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Softness Induced Enhancement in 
Net Throughput of Non-Linear Bio-
Fluids in Nanofluidic Channel under 
EDL Phenomenon
Harshad Sanjay Gaikwad1, Pranab Kumar Mondal1 & Somchai Wongwises2,3

In this article, we describe the electro-hydrodynamics of non-Newtonian fluid in narrow fluidic channel 
with solvent permeable and ion-penetrable polyelectrolyte layer (PEL) grafted on channel surface 
with an interaction of non-overlapping electric double layer (EDL) phenomenon. In this analysis, we 
integrate power-law model in the momentum equation for describing the non-Newtonian rheology. The 
complex interplay between the non-Newtonian rheology and interfacial electrochemistry in presence 
of PEL on the walls leads to non-intuitive variations in the underlying flow dynamics in the channels. As 
such, we bring out the variations in flow dynamics and their implications on the net throughput in the 
channel in terms of different parameters like power-law index (n), drag parameter (α), PEL thickness 
(d) and Debye length ratio (κ/κPEL) are discussed. We show, in this analysis, a relative enhancement in 
the net throughput through a soft nanofluidic channel for both the shear-thinning and shear-thickening 
fluids, attributed to the stronger electrical body forces stemming from ionic interactions between 
polyelectrolyte layer and electrolyte layer. Also, we illustrate that higher apparent viscosity inherent 
with the class of shear-thickening fluid weakens the softness induced enhancement in the volumetric 
flow rate for the shear-thickening fluids, since the viscous drag offered to the f low f ield becomes higher 
for the transport of shear-thickening fluid.

The electrostatic interaction of the charged wall with electrolytic solution under thermodynamic equilibrium leads 
to the formation of Electric Double Layer (EDL)1–9. Such phenomena upon interaction with interlaced electrical and 
viscous properties of the solvent permeable and ion penetrable polyelectrolyte layer grafted on the walls of narrow 
fluidic channel finds a wide variety of applications like an ion rectification, chemical sensing, flow control, devel-
oping devices for energy applications, characterization of gels and elastomers, manipulation and switching of ion 
transports to name a few10. This sandwiched polyelectrolyte layer between the channel walls and electrolyte solution 
alters the underlying flow dynamics non intuitively, as modulated by several parameters like PEL thickness, charge 
density and steric interactions11,12. The presence of such polyelectrolyte layers on the walls of the narrow fluidic 
channels can also be treated as the flow suppressors, since the friction drag offered by the polymeric distributions  
of PEL attenuates the flow rate in the channel13. Due to this effectiveness of polyelectrolyte layer in the flow of elec-
trolytic solution, the PEL grafted narrow fluidic channels are called as the Soft or Smart narrow fluidic channels and 
the effectiveness is termed as softness of PEL. It is worth mentioning here that the softness of PEL can be varied by 
changing the drag parameter, PEL thickness and the concentration of electrolyte solution. Also, soft narrow fluidic 
channels are majorly employed in different biological and chemical applications such as electro-kinetics of biologi-
cal cells, the effect of EDL in bacterial adhesion to surfaces and charging and swelling of cellulose films14–17.

It is important to mention here that all the aforementioned applications are largely involved with the transport of 
non-Newtonian bio-fluids. As such, in drug delivery applications, the emulsions comprising of the ionized oil and 
aqueous solution of anticancer drug follow a rheological behavior. Both the oil-water (O-W) and water-oil (W-O) 
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emulsions show a shear-thinning nature, while W-O has higher apparent viscosity than the O-W emulsion18.  
Also, an increment in the solid particle or aggregate concentration in the pharmaceutical formulations results in 
an entranced reaction of solid content of suspensions to the external forcings. In fact, this phenomenon leads to 
an increment in the dilatancy or shear-thickening nature of the pharmaceutical formulations19. Considering all 
above pertinent issues involved with different bio-medical/biochemical applications, a thorough understanding 
of the underlying transport of non-Newtonian fluids through a soft narrow fluidic channel appears to be an 
important aspect for the modifications in the micro-electro-mechanical circuitry, primarily attributed to the com-
plex interplay among different forcings associated with the underlying transport process. Accounting this aspect, 
a few studies as reported in the literature have delineated the physico-chemical interaction of electromechanics 
at small scales and fluid dynamics such as charge regulated surface, ion-partitioning effect, higher surface charge 
(relaxation effect) and surface potential, pH dependent charge density, Field Effect Transistor (FET) regulated 
surface potential, diffusion effect of ions, specific ion interaction, grafting of end charged polyelectrolyte brushes 
and their influential impacts on streaming current, streaming potential as well as electro-viscous effect10,13,20–26. 
But the non-intuitive molecular interactions of the PEL with the apparent viscosity of the non-Newtonian fluid 
fetches a new framework for fluid flow analysis owing to fit in the shear dependent nature of the fluid viscosity in 
different applications mentioned above27. Albeit, attention has been paid by the researchers on the flow dynamics 
of a Jeffrey fluid, which belongs to the category of non-Newtonian fluid as well, through a soft narrow fluidic 
channel28, the rheology driven modifications in viscous force under electro-kinetic influences and its interaction 
with the soft substrate together with a few pertinent aspects like the consideration of the finite thickness of PEL 
and the interaction of EDL formed near the walls of square/rectangular channels may bring in new flow physics, 
which are remaining still untouched in the literature till date.

