) 5.36 116.11 (0.57) 2.51 77.970 (0.41) 0.96 85.06 (1.00) −9

50 33.06 (0.45) 3.78 198.08 (0.72) 0.59 83.68 (0.47) 6.64 89.32 (0.47) 3.3

100 98.15 (0.50) 2.62 99.98 (0.62) 5.2 112.44 (0.52) 5.32 95.22 (0.60) 1.43

200 112.10 (0.38) 1.41 87.28 (0.60) −2.37 53.13 (0.36) 5.95 204.40 (0.55) 4.03

polymer of PEI

N/P ratio Size (nm) Zeta (mV)

Polyplexes 
of DNA-PEI

10 85.53 (0.38) 31.2

50 101.43 (0.35) 34.9

100 120.77 (0.56) 39.4

200 97.69 (0.41) 34.2

Table 2.  DLS results of polyplexes, nano-polyplexes and PEI as control.
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in the molecular weight and N/P ratio. Comparison of the nano-polyplex system (pDNA-PDMAEA-GNRs) with 
ordinary complexes (PDMAEA-pDNA) and PEI- pDNA (the control) indicated that the nano-polyplex system 
affected the cells in a safer fashion. The bar chart clearly shows that the role of the N/P ratio is more prominent 
than the molecular weight. This is consistent with a previous study by Truong et al., who reported a negligible 
effect of PDMAEA on cytotoxicity in all molecular weights and N/P ratios, except that of the N/P ratio of 2009,24. 
Furthermore, a lower toxic effect of PDMAEA exists with respect to PEI. This occurs due to the fact that the 
amine groups of the polymer chain in PEI act as a positive charge source, thus producing a high density of charge 
and cell membrane disruption25.

Transfection Assays.  Herein, PDMAEA has been used as a carrier to transport pDNAs (GFP and luciferase) 
into the nuclei of the KEK-293 cell line in order to investigate its potential in transportation of pDNA, consistent 
with previous research which reported transport of siRNA molecules24. Green Fluorescent Protein (GFP) was 
mixed with GNRs-PDMAEA, bare PDMAEA and PEI as a control, for HEK-293 cells transfection. Experiments 
were conducted according to the modified protocols of previous studies26. Figure 6 depicts the transfected cells 
imaged by fluorescence microscopy. The specified N/P ratios and four molecular weights were studied for both 
nano-polyplexes of GNRs-PDMAEA-pDNA and polyplexes of PDMAEA-pDNA and compared with PEI-pDNA. 
It should be noted that the optimized time interval for cell transfection is less than approximately 10 h after com-
plex formation. This is due to the fact that dissociation of polymer and release of pDNA inside the cells usually 
occurs after 10 h9. As shown in Fig. 6, the maximum transfection was observed for an N/P ratio of 50. It has been 
noted that the rate of transfection with nano-polyplexes is higher than that of complexes with all molecular 
weights. The results suggest that an increase in the molecular weight and the N/P ratio leads to enhancement of 
the transfection efficiency. It is noteworthy that higher N/P ratios (100 and 200) with polymers of lower molecular 
weight induced better transfection efficiency, whereas polymers of higher molecular weights did not show the 
same efficiency. Findings of this effort are consistent with previous research that reported the use of PDMAEA as 
well as other polymers such as chitosan, PDMAEMA, and PEI as a gene carrier3,9,27,28.

Dark-Filed imaging and Confocal microscopy.  Dark-field microscopy can be utilized to monitor cel-
lular uptake and transfection process by orange-red plasmonic scattering phenomenon that relies on the strong 
longitudinal surface plasmon resonance of GNRs in the near IR spectrum. Such a characteristic phenomenon 
enables potential application of GNRs as contrast agents in tracking nanopolyplex systems29,30. Figure 6(b) shows 
dark-field microscopy images of cellular uptake of nano-polyplex system (pDNA-PDMAEA-GNRs) by HEK-293.  

