
1ScieNtific REPORts |  (2018) 8:7863  | DOI:10.1038/s41598-018-26234-6

www.nature.com/scientificreports

Anti-reflectance investigation 
of a micro-nano hybrid structure 
fabricated by dry/wet etching 
methods
Xiao Tan1,2,3, Zhi Tao1,2,3, Mingxing Yu1,2,3, Hanxiao Wu1,2,3 & Haiwang Li1,2,3

Black silicon fabrication and manipulation have been well reported by institutes around the world and 
are quite useful for solar absorption and photovoltaic conversion. In this study, silicon micro-nano 
hybrid structures were fabricated, and the morphologies of the hybrid structures were analyzed. This 
paper studied nanostructures formed on tips, pits and a flat surface using a dry etching method and a 
wet etching method. In terms of nanostructure morphology, nanostructures etched by the wet etching 
method (13 μm) were taller than those etched by the dry etching method (1 μm), but the wet etched 
morphology was less organized. After the nanostructures were grown, six samples with nano sturctures 
and three samples with micro sturctures were measured by a photometer for reflectivity testing. The 
nine samples were compared and analyzed using the integral of reflectivity and solar emissivity at the 
earth’s surface. The results show that the nanostructures grown on a tip surface using the wet etching 
method had the minimum reflectivity in the wavelength range of 300 nm–1100 nm, in consideration of 
the forbidden energy gap of silicon.