Here, we investigate the electrohydrodynamics of non-Newtonian fluid in soft narrow fluidic channels, actu-
ated by the combined influences of applied pressure gradient as well as applied electric field across the channel 
under EDL phenomenon. Due to a comparatively higher thickness of EDL in soft narrow fluidic channels than 
that of the rigid channels, we here assume a channel with square cross section essentially to consider the interac-
tive effects of the EDLs being formed at two perpendicular walls of the channel on the underlying flow dynamics, 
which is yet to be considered in the literature. Also, in tune with what has been considered by Li et al.28, we invoke 
to the continuum model in this analysis for analyzing the underlying electrohydrodynamics of non-Newtonian 
fluids in square cross section narrow fluidic channels. We subsequently discuss the problem formulation, mathe-
matical modeling, model validation and results of this analysis systematically.

Mathematical Modelling
In this analysis, we consider a 2D square cross section (YZ-plane) of a narrow fluidic channel whose walls are grafted 
with polyelectrolyte layer of thickness (d) as schematically depicted in Fig. 1. Note that H is the half height of channel, 
while W is the width of the channel. Since we here assume that the channel length is much larger than its height and 
width, the thermo-physical properties remain invariant with the length of the channel. We consider, in this analysis, 
a fully developed laminar incompressible steady flow of non-Newtonian fluid in the axial direction of the channel.

Electrostatics. In thermodynamic equilibrium, when an electrolyte comes in contact with the charged sur-
face, the physico-chemical interaction between the electrolyte ions and the charged surface forms the Electrical 
Double layer (EDL)2,29. On application of external electric field across the channel, which upon interaction with 
the EDLs formed at the channel walls, an electroosmotic flow takes place. In this study, we have considered both 

Figure 1. (a) Schematic depiction of a narrow fluidic channel with polyelectrolyte layer of thickness d, grafted 
on its walls. The height of the channel is 2H. The PEL is assumed to be positively charged whereas the positively 
charged ions of electrolyte are co-ions and negatively charged ions of electrolyte are counter-ions as shown in 
the schematic. (b) The zoomed in view of two different layers (PEL and electrolyte layer) are shown, where the 
variation of ψ is also depicted and (c) Figure shows the potential distribution inside the narrow fluidic channel.
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the driving sources viz. applied pressure gradient and applied electric field across the channel to make the flow 
occur. It should be mentioned here that the relative permittivity of the electrolyte is assumed to remain unaltered 
in presence of PEL30,31. On this basis, the potential distribution in the channel cross section according to Poisson 
equation can be written as32:
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In equations (1) and (2), εr is relative permittivity, ε0 permittivity of free space, ψe and ψp are the induced electric 
potentials for electrolyte and PEL respectively, e is the protonic charge, ze and Z are the valency of ions in electro-
lyte and PEL respectively, n± is concentration of ions in electrolyte and N is the concentration of PEL ions32,33. 
According to Gouy-Chapman model and Boltzmann charge distribution theory1,27, the charge distribution for a 
ze:ze symmetric electrolyte = + = ++ − + −(NaCl Na Cl : KCl K Cl ) together with the consideration of ions as 
point charges, is given by: ψ= −+n n z e k Texp( / )e B0 ; ψ=−n n z e k Texp( / )e B0 , where n0 is neutral charge concen-
tration, kB is the Boltzmann constant and T is the absolute temperature. It should be mentioned here that the 
potential at the walls of the channel is assumed to be less than |25 mV|, leading to the validity of applicability of 
Debye-Huckel approximation ≈ψ ψ( )( )sinh z e

k T
z e
k T

e

B

e

B
 in the present analysis1. Employing this charge distribution 

along with the consideration of the Debye-Huckel approximation, equations (1) and (2) can be modified as:
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In equations (3) and (4), κ ε ε= z e n k T2 /e r B
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0 0  and κ ε ε= z Ze N k T/p e r B
2

0  are the Debye-Huckel parameters 
for electrolyte layer and the PEL respectively32.