Figure 4.  DNA-binding and Protection Assay of PDMAEA. (a1–a4) Assays of DNA-binding potency of 
PDMAEA during the following period of time: 30 min, 24, 72 and 120 hours. b1–b3) Protection assays of 
PDMAEA. Comparison of PDMAEA protective role with PEI as standard agent in gene transfer (b1). DNA 
protection and dissociation pattern after one week of polyplex formation, before and after treated with DNase I 
respectively (b2 and b3).
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Cell internalization was also monitored by confocal microscopy as a powerful technique for high resolution 
optical sectioning of samples and three dimensional detection31. This technique provides useful information on 
location of nanoparticles within cell environment32. Figure 6(c) shows confocal microscopy images of HEK-293 
cells treated with SYBR Green-labeled nano-polyplex and DAPI stained nuclei, confirming internalization and 
accumulation of the nano-polyplex around the nuclei.

Another evaluation based on reported gene technology includes bioluminescence and luciferase assay which 
is widely used for gene expression analysis in mammalian cells. Rapid, sensitive and nonradioactive detection 
indicates that the firefly luciferase gene is a suitable candidate for monitoring promoter activity and observing 
the activity of living cells33. Plasmids of pGL3 were mixed with GNRs-PDMAEA with N/P ratios of 10–200, and 
incubated with HEK293 cells as described for the GFP gene. Transfection results indicated the effectiveness of 
the nano-polyplex system in delivery of pGL3 to the HEK293 cell nucleus, and subsequent expression of the 
luciferase gene (Fig. 7). According to these results, an inverse relationship between molecular weight and N/P 
ratio is observed, such that increasing the molecular weight is associated with decreasing the proper N/P ratio of 
transfection. Such behavior is considerable for molecular weights of II, III and IV polymers and N/P ratios of 100, 
50 and 10, respectively. However, the overall data represents an important point, i.e. the average transfection of 
the nano-polyplex system is more than PEI and the bare-polyplex of PDMAEA.

Among nucleic acids, DNA-based therapy offers a better opportunity for gene delivery purposes because of 
its multivalent treatments34. Hence, stability of pDNA during interaction with cell membrane, uptake, intracel-
lular movements and access to nucleus should be considered as a crucial issue35. In this regard, the design and 
fabrication of proper carriers would be the prerequisite for efficient transfection, i.e. the majority of pDNA can 
be delivered to the target area without any damage. Stability of the carriers during the long extra- or intra-cellular 
paths is a key factor that defines their fate and performance in biological environments36. Different release rates 
of nucleic acids from cationic nano-carriers are distinctive features of polymers in gene delivery. It has been 
shown that electrostatic interaction plays an important role in polyplex formation and dissociation in cellular 
conditions1. For instance, PEI with high positive charge can strongly interact with negatively charged nucleic 
acids with high transfection efficiency among other cationic counterparts. Nonetheless, PEI is found to be highly 
toxic, creating a great challenge to overcome for fruitful gene delivery purposes37. Formation of cavity structures 
in plasma membranes, membrane ablation and thinning of lipid bilayers are considered common phenomena 
when cationic carriers interact with anionic phospholipids of cell membranes38,39. Protonated polymers such as 
PEI, PDMAEMA and PAMAM, due to their buffering capacities, show easy endosomal escape. In fact, a phenom-
enon known as the proton sponge effect is related to the buffering effects of polymers in the acidic environment 
of endosomes. Subsequently, osmotic swelling and disruption of endosomes lead to release of polyplexes into the 
cytoplasm and resolve intracellular trafficking40,41. Nevertheless, the non-biodegradable nature and toxic effect 
can be considered as important limiting factors of such carriers systems with considerable proteins inactiva-
tion, strong linkage with cellular nucleic acids, and aggregation in cell organelles42. Meanwhile, PDMAEA can 
be regarded as a biocompatible and biodegradable polymer that is a promising carrier candidate in conjunc-
tion with GNRs that allows reduced intracellular trafficking and toxicity. Furthermore, the nano-polyplex of 
GNR-PDMAEA-pDNA simultaneously exploits gold atoms as an inert platform from the biological and chemical 
points of view43 and PDMAEA with features of biocompatibility and self-catalyzed degradability. Another supe-
rior trait of the current nano-polyplex system with respect to other reported carriers is its size, which is estimated 
to be about 100 nm at all N/P ratios of PDMAEA. Previous studies have shown that an optimal size range exist for 
carriers to improve their cellular uptake. It has also been demonstrated that increasing size of the carrier leads to 
a decrease in the opportunity for cell entry. Moreover, nanostructures smaller than 100 nm are found to arrive in 