Solar cells are essential in applications of energy harvesting and energy storage. To enhance the efficiency of a 
solar cell, low surface reflectance of solar cells is required to maximize the number of incident photons absorbed 
by the semiconductor that converts light to electrical energy. In recent years, many studies on methods for reduc-
ing the surface reflectance of a solar cell have been reported, including the coating method, dry etching method, 
and wet etching method. The coating method is a standard technique that reduces the reflectance in crystalline 
Si solar cells and other solar cells by using a quarter-wavelength antireflection (AR) coating on the top surface1–3. 
However, the coating method results in destructive performance on the surface and inhibits the photon conver-
sion process, thereby reducing the efficiency of the solar cell. The dry etching method for fabricating black silicon 
uses SF6-O2 plasma and was proposed in 1995 as a tool to identify optimal conditions for vertical silicon deep 
etching4. In 2001, Zaidi et al. studied a solar cell textured by reactive ion etching (RIE), but paid little attention to 
microstructures5. Temperature is an important parameter that influences the growth conditions in dry etching. 
While black silicon can generally be fabricated at low (−40 to −30 °C)6 or even cryogenic temperatures7, Pezoldt 
et al. presented nanostructure fabrication at temperatures between 20 and 30 °C8. However, fabrication at tem-
peratures between −30 and 20 °C, i.e., the operating temperature for a normal RIE machine or ICP (inductive 
coupled plasma), is rarely reported. The wet etching method typically uses Ag or Au for nanoparticle catalysis 
and HF for etching substances9–13. This method is a simple and quick approach for producing a large amount of 
nanostructure grass layers. However, the wet etching method may cause large area defects and is less stable than 
the dry etching method. Hsu C. H. et al. investigated fabrication and characteristic of black silicon for solar cell 
applications before 2014 and wrote an overview of them14. At the same time, in 2014, Liu X. reviewed properties 
of solar energy applications using black silicon15. Both of them recognized the black silicon as an important 
technique for energy conservation and collection and thought it would be a promising technology. In addition to 
optical application16–18, other fields, including Biology19, heat transfer20, photoelectrochemical21, electroosmotic 
flow in micro channel22 etc., also take the full advantage of black silicon.
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Bernhard discovered that the corneas of moth eyes have a nanostructured surface that acts as an antireflec-
tive medium, realizing night camouflage23. Since then, this so-called ‘moth eye effect’ has been widely studied 
and reported24–30. To understand the underlying physical principles, the optical properties of nanostructured 
surfaces have been investigated31–38. Surface roughening for anti-reflective function consists of numerous fabri-
cation methods, including coating method (sol-gel processing39–43, dip44 and spin coating45 etc.), glancing angle 
deposition (GLAD)46–49, Chemical vapor deposition (CVD)50–53, etching method (wet54,55 and dry method56,57), 
and lithography method58–60 etc. Silicon-base surface usually uses etching method, photolithography method 
and femtosecond (fs) laser method. However, photolithography method requires special mask to accomplish pat-
terns and femtosecond laser method needs high density energy to fabricate patterns. Etching method, including 
wet and dry etching method, is convenient to fabricate micro and nano structures on silicon wafer, and hence 
it becomes popular in manufacturing rough surface for anti-reflectance use. In recent articles, rough surface on 
silicon using etching method indicated excellent property of anti-reflectance13,61–64. Particularly, Anti-reflective 
surface was applied to other field and was developed to be widely used in recent years. Saifeng Z. et al. reported a 
femtosecond (fs) laser microstructured silicon with Au film with using replication technique, which firstly showed 
great enhancement of infrared light absorption over a broad wavelength band (2.7~15.1 μm)65. In the reference, 
the highest infrared light absorption reached to 90% and infrared light absorption remained more than 60%. 
Zhang W. et al. studied a narrow-band reflectance filter using glancing-angle deposition technique and photoli-
thography. In the study, the absorption of the filter was high only in a narrow wavelength range (620~630 nm) but 
was very low in other wavelength range (500~800 nm)66. Tan G. et al. demonstrated a broadband moth-eye-like 
AR surface on a flexible substrate, intended for flexible display applications. The motheye-like nanostructure 
was fabricated by an imprinting process onto a flexible substrate with a thin hard-coating film, which exhibited 
excellent AR with luminous reflectance <0.23% and haze below 1% with indistinguishable image quality deteri-
oration67. Although various methods for nanostructure fabrication have been investigated in detail over the past 
decades, few articles have paid attention to micro-nano hybrid structures68, with nanostructures on the bottom of 
micro trenches and no grass in the profiles. Therefore, this paper focuses on the fabrication of micro-nano hybrid 
structures and their reflectance values. In addition, micro-nano hybrid structures are beneficial for absorbing the 
infrared spectrum of solar radiation, from which a solar cell can absorb more thermal energy. Such absorption 
may also reduce the forbidden gap of silicon because a negative correlation exists between temperature and the 
forbidden gap value. In this paper, using hybrid structures showed better performance (lower reflectance) than 
single structure using the same etching method16,21. The results of using hybrid structures indicated that reflec-
tance kept low and stable among 300 nm~1000 nm but that of using single structure in other may showed that 
reflectance increased in small wavelength2,69–71.

Reflectance for normal incidence was measured on a UV3600 spectrophotometer. The morphology and 
structures of the samples were characterized with a scanning electron microscope (SEM), from SEC and Zeiss 
Company.

Fabrication
This paper was designed to fabricate a kind of surface with high light-abortion efficiency. Nine samples were fab-
ricated and process of them were different as shown in Table 1 and Fig. 1 below. These hybrid structures actually 
are secondary structures and they are intended to absorb more light rather than wafers with single micro or nano 
structures. Table 1 shows the group number and process details. The name of each sample in Table 1 is named 
according to the second step process method and micro structure shape.