Electrohydrodynamics. To study the fluid flow through the PEL grafted narrow fluidic channel, we here 
employ a continuum dynamic approach34. The governing equations, following the continuum dynamic approach, 
consider that the fluid properties of the system are independent of the system parameters such as state variables, 
time and position. Since these state variables are dependent on the intermolecular forces in the system, the char-
acteristic length scale and the time scale of the system depend on the intermolecular forces in the confined region 
near to the surface of the channels. For these scales, the energy barriers are generally set by multiple interactions 
such as steric interactions within the scale of lref SI,  ~ 1–2 nm, electrostatic interactions of lref,EI ~ 1–100 nm and van 
der Waals interactions of lref,VI ~ 1–50 nm34. Since we here do not consider the steric interactions, consideration of 
the continuum dynamic approach as employed in this analysis becomes justified for the characteristic length scale 
which is higher than at least 5 nm34,35. Accounting this, we invoke to the Cauchy momentum equation, which for 
the present analysis can be written as1:
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In equation (5), p is applied pressure, τij is the stress tensor and FV is the volumetric body force. According to 
Maxwell’s stress tensor under applied electric field36, the electroosmotic body force is given as32:

For electrolyte layer:
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For PEL:
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In equations (6) and (7), Ex is applied electric field, μcun is the Darcy friction drag and μc is the Darcy fric-
tion factor. As mentioned before, the rheology of the non-Newtonian fluid is represented in this analysis by the 
Ostwald de’Waele Power law model. Below we write the constitutive behavior for the power-law model37–40:

τ γ=


m( ) (8)n

Here, m is fluid consistency coefficient, n is power law index and γ

 is the magnitude of strain rate tensor as given 

by, γ =


e e[ : ]ij ij
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41–44. Employing this relation and using equa-

tion (8), the apparent viscosity η γ= −
( )m( )eff

n 1  for two-dimensional YZ-cross section is derived as:
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So momentum equation [equation (5)] takes the following form as given below:
For electrolyte layer:
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Here, in equations (10) and (11), ue and up are the fluid velocities in electrolyte domain and polyelectrolyte layer 
(PEL) respectively.

Non-dimensionalisation of the transport equations. Here, we use the following parameters to make the transport 
equations dimensionless as: lref  = H; ψref  = kBT/ze, κ= = ε ε− −( )u U nref HS

n
n k TE

mze

n1 1/
r B x0  where UHS is a 

Helmholtz-Smoluchowski velocity40,45–47. The transport equations in their dimensionless form read as:
Potential distribution:
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Momentum equation:
For electrolyte layer:
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In equations (12–15), we obtain a few dimensionless parameters, which are influencing the flow dynamics 
through the channel. Below we write these parameters as:
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Here, Γ is the forcing comparison parameter which compares the forcing due to pressure driven transport and 
due to electroosmotic transport. Thus, for Γ < 1, the electroosmotic transport becomes effective than the pres-
sure driven transport, while for Γ > 1, the applied pressure gradient takes the dominating role on the underlying 
transport. For Γ = 1, both the forces become equally important on the transport process. The dimensionless drag 
parameter α signifies the variation in the Darcy drag in PEL. The change in the drag parameter α can be attrib-
uted to a change in the grafting density and size of the monomers. For higher values of α, the resistance to the 
flow increases due to dense polymeric distribution in the PEL. It should be noted that the PEL may act like a rigid 
boundary for higher values of α13,48.

Boundary conditions. To solve transport equations mentioned above [equations (12–15)], we use the following 
boundary conditions as discussed below32:

For potential distribution: In soft nanochannel, since the walls are uncharged, we consider the no flux condi-
tion or the Gauss boundary condition with zero surface charge density at the walls of the channel i.e. at 

= ±y z( , 1)49. At the center =y z( , 0) of the channel, the minima of the potential lead to the Neumann condi-
tion. At interface of the electrolyte and PEL, the potential (ψ) and the gradient of the potential (∇ψ) satisfies the 
continuity in potential distribution. Since the relative permittivity of electrolyte and PEL region does not change, 
we here consider the permittivity of both the PEL and electrolyte to be same26. Below we write the boundary 
conditions as discussed above.
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For velocity distribution: For velocity distribution, we consider the no slip boundary condition at the walls of the 
channel, while at the center, due to symmetry, a Neumann condition is considered. At the PEL and electrolyte 
interface, we consider that the velocity and velocity gradient are equal in order to satisfy the continuity in the 
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domain. It should be noted that the viscosity of the electrolytic solution is assumed to be the same in both the PEL 
and electrolyte regions23.
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The expression of shear stresses τ
= ± −p y z d, ( 1)

 and τ = ± −e y z d, ( 1)  in both the layers (PEL and electrolyte respectively) 

appearing in above equation takes the following form as written below:
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Numerical Methods. In this analysis, we use our in-house developed finite difference code to solve the 
transport governing equations of the flow dynamics [equations (12–15)] for the present problem. Since we are 
focusing on the steady state, non-convective (low Reynolds number flow) flow of a Non-Newtonian fluid under 
the application of externally applied pressure gradient, we consider Gauss Seidel iterative method over the uni-
form grids of the computational domain to calculate the potential and velocity distributions. We discuss the 
details of this computational procedure as follows:

Computational domain. In Fig. 2(a), we show the computational domain of the present problem, while the 
coordinate system is attached at the center of the channel i.e., at =z y( , ) (0, 0). We divide this domain in uniform 
grid of size m×n. The interface between the electrolyte layer and the PEL is depicted by the grid lines i = m1, m2 
and j = n1, n2 in z and y directions respectively.