Figure 5.  Pattern of cytotoxicity effects of four molecular weight of PDMAEA in bare-polyplex and nano-
polyplex systems and comparision with PEI. Different colors indicates control ( ), nano-polyplex ( ), bare-
polyplex ( ) and PEI ( ). According to figure, experiments data divided in three (a) and/or four (b) groups and 
arranged based on N/P ratios. (a) Each group contains control (no treatment), nano-polyplex and bare-polyplex 
and also note that in each groups, molecular weight increased from left to right. As shown in figures (a,b), 
toxicity effect of N/P ratio is more prominent than the molecular weight. (b) Cytotoxicity effects of fabricated 
systems have been compared to polyplexes of PEI-pDNA as positive control and indicated that nano-polyplex 
system affected the cells in a safer fashion.
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the cell cytoplasm faster and more easily44. Results of this effort are consistent with the above-mentioned studies. 
Hence, the present nano-polyplex can hopefully pave the way for further investigations on design and fabrication 
of nanoparticle-based gene delivery systems in the future.

Materials and Methods
Materials.  Chloroauric acid (HAuCl4), sodium borohydride (NaBH4), ascorbic acid, hexadecyltrimethyl-
ammonium bromide (CTAB), and silver nitrate (AgNO3) were purchased from Sigma. Methyl 2 (dodecylthio-
carbonothioylthio)-2-methylpropionate 97% (HPLC), 2-(Dimethylamino) ethyl acrylate (98%, Sigma-Aldrich), 
azobisisobutyronitrile (AIBN), and branched polyethylenimine (25 kDa) were purchased from Sigma. 
2-(Dimethylamino) ethyl acrylate was passed through a basic alumina column (activity I) to remove the inhibitor. 
Azobisisobutyronitrile (AIBN) was recrystallized twice from methanol prior to use. Dioxane (99%) and n-Hex-
ane (>98%) were purchased from Merck. Plasmid DNA (pEGFP-N1 and pGL4) were procured from Invitrogen. 
All other chemicals and solvents were of analytical grade. Deionized water was used in all the experiments.

Figure 6.  Comparison of transfection of pDNA-PEI (N/P ratio of 10) with bare-polyplexes I (a), II (a), III (a), 
and IV (a) and nano-polyplexes I (b), II (b), III (b), and IV (b), at N/P ratio of 50 into HEK-293 cells. All images 
were taken with 4, 10, 20 and 40X magnification. (B) Dark field microscopy images of cells treated with nano-
polyplex, (C) Confocal microscopy images of cells treated with fluorescent-labeled nano-polyplex.
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Preparation of gold nanorods (GNRs).  Sequential seed mediated growth methods were used for gold 
nanorods45. In brief, small spherical gold nanoparticles (seeds) were synthesized by mixing aqueous solutions 
of CTAB (7.5 mL, 0.095 M), HAuCl4 (250 μL, 0.01 M) and ice-cold NaBH4 solution (600 μL, 0.01 M), respec-
tively. Two minutes of rapid inversion was necessary for mixing. The reactants were kept undisturbed at room 
temperature for a minimum of 2 h. The growth solution was prepared by sequential addition of CTAB (9.5 mL, 
0.095 M), HAuCl4 (400 μL, 0.01 M), AgNO3 (60 μL, 0.01 M), ascorbic acid (64 μL 0.10 M), and the seed particles 
(40 μL). Formation of rod-shaped nanostructures was initiated, accompanied by change in the solution color. 
It is worth noting that termination of the reaction might take several hours45. The average size of GNRs and 
their distribution was determined by transmission electron microscopy (TEM). The images were analyzed by 
Image J software.