In this experiments, 4-inch silicon wafers with crystal orientation of 100, doping type of N, silicon wafer 
thickness of 500 μm, and silicon oxide thickness of 1 μm were used. As shown in Fig. 1, the first step was to 
fabricate micro structure, including micro tips and pits. The details of first step process flow are as below: (a) 
piranha (H2SO4/98%:H2O2/30% = 3:1) washing for 10 min, (b) spin coat photoresist, SPR220, in 3000 rpm and 
prebake 30 min in nitrogen atmosphere oven, (c) pattern photoresist with 10 mJ/cm2 ultraviolet light and post 
bake 15 min in nitrogen atmosphere oven, (d) Use buffer oxide etching fluid (HF:NH4F = 1:5) to etch silicon oxide 
without destruction of photoresist, (e) piranha (H2SO4/98%:H2O2/30% = 3:1) washing for 10 min to remove the 
photoresist, (f) finally, silicon wafers with micro tips or pits were fabricated. Samples were fabricated using two 
steps, with the aim of growing nanostructures on micro structures. The first step used a high-energy, high-density 
plasma for isotropic etching with SF6/O2 (130 sccm/13 sccm) to manufacture micro structures, tips and pits. In 
the second step, which applied two methods, nanostructures were fabricated on the tips and pits, as well as on a 

Number/name First step - micro structure fabrication Second step - nano structure fabrication

1/wet-tip Dry etching by ICP Metal-assisted wet chemical etching

2/wet-pit Dry etching by ICP Metal-assisted wet chemical etching

3/wet-flat No treatment Metal-assisted wet chemical etching

4/dry-tip Dry etching by ICP Dry etching by ICP

5/dry-pit Dry etching by ICP Dry etching by ICP

6/dry-flat No treatment Dry etching by ICP

7/tips Dry etching by ICP No treatment

8/pits Dry etching by ICP No treatment

9/silicon No treatment No treatment

Table 1. Process flow of nine samples.
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flat sample for comparison. Four types of micro-nano hybrid samples and two flat samples were fabricated, with 
three samples produced using the wet etching method and the other three samples obtained using the gas etching 
method in second step. Each method was performed to obtain microstructures with tips, pits and a flat surface. 
The wet etching method process in second step is as follows: (1) piranha (H2SO4/98%:H2O2/30% = 3:1) washing 
for 10 min, (2) solution (AgNO3/0.02-mol/L:HF/5-mol/L) configuring and soaking for 80 min, and (3) solution 
(HNO3/65%) configuring and soaking for 70 min. The dry etching method parameters are as follows: (1) gas flow: 
SF6/60 sccm:O2/80 sccm, (2) RF (radio frequency) power: 200 W, (3) bias power: 25 W, (4) temperature: 5 degrees 
centigrade, and (5) pressure: 10 mTorr.

The tips were etched under the protection of mask shown in Fig. 2(a), pits were etched under the protection 
of mask shown in Fig. 2(b). In the Fig. 2(a,b), black parts represent mask patterns and white ones represent no 
mask patterns. Three center point of circles form an equilateral triangle and any distance between two center 
point is the same. After first step, micro three-dimension can be observed by SEM as shown in 2(c) and 2(d). It is 
found that the lateral etching rate and vertical etching rate determinate the curve profile of structures. The curve 
profile of tips was the same as that of pits through controlling the depth and lateral etching distance, as shown in 
Fig. 2(c,d).

As shown in Fig. 3(a,b), nanostructure tips can be fabricated on the top surface of the tips, the profile of the 
tips and the bottom of the substrate. In addition, after 80 min of etching, the nanostructures grew 13.34 μm on 
the profile of the tips, as shown as Fig. 3(c). During fabrication, a few bubbles were observed and could not be 
removed by sonication. Even with a few seconds of sonication during fabrication, the solution of AgNO3 and 
HF would become turbid, and the HF could no longer etch silicon because the Ag cannot return to its original 
location.

Figure 4(a) illustrates nanostructures on micro pits obtained using the wet etching method. In contrast to 
the tips, nanostructures were not observed on the bottom of the pits, although some silver was deposited on 
the bottom, as shown in Fig. 4(b). Figure 4(c) shows a high-magnification SEM image, indicating nanostruc-
tures on the top surface of the pits. During fabrication, many bubbles were observed and remained in the pit 
area rather than diffusing away. It is possible that nanostructures cannot be formed on the bottom of the pits 
because bubbles hinder or slow the chemical reaction since the etching end product is SiF4, a type of gas that 
requires air for diffusion.