Figure 2. (a) Computational domain. Figure shows the schematic of the computational domain. The 
dimensions 2W and 2H are the width and height of the channel respectively. The center of the coordinate system 
is located at the center of the channel i.e., at =z y( , ) (0, 0). The grid lines in z and y direction are denoted by 
i(0, m) and j(0, n) respectively. (b) Grid dependence test. Plot shows the variation in the velocity profiles with a 
change in the grid size. By observation, it can be concluded that the finer grid of the size 200 × 200 can be 
considered as the accurate one for the present numerical framework.
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Solution procedure. We first calculate the induced potential ψ in both the electrolyte layer and polyelectrolyte 
layer using central difference approach. The discretized equations for the potential distribution [equations (12) 
and (13)] read as:

For electrolyte layer
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In above equations, Δy and Δz are the height and width of the each grid respectively. The superscript t of the ψi,j 
represents the present iteration level in the numerical calculation. Using these equations, we calculate the poten-
tial distribution across the channel cross section, which are then employed to calculate the velocity distribution 
of the fluid. As such, we use following set of discretized equations while performing the calculations mentioned 
above:For electrolyte layer
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1 takes care of the non-linearity of the system, stemming from the rheology of the 
power-law model used in describing the constitutive behavior of the non-Newtonian fluid in this analysis. The 
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It is important to mention here that the term gi,j in the above equations is calculated at previous iteration level to 
relieve the non-linearity of the system. However, for the conciseness in the presentation, we have not included the 
discretization of the function gi,j, since the calculation of gi,j in the system changes with respect to boundary (for-
ward difference or backward difference scheme) and the main domain (central difference scheme). It is important 
to mention here that, in this analysis, we have used Root Mean Square method to calculate the error in the cal-
culation, while the least value of RMS error allowed in the calculation of potential and velocity distributions are 
10−8 and 10−12 respectively.

Grid dependence test. In this study, we have considered finer grids to capture the variation in the electrostatics 
and the flow dynamics in the PEL region accurately. In Fig. 2(b), we show the effect of grid sizes on the results 
obtained from the present analysis. It is observed from Fig. 2(b) that, a change in fluid velocity becomes negligible 
as the grid size (m × n) change from 200 × 200 to 300 × 300. Accordingly, we have considered (m × n) = 200 × 200 
for the present numerical calculations. Also, we would like to add here that the results obtained from the present 
numerical framework using (m × n) = 200 × 200 grid match well with the reported analytical as well as experi-
mental results in the literature, depicted in Fig. 3(a–c). As such, these validation results further support that the 
results obtained from the present modeling framework are independent of grid sizes.

Model Validation. We here consider dual benchmarking strategy. First, we validate the present numerical 
method with the results reported by Matin and Ohshima11. We show, in Fig. 3(a,b), the variation of flow velocity 
with dimensionless pressure gradient Γ = 0.0 and Γ = −0.1 respectively, obtained for different values of α and d 
as mentioned in the figures. While validating our model with the results of Matin and Ohshima11, the width (W) 
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of the channel is considered to be much higher than its height (H). Note that the values of α and d considered in 
this study are in compliance with those as chosen by Matin and Ohshima11.

The dimensionless parameters taken for this validation are: n = 1, κp = 2.0, κ = 4.0. The results obtained from 
the present theoretical analysis show a good match with the reported results of Matin and Ohshima11. Second, we 
also take an effort, in Fig. 3(c), to validate the present theoretical analysis with the experimental results reported 
by Hsieh and Yang50 for two different values of axial electric field Ex = 15 kV/m and Ex = 10 kV/m. While validating 
our analysis with experimental results reported by Hsieh and Yang50, we shifted the PEL-electrolyte interface to the 
walls of the channel by taking PEL thickness d = 0.01 (equivalent to 1 nm), keeping other parameters same as that 
of considered by Hsieh and Yang50 and given as: κ = . −1 06 nm 1, κ = . −0 883 nmp

1, ε = . × − −644 47 10 Fm2 1, 
η = . × .−803 4 10 Pa sec6 , h = 100 μm, n = 1, k = 2 × 10−9 m2 (permeability of the PEL). The plots are drawn at 
z = 0. We find from Fig. 3(c) a fairly accurate match between the present theoretical and experimental results.