Synthesis of Poly (2-(dimethylamino) ethyl acrylate) (PDMAEA).  All four PDMAEAs with different 
molecular weights (Table 1) were synthesized using the RAFT method, where methyl-2-(dodecylthiocarbon-
othioylthio)-2-methylpropionate was used as a RAFT agent. To obtain different molecular weights of PDMAEA, 
the variable parameters were reaction time and molar ratio of RAFT agent to the monomer. For a typical reac-
tion, certain amounts of monomer, RAFT agent and AIBN were dissolved in dioxane as a solvent in a 10 mL 
Falcon® tube with a magnetic stirrer. The molar ratio of monomer ([DMAEA] 0) to RAFT agent ([RAFT] 0) to 
AIBN ([AIBN]) was chosen to be [PDMAEA] 0: [RAFT] 0: [AIBN] 0 = 1000:10:1. The reaction mixture was then 
de-oxygenated by purging with nitrogen for 30 min followed by heating to 60 °C for 7 h. The reaction was stopped 
by incubation on ice and exposure to air. The precipitating and re-dissolving procedure was repeated three times 
in n-hexane and dioxane as nonsolvent and solvent, respectively. The polymer was dried under vacuum at 60 °C 
for 48 h and finally a yellow oily product was obtained. The polymer was characterized by nuclear magnetic 
resonance spectroscopy (NMR) and gel permeation chromatography (GPC). NMR spectra were recorded by a 
Bruker Avarce DRX 500 MHz spectrometer, using deuterated chloroform (CDCl3) and water (D2O) as the solvent 
for NMR analysis. To analyze the molecular weight distribution of the polymer GPC, tetrahydrofuran (THF) was 
applied as an eluent. GPC columns were calibrated with narrow molecular weight distribution polystyrene stand-
ards in the molecular weight range of polymers.

Conjugation of Polymer with GNRs.  Briefly, 3 mg of polymer were dissolved in 5 ml GNRs (1 OD) and 
stirred at 200 rpm for 6 hours. The solution was then centrifuged at 13000 rpm for 10 min at room temperature. 
The precipitate was re-dispersed in 5 ml deionized water. The purification procedure was repeated twice.

Binding Assay.  Plasmids of GFP and luciferase (1 µg) were used to generate polyplexes with PDMAEAs at 
different N/P ratios (referring to the number of nitrogen (PDMAEA) per DNA phosphate (pDNA) in generated 
polyplexes). For this purpose, pDNA was complexed with polymers of 10 to 200 N/P ratios, followed by addition 
of water to the mixture up to 50 μL, and keeping at room temperature for 30 min (without stirring). All polyplexes 
were loaded onto a 2% agarose gel containing 1X TBE buffer. The gel was run for 1 hour at 80 V, stained with 
ethidium bromide and visualized using the UV Gel doc (Vilber Lourmat Gel doc, France).

Figure 7.  Measurement of transfection efficiency of nano-polyplex, bare-polyplex and pDNA-PEI using 
luciferase assay in HEK293 cell’s 48 hours post transfection. Different colors indicates PIE ( ), nano-polyplex 
( ), bare-polyplex ( ) as carriers of pGL3. Four different molecular weights along with specified N/P ratio of 
PDMAEA were treated with the HEK293 cell line in presence (nano-polyplex) and absence (bare-polyplex) of 
GNRs. Complexes of pDNA-PEI was used as positive control. As shown in histogram, nano-polyplex with N/P 
ratio of 50 and 100 presented a better pattern of transfection.
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Protection Assay.  Polyplexes were prepared by addition of pDNA (2 μg) to different N/P ratios of polymers 
with a total reaction of 100 μl, followed by keeping the mixtures at room temperature for 30 min. DNase (1U, 
Fermentas, Germany), 10X DNase buffer (15 μl) and water (34 μl) were added to each sample and incubated at 
37 °C for 10 min. To isolate pDNA, equal volumes of a phenol/chloroform mixture (200 μL of a 1/1 ratio) were 
added to the polyplexes. Subsequently, the reactions were vortexed (30 seconds) and centrifuged at 12000 rpm 
at 4 °C for 10 minutes. The supernatant (5 μL) was mixed with DNA loading dye (2 μL), and was loaded onto 2% 
agarose gel containing 1X TBE buffer. The gel was run in 1X TBE buffer for 1 h at 80 V, as previously mentioned.