Figure 5(a) shows a micrograph of the nanostructures grown on a flat substrate using the wet etching method, 
captured at low magnification. The growth condition is similar to that of the top surface of the tips and pits with a 
thick black silicon forest. In addition, Fig. 5(b) shows that nanostructures can be fabricated on a vertical side wall 
with higher grass on the bottom of the side wall. A high-magnification SEM image of the nanostructures on the 
surface, as presented in Fig. 5(c), shows denser grass than that observed for the tips and pits.

Figure 6(a) shows an array image of micro tips obtained using the dry etching method, with a magnified view 
in Fig. 6(b). Figure 6(b) indicates that nanostructures are growing well on the profile of the tips, with a height 
of approximately 1 μm. Figure 6(c) shows highly dense grass that is even denser than that observed for the flat 
growth situation using the wet etching method (Fig. 3(c)).

Figure 7(a) shows an image of the nanostructures grown on micro pits using the dry etching method, with 
a magnified view in Fig. 7(b). Figure 7(b) indicates that nanostructures are growing well on the bottom of the 
pits, with a height of approximately 1 μm, but no growth occurs on the profile close to the top surface. Figure 7(c) 
shows a relatively dense grass that is denser than that obtained for the flat growth conditions using the wet etching 
method (Fig. 5(c)) but less dense than that obtained for the tip growth condition with the gas method (Fig. 6(c)).

Figure 8 shows the top and side view of nanostructures on a flat substrate, obtained using the dry etching 
method, with a height of approximately 1 μm. This sample has the densest nanostructure among the No. 1 ~ No. 
6 samples.

Figure 1. Process flow of hybrid structures. The hybrid structures include two steps. For the samples in paper, 
the first step is dry etching by ICP, fabricating the micro structures. In the second step, the samples could be 
treated by dry etching or wet etching, which shows different results of reflectance. For the details of recipe 
number, Table 1 indicates specific process flow of each number of sample.
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Experimental
In this paper, nanostructures were fabricated on micro structures with different profiles: tip, pit and flat surface. 
Micro structures were dry etched in SF6-O2 plasma using an ICP (inductive coupled plasma) from the SPTS 
Company. Black silicon nanostructures were fabricated by two methods, wet etching and dry etching. After the 
black silicon nanostructures were grown, No. 1 ~ No. 6 samples were observed by a photometer for reflectivity 
tests. As shown in Fig. 9(a), six lines are presented, and the reflectivity values of the samples are illustrated. 
Taking the forbidden energy gap of silicon into consideration, silicon can usually absorb light with wavelengths 
below 1100 nm. Therefore, wavelengths between 300 nm and 1100 nm are analyzed. As can be inferred from 
the figure, except for the wet-pit sample (red line) and the dry-flat sample (purple line), the reflectance of the 

Figure 2. Mask patterns in first step process and fabrication results observed in SEM (a) the mask patterns of 
tips, (b) the mask patterns of pits, (c) fabrication results of tips observed in SEM, and (d) fabrication results of 
pits observed in SEM. Two kinds of three-dimension micro structures are patterned by mask layer shown in  
(a) and (b). The sizes of mask layer and micro structures are shown in (a)–(d). The two kinds of micro 
structures obtain the same curve profile by controlling the recipes of them. They were etched to 100 micrometer 
in depth and 55 micrometer in lateral side. Though they have the same curve profile, they indicated different 
reflective feature when grown with nano structures.