Results and Discussions
Imposing the boundary conditions mentioned in equations (16) and (17), we solve the governing transport equa-
tions [equation (12–15)] for the potential and velocity distribution using our in-house finite difference code. We 
discuss several results obtained from this analysis in the forthcoming sections systematically. Unless specified 
otherwise, referring to the typical values as report in the literature11, we consider the following set of parameters 
as: κ = 20, κp = 10, α = 2.5, Γ = −0.5, d = 0.2 for this analysis.

Potential and velocity distribution. To understand the variant behavior of the flow dynamics inside the 
soft narrow fluidic channel, the relative strength of the volumetric body forces is one of the important point to 
be looked at critically. In soft narrow fluidic channel, an inclusion of PEL layer on the walls of the channel and 
different volumetric body forces fetch a fascinating flow physics. In order to comprehend the variance in the 
electroosmotic body force in the soft narrow fluidic channels for different PEL parameters viz., induced drag 
parameter (α), PEL thickness (d) and the ratio of Debye-Huckel parameter (κ/κp), a variation in the potential dis-
tribution across the channel cross section needs to be focused at once, albeit it was reported by many researchers 
earlier23,26. Taking this aspect into consideration, first we report, in Fig. 4, the variation in the potential distribu-
tion in the channel. As such, the variation of potential distribution delineated in Fig. 4 will be required to support 
the non-intuitive results described in the subsequent sections.

In Fig. 4(a,b), we show the effect of PEL thickness (d) and Debye-Huckel ratio (κ/κp) respectively on the 
potential distribution. We consider different values of PEL thickness (d) as 0.1, 0.2 and 0.3 in Fig. 4(a), while 
in Fig. 4(b), we take three different values of ratio of Debye-Huckel parameter (κ/κp) as 1.2, 1.6 and 2. Having 
a closer look at Fig. 4, we observe that the potential in the channel gets enhanced with the increasing value of d 
from 0.1 to 0.3 as well as with the decreasing magnitude of κ/κp from 2 to 1.2. In an effort to figure out the physi-
cal explanation behind this variation, we invoke to the variation of the charge distribution in the PEL. A variation 
in the softness of the narrow fluidic channel is mainly attributed to the charge distribution in the PEL. With an 
increment in the PEL thickness (or equivalently with a reduction in the ratio of Debye-Huckel parameter), the 
charge density in the PEL increases due to a relatively stronger interaction of the PEL ions with the ions of the 
electrolyte layer. Such increment in the charge concentration in the PEL leads to an enhancement in the induced 
potential in the PEL and that too in the electrolyte layer according to Poisson-Boltzmann potential distribu-
tion2,32. This phenomenon eventually gives rise to an enrichment in the potential as observed in Fig. 4(a,b) with 

Figure 3. Plots showing the validation of present numerical calculation with the results reported by Matin and 
Ohshima11 and Hsieh and Yang50 respectively. Theoretical validation: A comparison of the velocity distribution 
across the channel cross section of the soft nanochannel obtained from present theoretical analysis vis-à-vis 
the reported results by the Matin and Ohshima11 is presented: for (a) Γ = 0 and (b) Γ = −0.1. Experimental 
validation: In Fig. (c), the velocity distributions obtained from the present numerical calculations are compared 
with the velocity profiles reported by Hsieh and Yang50 through experimental investigations. For validation 
results depicted in Fig. (c), we consider the value of PEL thickness d to be equal to 0.01 in order to mimic the 
flow physics of a rigid nanochannel, since Hsieh and Yang50 conducted experiments in a rigid channel. In both 
the cases, a fairly accurate match between the results of the present numerical modeling framework and the 
published results is witnessed.
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a variation in the PEL thickness (d) from 0.1 to 0.3 and ratio of Debye-Huckel parameter (κ/κp) from 2.0 to 1.2. 
Taking this variation of the potential distribution (delineated in Fig. 4) into account, we next move to discuss the 
variation of velocity distribution in the channel as depicted in Fig. 5(a–c).