Cytotoxicity Assay.  HEK 293 cells (1 × 104) were seeded into 96-well plates for 24 h. The complexes 
(PDMAEA-pDNA-GNRs and PDMAEA-pDNA) with different N/P ratios (10 to 200) were prepared by addition 
of pDNA (1 μg). The volume was adjusted to 150 ml with fresh serum-free F12-DMEM. Samples were incubated 
at room temperature for 30 min. HEK 293 cells were treated with the complexes and incubated for 24 h under 
optimum growth condition. MTT solution (20 ml, 5 mg/ml) was added to each well and incubated at 37 °C for 
4 h. Data was recorded using a micro plate reader (ELx800, Biotek, USA) at 570 nm. PEI was used as the positive 
control.

Green Fluorescent Protein Transfection.  HEK 293 cells (4 × 104) were seeded into 24 well plates for 
48 h before transfection. Complexes were prepared by mixing pDNA (1 μg) with appropriate amounts of GNR- 
PDMAEAs and PDMAEAs with different N/P ratios (10 to 200), pipetted 10 times and incubated at room tem-
perature for 15 min, this was followed by addition of fresh serum-free F12-DMEM medium to make up a total 
volume of 100 μl (incubated for 15 more minutes). The complexes were then added to 24-well plates and incu-
bated for 4 h under optimum growth condition (Memmert, Germany). Then 300 μl of F12-DMEM containing 
serum (Gibco) was added to each well and incubated for 48 h under optimum growth condition. Samples were 
observed with a fluorescence inverted microscope (Nikon Eclipse TE2000-S fluorescence microscope, Japan).

Dark-Filed imaging and Confocal microscopy.  Briefly, HEK-293 cells were seeded on square glass 
placed at the bottom of six well plate at 30–40% confluency in complete DMEM-F12 medium. HEK-293 cells 
were then treated by nano-polyplex (pDNA-PDMAEA-GNRs). After 4 hours of incubation, the transfected cells 
were fixed with 10% formalin (Mojallali, Iran) and imaged by dark-field microscopy (Olympus, BX51TF, Japan). 
Likewise, for confocal microscopy the confluent cells were treated by SYBER Green-labeled nano-polyplex. 
Followed by 4 hours of incubation and fixing with 10% formalin, cells were stained with DAPI (Santa Cruz, 
sc-24941) for 5 minutes. The images were taken using a spectral confocal microscope (Leica TCS SPE, Germany).

Assay of Luciferase Activity.  The procedure for luciferase activity protein was almost the same as men-
tioned for GFP. All the experiments including cells seeding, preparation of complexes and cell treatment with 
complexes were similar. Luciferase plasmid (pGL4) was used and the assay was carried out according to the 
manufacturer’s instructions (Promega, U.S.A.). Luciferase activity was measured with a luminometer (Berthold 
Detection Systems, GmbH).

Conclusion
The rate and efficiency of transfection is an important issue for gene therapy applications. Nano-polyplexes con-
sisting of gold nanorods and PDMAEA were synthesized to monitor the transfection efficiency in the HEK-
293T cell line. Results showed that the nano-polyplex presented excellent features with self-catalyzed degradation 
of PDMAEA in an aqueous medium. The nano-polyplex exploited the efficient binding, protecting and pDNA 
releasing potential of PDMAEA as well as the prominent features of GNRs, i.e., high surface-area-to-volume ratio 
and facile functionalizability. The entrance rate of the nano-polyplex increased upon maximized loading of poly-
mers onto GNRs’ matrix, leading to more transfection of pDNA. Comparison of the nano-polyplex system with 
previously reported data on the bare polyplex of PDMAEA also showed higher level of transfection with respect 
to the latter. Furthermore, toxicity of the nano-polyplex was found to be lower than that of bare PDMAEA. 
Results of this effort could pave way for further investigations on the design and fabrication of a new generation 
of nanoparticle-based delivery systems for gene therapy and gene editing applications.
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