Figure 3. Nanostructures on micro tips obtained using the wet etching method: (a) top view of a low-
magnification micrograph, (b) nanostructures on the top surface of the tips and the bottom surface of the 
substrate, and (c) nanostructures with a height of 13.34 μm on the profile of the tips. The tip sample with 
nanostructures that were fabricated by wet etching was indicated in Fig. 3, from millimeter scale to micrometer 
scale. High density nanograsses with height of 13.34 micron were seen in (c) and this sample showed the best 
performance of absorption among nine samples.
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samples decreases slightly with wavelength from 300 nm to 400 nm, remains stable for wavelengths from 400 nm 
to 1000 nm and increases dramatically for wavelengths from 1000 nm to 1100 nm. The wet-pit sample shows little 
fluctuation for wavelengths from 300 nm to 700 nm but strongly increases from 700 nm to 1100 nm. The dry-flat 
sample presents a peak in the wavelength range from 300 nm to 1100 nm, which may originate from the effect of 
light diffraction. Fluctuations can be seen at wavelengths near 820 nm because the UV-3600 instrument changes 
light sources from infrared to visible light. Reflectance results of single micro structures and silicon surface with 
no treatment are shown in Fig. 9(b). It can be inferred that silicon with no treatment indicated high reflectance 
that far surpassed other rough surfaces with single micro structures. The micro pits and tips were only fabricated 
by ICP without nano structures and the process of them were the same as the No. 1, No. 2, No. 4, and No. 5 
samples in first process step. Though the size of micro structures are the same, they performed lower reflectance 
than those with nano structures and obviously increased in small wavelength range. That is to say, those rough 
surfaces only shaped with micro structures were less effective than rough surfaces shaped with micro-nano hybrid 
structures.

Figure 4. Nanostructures on micro pits obtained using the wet etching method: (a) top view low-
magnification micrograph, (b) silver on the bottom surface of the pits, and (c) high-magnification SEM image 
of nanostructures on the top surface of the pits. The pit sample with nanostructures that were fabricated by wet 
etching was indicated in Fig. 4. Because of high density of pit patterns, which limited reactant gas diffusion, 
wet chemical fluid could not react successfully during the etching process. This sample showed the worst 
performance of absorption among hybrid structures.

Figure 5. Nanostructures on a flat substrate obtained using the wet etching method: (a) top view of a low-
magnification micrograph, (b) nanostructures on the side wall and surface, and (c) high-magnification SEM 
image of nanostructures on the surfaceof the pits. (a) Shows a micrograph of the nanostructures grown on a flat 
substrate using the wet etching method, captured at low magnification. The growth condition is similar to that 
of the top surface of the tips and pits with a thick black silicon forest. In addition, (b) shows that nanostructures 
can be fabricated on a vertical side wall with higher grass on the bottom of the side wall. A high-magnification 
SEM image of the nanostructures on the surface, as presented in (c), shows denser grass than that observed for 
the tips and pits.

Figure 6. Nanostructures on micro tips obtained using the dry etching method: (a) top view of a low-
magnification micrograph, (b) side view of nanostructures on the profile of the tips, and (c) high-magnification 
SEM image of nanostructures on the profile. (a) Shows an array image of micro tips obtained using the dry 
etching method, with a magnified view in (b). (b) Indicates that nanostructures are growing well on the profile 
of the tips, with a height of approximately 1 μm. (c) Shows highly dense grass that is even denser than that 
observed for the flat growth situation using the wet etching method (Fig. 3(c)).



www.nature.com/scientificreports/

6ScieNtific REPORts |  (2018) 8:7863  | DOI:10.1038/s41598-018-26234-6

Based on the actual solar radiation energy at the earth’s surface72, an approximate curve is illustrated in 
Fig. 10(a), which consists of three line segments, to simplify the absorption efficiency of the six micro-nano 
hybrid black silicon samples and single micro structures samples. The equation of absorption efficiency is given 
below:

A R E d(1 ( )) ( ) (1)300

1100

∫ λ λ λ= − ×

where A is the absorption efficiency; R(λ) is the reflectance of black silicon at wavelength λ; and E(λ) is the 
actual solar radiation energy at the earth’s surface for black silicon at wavelength λ. For the range of integration 
(300–1100), the minimum value is limited by the lowest wavelength value of the photometer, and the maximum 
value is limited by the forbidden gap of silicon.