In Fig. 5(a–c), we show the variation in velocity distribution in the channel for three different parameters viz., 
induced drag parameter (α), dimensionless PEL thickness (d) and the ratio of Debye-Huckel parameter (κ/κp). 
For all the variations depicted in Fig. 5(a–c), we consider two different power-law indices n = 0.8 and n = 1.240. 
In Fig. 5(a–c), we observe a plug like profile of a flow velocity in the channel for all values of α, d and κ/κp con-
sidered. In fact, this observation holds true for both the shear-thinning (n = 0.8) and shear-thickening (n = 1.2) 
fluids. The parameters governing the characteristics of PEL affect the velocity distribution and its magnitude by 
different aspects as clearly seen in Fig. 5(a–c). The frictional drag in the PEL impacts the underlying transport fol-
lowing the same nature as the Darcy friction drag does on the underlying transport through a porous media. An 
increment in the polymer grafting density resulting from an increasing value of drag parameter (α) enhances the 
Darcy drag, which in effect reduces the velocities in the channel for both values of power-law index considered in 
Fig. 5(a). The associated wall shear stress for a relatively higher value of drag parameter α(=5) is also less for all 
the values of power law index considered (n = 0.7 to 1.5) as can be seen in Fig. 6(a). As such, the lesser magnitude 
of wall shear stress for α = 5 as seen in Fig. 6(a) conforms to the corresponding velocity magnitude in the chan-
nel in Fig. 5(a). Also, we observe from Fig. 5(a) that the velocity for the shear-thinning fluid (n = 0.8) is higher 
than that of the shear-thickening fluid (n = 1.2) for α = 0.1, while for α = 5, a reverse scenario of higher velocity 
attained by the shear-thickening fluid (n = 1.2) is observed. We attribute this observation to the effect of viscous 
drag on the underlying flow dynamics. Since the apparent viscosity of class of shear-thinning fluids (n < 1) is less, 
the viscous resistance offered to the flow field of a shear-thinning fluid (n < 1) becomes lesser as compared to that 
of the shear-thickening fluid (n > 1) for a given strength of driving force being applied to make the flow occur. 
Consequently, a relatively lesser viscous resistance makes the flow velocity of shear-thinning fluid (n = 0.8) to be 
higher as reflected in Fig. 5(a) for α = 0.1. However, a closer look at Fig. 5(a) further reveals that, the reduction 
in the flow velocity for a higher value of α(=5) becomes relatively higher for the flow of a shear-thinning fluid 
(n = 0.8). We attribute this observation to the effect of viscous resistance, since viscous resistance experienced by 
the flow of a shear-thinning fluid (n = 0.8) is lesser than that of the shear-thickening fluid (n = 1.2).

The effect of PEL on the underlying transport can be better understood by varying the PEL thickness as delin-
eated in Fig. 5(b). As such, a change in the thickness of PEL (thickness of the soft layer) in the channel brings 
in a noticeable change on the underlying electrohydrodynamics as seen in Fig. 5(b). An increment in the PEL 
thickness augments the electrical forcing in fluid domain on account of an enhanced ionic interaction between 
PEL and electrolyte layer32. Therefore, the higher PEL thickness as realized by a higher value of d(=0.3) leads to a 
high velocity in the channel as depicted in Fig. 5(b), attributed primarily to the combined influences of increased 
potential (see Fig. 3a) and higher electrical body force rendered by a relatively higher value of the PEL thickness. 
The higher velocity in the channel leads to an increment in the wall shear stress for higher PEL thickness as con-
firmed in Fig. 6(b).

Next, we describe, in Fig. 5(c), the variation of flow velocity influenced by the ratio of Debye-Huckel parame-
ter. It should be mentioned in this context here that we keep, in this analysis, the value of κp fixed at 10, while the 
magnitude of κ is varied from 12 to 20 essentially to obtain the variation in the Debye-Huckel parameter ratio in 
the range of 1.2 to 2.032. With an increment in κ/κp from 1.2 to 2.0, the magnitude of potential distribution in the 
channel decreases as depicted in the Fig. 4(b). For a fixed value of d = 0.2, the potential in the channel is seen to be 
higher for κ/κp = 1.2, largely attributed to a comparatively higher concentration of PEL ions, leading to a rise in 

Figure 4. Plots depict the potential distribution in channel at z = 0 for (a) three different values of 
dimensionless PEL thickness as: d = 0.1, 0.2 and 0.3 and (b) for three different values of Debye-Huckel ratio 
κ/κp  =  1.2, 1.6 and 2. We also show a charge distribution for variation of PEL thickness in the inset of (a). For 
(a), we consider other parameters as: κ = 20, κp = 10, while for (b) those are: κp = 10, d = 0.2.
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the softness offered by the PEL to electrolyte32. Therefore, the velocity magnitude for κ/κp = 1.2 becomes higher 
than that of κ/κp = 2.0 as witnessed in Fig. 5(c).

We would like to discuss other important points in the context of Fig. 5(b) as follows: One may find from 
Fig. 5(b) that the fluid velocity for shear-thinning fluid is higher for particular case of d = 0.3, whereas for the 
remaining case of d = 0.1, the velocity for shear-thickening fluid (n = 1.2) is higher than that of the shear-thinning 
fluid (n = 0.8). It may be mentioned here that the case of d = 0.1 nearly mimics a rigid narrow fluidic channel due 
to very small thickness of the PEL and hence, the electrical forcing is remaining effective only near the walls of 
channel. Due to this, the electrical body force experienced by the shear-thinning fluid (n = 0.8) is higher than the 
shear-thickening fluid (n = 1.2) in the near wall region, since the apparent viscosity and so is the viscous resist-
ance to the flow field becomes lesser for the flow of a shear-thinning fluid. As such, upon experiencing a relatively 
higher magnitude of electrical body force, the velocity of the shear-thinning fluid becomes higher than that of 
shear-thickening fluid near the walls as shown in the inset of Fig. 5(b). On the other hand, because of the higher 
viscosity of the shear-thickening fluid (n = 1.2), the net momentum due to electrical forcing gets transported to a 
relatively larger lateral extent of the channel, which in turn leads to a higher velocity of the shear-thickening fluid 
(n = 1.2) in the center of the channel (for d = 0.1) as witnessed in Fig. 5(b). The higher momentum due to electrical 
forcing stemming from the EDL being formed upon ionic interactions between PEL and electrolyte layer give rise 
to a relatively higher velocity for the shear-thinning fluid (n = 0.8) in the soft narrow fluidic channel as seen in 
Fig. 5(b). We would like to discuss another important point in the context of Fig. 5(b) as follows: although the fluid 
velocity in the region closer to the walls of the channel is higher for the shear-thinning fluid (n = 0.8) for both the 
values of d considered (see inset of Fig. 5(b)), the magnitude of velocity in the bulk region is seen to be higher for 

Figure 6. Figure shows the variation in the wall shear stress at location y = −1,z = 0 with power law behavior 
for three different cases of (a) induced drag parameter α = 0.1, 2.5 and 5, (b) non-dimensional PEL thickness 
d = 0.1, 0.2 and 0.3 and (c) Debye Huckel parameter ratio κ/κp  =  1.2, 1.6 and 2 respectively. The other 
parameters considered are: for Fig. 6(a) κ = 20, κp = 10, Γ = −0.5, d = 0.2 for Fig. 6(b) κ = 20, κp = 10, α = 2.5, 
Γ = −0.5 for Fig. 6(c) κp = 10, α = 2.5, Γ = −0.5, d = 0.2.

Figure 5. Above figure depicts the variation in the velocity distribution at z  =  0 for shear-thinning (n = 0.8) 
and shear-thickening fluid (n = 1.2). We analyze the effect of (a) induced drag parameter (α), (b) non-
dimensional PEL thickness (d) and (c) Debye-Huckel parameter ratio (κ/κp) respectively on the velocity 
distribution with all other parameters considered to be same. The inset of (b) shows that near the walls of the 
channel: >= . = .u un n0 8 1 2 while near the center of channel it shows <= . = .u un n0 8 1 2 for a case of d = 0.1. We 
consider the other parameters as: for (a) κ = 20, κp = 10, Γ = −0.5, d = 0.2; for (b) κ = 20, κp = 10, α = 2.5, 
Γ = −0.5; and for (c) κp = 10, α = 2.5, Γ = −0.5, d = 0.2.
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shear-thickening (n = 1.2) fluid (almost comparable for d = 0.3) attributed largely to the rheology driven modifica-
tions in the viscous resistance as modulated by the electrical forcing. For the case of d = 0.3, since the electrical forc-
ing acting on the fluid mass originating from the EDL being formed upon interaction of PEL and electrolyte layer 
becomes relatively stronger, the higher rate of momentum transport even by the shear-thinning fluid (although vis-
cosity is less) makes the fluid velocity to be almost equal with the velocity attained by the shear-thickening (n = 1.2) 
fluid in the bulk region. On the other hand, for d = 0.1, the net electrical forcing applied on the fluid mass becomes 
relatively lesser (the ionic concentration between the PEL and electrolyte layer is less for d = 0.1) and hence, the 
rate of momentum transport by the shear-thinning fluid is not comparable with that of the shear-thickening fluid 
(momentum transport by the shear-thickening fluid is always higher on account of a higher viscosity of this class of 
fluid), leading to a lesser velocity of the shear-thinning fluid in the bulk region as seen in Fig. 5(b).

Effect of soft layer on wall shear stress. The grafting of PEL in the narrow fluidic channel alters the 
underlying flow dynamics and the rate of volumetric transport through the channel following an alteration in 
shear stress. We take an effort, in Fig. 6(a–c), to see the variation of wall shear stress versus power-law indi-
ces obtained for different values of drag parameter α(=0.1, 2.5 and 5), PEL thickness d(=0.1, 0.2 and 0.3) and 
Debye-Huckel parameter ratio κ/κp(=1.2, 1.6 and 2) respectively.