As shown in Fig. 10(b), the wet-pit samples exhibit the lowest absorption efficiency among No. 1 ~ No.6 sam-
ples, and the wet-tip samples exhibit the highest absorption efficiency among the nine samples. Tips for both 
wet and dry etching methods show larger absorption efficiencies than pits. The efficiencies of the tip samples 
exceed the efficiencies of the pit samples by almost 10% for the wet etching method; however, for the dry etching 
method, the tip and pit samples are close in efficiency. In addition, the tip samples obtained using the wet etching 
method exhibit a slightly higher efficiency than those obtained using the dry etching method, whereas the flat 
sample obtained via the wet etching method has a slightly lower efficiency than that of the dry etching method. 
From the Fig. 10(b), silicon surface with no treatment showed lowest among all samples since it has neither micro 
nor nano structures that contribute to light absorption. The surfaces with pits indicated more 2% efficiency than 
those with tips since pits may have continuous ring side to capture lights. That is to say, surfaces with pits have 
more side surface area than those with tips, increasing the probability of reflection. That showed the efficiency of 
the samples with hybrid structures, single nano structures, single micro structures and no structures, descending 
from first one to last one.

Figure 10(b) also illustrates a relationship among the different micro-nano hybrid structures. The absorption 
efficiency of the micro-nano hybrid structure obtained using tips is higher than of pits for both the wet and dry 
etching methods because the nanostructures on the tips are more dense and the nanostructures realize full cov-
erage on the tips but only partial coverage on the pits. In addition, the absorption efficiency of the micro-nano 
hybrid structure samples using tips with the wet etching method are approximately 2% higher than those using 

Figure 7. Nanostructures on micro pits obtained using the dry etching method: (a) top view of a low-
magnification micrograph, (b) nanostructures on the profile of the pits, and (c) high-magnification SEM image 
of nanostructures on the profile. (a) Shows an image of the nanostructures grown on micro pits using the dry 
etching method, with a magnified view in (b). (b) Indicates that nanostructures are growing well on the bottom 
of the pits, with a height of approximately 1 μm, but no growth occurs on the profile close to the top surface. 
(c) Shows a relatively dense grass that is denser than that obtained for the flat growth conditions using the wet 
etching method (Fig. 5(c)) but less dense than that obtained for the tip growth condition with the gas method 
(Fig. 6(c)).

Figure 8. Nanostructures on a flat substrate obtained using the dry etching method: (a) high-magnification 
SEM image of nanostructures on the surface and (b) side view of the nanostructures on the surface. Figure 8 
shows the top and side view of nanostructures on a flat substrate, obtained using the dry etching method, with a 
height of approximately 1 μm. This sample has the densest nanostructure among the No. 1~No. 6 samples.
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pits with the dry etching method because the tips produced by the wet etching method grew with a higher height 
of grass than the tips produced by the dry etching method. Higher grass indicates that light trapping is improved. 
The absorption efficiencies of the micro-nano hybrid structure samples with tips are higher than those without 
microstructures (flat) for the wet etching method but are similar for the dry etching method. It can be concluded 
that the tips display a larger area of absorption for solar energy and that the microstructure can absorb secondary 
light reflections from the other side of the profile.

Results and Discussions
The wet-tip sample (No. 1) indicated the better performance, high absorption and low reflectance, than other 
samples. The wet-tip sample was fabricated by dry gas etching that firstly formed micro tips and secondly formed 
nanograsses on whole profile of tips. On the one hand, nanograsses fabricated by wet metal-assisted etching were 
higher than using dry etching. On the another hand, it is because nanograsses covered whole profile of tips along 
with level surface on silicon wafer that realized highest absorption. Light would reflect from one side wall of 
micro tips to another side wall, and it is a secondary reflection that may increase the probability of being trapped 
into black silicon. Because all side wall of tips was covered with nanograsses, the light would be absorbed twice 
or even more times. That is to say, lights that were reflected first time would be re-utilized by black silicon on side 
wall in second time or even more times. Suppose that the absorption efficiency of bottom side is the same as the 
curved side (profile), the whole absorption efficiency can be calculated by equation (2). Suppose that the absorp-
tion efficiency of bottom side is not the same as the curved side (profile) but attenuating with constant parameter 
“a” after every reflection, the whole absorption efficiency can be calculated by equation (3).

∫ ∑ λ λ λ= ×=E A E d( ) ( ) (2)whole i
n i

300

1100

1

E A a E d( ( ) ) ( ) (3)whole i
n i i

300

1100

1
1∫ ∑ λ λ λ= ⋅ ×=

−

where Ewhole is the whole absorption efficiency of hybrid structures; A(λ) is the absorption efficiency of black 
silicon at wavelength λ; and E(λ) is the actual solar radiation energy at the earth’s surface for black silicon at wave-
length λ. i is the number of times that light really reflect in side wall; a is the attenuating parameter, supposing 
attenuating remain constant after every reflection. For the range of integration (300–1100), the minimum value 
is limited by the lowest wavelength value of the photometer, and the maximum value is limited by the forbidden 
gap of silicon.

Figure 9. Hemispherical reflectance spectra of black silicon micro-nano hybrid structures obtained for 
different processes and micro structures. (a) Reflectance results of six samples with nanostructures, (b) 
reflectance results of single micro structures and silicon surface with no treatment. As shown in (a), six lines are 
presented, and the reflectivity values of the samples are illustrated. Taking the forbidden energy gap of silicon 
into consideration, silicon can usually absorb light with wavelengths below 1100 nm. Therefore, wavelengths 
between 300 nm and 1100 nm are analyzed. As can be inferred from the figure, except for the wet-pit sample 
(red line) and the dry-flat sample (purple line), the reflectance of the samples decreases slightly with wavelength 
from 300 nm to 400 nm, remains stable for wavelengths from 400 nm to 1000 nm and increases dramatically 
for wavelengths from 1000 nm to 1100 nm. The wet-pit sample shows little fluctuation for wavelengths from 
300 nm to 700 nm but strongly increases from 700 nm to 1100 nm. The dry-flat sample presents a peak in 
the wavelength range from 300 nm to 1100 nm, which may originate from the effect of light diffraction. 
Fluctuations can be seen at wavelengths near 820 nm because the UV-3600 instrument changes light sources 
from infrared to visible light. Reflectance results of single micro structures and silicon surface with no treatment 
are shown in (b). It can be inferred that silicon with no treatment indicated high reflectance that far surpassed 
other rough surfaces with single micro structures. The micro pits and tips were only fabricated by ICP without 
nano structures and the process of them were the same as the No. 1, No. 2, No. 4, and No. 5 samples in first 
process step.
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Because the No. 1 ~ No. 4 samples had different micro-nano hybrid structures, the reflectance showed different 
variation trends and the absorption had different values. The wet-pit line has a higher reflectance than the other 
five lines over the wavelength range from 700 nm to 1200 nm because the nanostructures on the pits did not grow 
well on the profile of the pits, as shown in Fig. 11. Nanostructures cannot be seen in the holes but can be seen at 
the surface, and the partial silicon (holes) can reflect more light energy than the rest of the silicon (top surface). 
Figure 11 also indicates a defect on the surface because the silver particles found there were not removed by the 
HNO3 solution. Silver particles hardly existed in tips but few in pits.

The dry-pit line shows a higher reflectance than the dry-tip results. For the dry etching method, nanostruc-
tures can be fabricated on most of the pit profiles; however, nanostructures cannot grow on a small area of the 
profile, as shown in Fig. 12. Because the plasma is accelerated by the ICP bias power, with a high speed in the 
vertical direction and a low speed in the horizontal direction, the plasma cannot reach the region that is shielded 
under the mask or the top silicon surface. In the magnified side profile, the white arrow shows the boundary of 
the grass growth. Grass can grow on the right side of the arrow but cannot grow on the left side of the arrow. 
Therefore, the absorption efficiency of a dry-pit sample is lower than that of a sample with tips that grow well over 
all of the side profile, as shown in Fig. 6(b).

Apart from two fabrication defects in the dry-pit and the wet-pit samples, other nanostructures on the micro-
structures grew well. However, the pits might show better performance than the tips in theory because light can-
not easily escape pits and still achieve full coverage. Therefore, solving these problems in the fabrication of pits is 
a promising research direction. Moreover, solar radiation in the infrared light range can increase the temperature 
of a solar cell, which may enhance the solar cell efficiency due to a forbidden gap value decrease. We consider this 
work as the next step in reducing the reflectance and absorption of solar cells.

Conclusion
This paper studied the fabrication of micro-nano hybrid structures, measured the reflectances of these structures, 
and analyzed their absorption based on the integral of reflectivity and solar emissivity at the earth’s surface. The 
absorption efficiency of the wet-pit sample was found to exhibit the lowest absorption efficiency and that of the 
wet-tip sample was found to exhibit the highest absorption efficiency among the nine samples. The tips obtained 
from both the wet and dry etching methods showed higher absorption efficiencies than the pits. The efficiencies 
of the tips exceed the efficiencies of the pits by almost 10% for the wet etching method; however, for the dry etch-
ing method, the tips and pits are similar in efficiency. In addition, the absorption efficiency of the micro-nano 
hybrid structure with tips fabricated using the wet etching method is approximately 2% higher than that with pits 
fabricated with the dry etching method. The absorption efficiency of the micro-nano hybrid structure with tips 
is higher than that without a microstructure (flat) for the wet etching method, but the two values are similar for 

Figure 10. (a) Approximate curve of actual solar radiation energy on the earth’s surface from 200 nm to 
1200 nm and (b) absorption efficiency of micro-nano hybrid structures and micro structures obtained for 
different processes. Based on the actual solar radiation energy at the earth’s surface31, an approximate curve is 
illustrated in (a), which consists of three line segments, to simplify the absorption efficiency of the six micro-
nano hybrid black silicon samples and single micro structures samples. As shown in (b), the wet-pit samples 
exhibit the lowest absorption efficiency among No. 1~No. 6 samples, and the wet-tip samples exhibit the 
highest absorption efficiency among the nine samples. Tips for both wet and dry etching methods show larger 
absorption efficiencies than pits. The efficiencies of the tip samples exceed the efficiencies of the pit samples 
by almost 10% for the wet etching method; however, for the dry etching method, the tip and pit samples 
are close in efficiency. In addition, the tip samples obtained using the wet etching method exhibit a slightly 
higher efficiency than those obtained using the dry etching method, whereas the flat sample obtained via the 
wet etching method has a slightly lower efficiency than that of the dry etching method. From the (b), silicon 
surface with no treatment showed lowest among all samples since it has neither micro nor nano structures that 
contribute to light absorption. The surfaces with pits indicated more 2% efficiency than those with tips since 
pits may have continuous ring side to capture lights. That is to say, surfaces with pits have more side surface area 
than those with tips, increasing the probability of reflection. That showed the efficiency of the samples with hybrid 
structures, single nano structures, single micro structures and no structures, descending from first one to last one.
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the dry etching method. According to results and comparisons between surfaces with single micro structures and 
those with hybrid structures, the former ones were less effective than latter ones. To sum up, silicon wafers with 
hybrid structures have higher absorption than those with single nano structures. Besides, silicon wafers with with 
single nano structures have higher absorption than those with single micro structures. Finally, silicon wafers with 
with single micro structures have higher absorption than those with no treatment. Among hybrid structures, tips 
with wet treatment in second step showed higher performance than tips and pits with dry treatment in second 
step, and pits with wet treatment in second step showed worst performance.
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