We observe that the wall shear stress in the soft narrow fluidic channel for all the parametric variations (viz. 
α κ κd, and / p) considered in Fig. 6(a–c) gets enhanced with an increment in the power law index i.e. with a 
change in fluid rheology from shear-thinning (n < 1) to the shear-thickening (n > 1) behavior. We attribute this 
variation to an increment in the apparent viscosity of the fluid, which increases with an increment in the 
non-Newtonian behavior of the fluid. As the power-law index varies from 0.7 to 1.5, the apparent viscosity of the 
fluid increases, leading to an increment in the shear stress at the wall as depicted in Fig. 6. The plots depicted in 
Fig. 6(a) reflect the effect of change in the PEL drag parameter on the variation of wall shear stress. With an incre-
ment in the drag parameter α from 0.1 to 5, the wall shear stress reduces due to the reduction in fluid velocity near 
the walls of the channel. Note that a reduction in velocity with increasing α is confirmed in Fig. 5(a). However, 
due to increasing viscosity of the non-Newtonian fluid with increasing value of power-law index (n = 0.7 to 1.5), 
the wall shear stress in the channel enhances more noticeably. Next we look at Fig. 6(b), which shows the variation 
of wall shear stress obtained for different values of = . . .d( 0 1, 0 2 and 0 3). It may be mentioned here that with the 
increasing value of PEL thickness (d) from 0.1 to 0.3, the softness of the channel increases, which in effect leads to 
a rise in the fluid velocity as confirmed in Fig. 5(b). Such enhancement in the fluid velocity with a higher value of 
d as witnessed in Fig. 5(b) together with the stronger EDL effect leads to a higher velocity gradient in the channel 
and resulting in a higher wall shear stress as confirmed in Fig. 6(b). It is worth mentioning here that the wall shear 
stress for higher PEL thickness (d = 0.3) grows exponentially with power-law index as clearly seen in Fig. 6(b). We 
further attribute this observation to a relatively higher apparent viscosity of the class of shear-thickening fluids 
(n > 1) than the shear-thinning fluids (n < 1).

Further, an inversion in the shear stress profiles is seen in the variation obtained for three different values of 
κ/κp(=1.2, 1.6 and 2.0), while varying the power law index from 0.7 to 1.5 as delineated in Fig. 6(c). A closer look 
at Fig. 6(c) discloses that the inversion occurs at n = 1(Newtonian fluid). As mentioned before, for κ/κp = 1.2, due 
to a comparatively higher surface potential (see Fig. 4(b)) the velocity of shear-thinning fluid (n < 1) becomes 
higher than the shear-thickening fluid (n > 1), which results in a higher velocity gradient near the walls for the 
underlying transport of shear-thinning fluid. This higher velocity gradient gives rise to a higher wall shear stress 
for the flow of shear-thinning fluid for κ/κp = 1.2 as one may verify from Fig. 6(c). On the contrary, for the case 
of κ/κp = 2, a reverse scenario of increasing wall stress for shear-thickening fluid (n > 1) is witnessed in Fig. 6(c) 
as well. In the region of n > 1, due to comparatively low ionic concentration in PEL and low surface potential, the 
velocity of the shear-thickening fluid is higher than the shear-thinning fluid for the case of κ/κp = 2, thus results 
in a higher wall shear stress for the shear-thinning fluid as confirmed in Fig. 6(c).

Volumetric flow rate. An intend of different types of annexations in the nanofluidic devices/systems ulti-
mately targets to achieve an enhancement in the flow rate as well as its control through these systems/devices, 
essentially to meet the demand of the micro-total-analysis-systems (μTAS) or micro-electro-mechanical-systems 
(MEMS). Accordingly, we here present the variation of flow rate in the soft narrow fluidic channel for different 
values of parameters, which govern the hydrodynamics through PEL such as dimensionless PEL thickness (d) and 
drag parameter (α). Below, we write the explicit expression of the dimensionless volumetric flow rate as:

∫ ∫=
− −

Q u z y dzdy( , ) (27)1

1

1

1

Here, we obtain the variations in the volumetric flow rate in the channel by varying the Debye-Huckel parameter 
of electrolyte layer (κ) from 12 to 20 and power-law index (n) from 0.7 to 1.5 (shear-thinning to shear-thickening 
nature). As mentioned before, a fixed value of Debye-Huckel parameter for PEL (κp = 10) is considered to obtain 
the desired variations, which in essence makes Debye-Huckel parameter ratio (κ/κp) to vary from 1.2 to 2 in this 
analysis. Below we discuss the variations of flow rate with PEL thickness d and drag parameter α systematically.

Effect of PEL thickness. Figure 7(a–c) represent the surface plot (2D) of the variation of volumetric flow rate 
versus the Debye-Huckel parameter of electrolyte layer (κ) and power law index (n), obtained for three dimen-
sionless values of PEL thickness = . . .d 0 1, 0 2 and 0 3 respectively. It is worth mentioning here that an increment 
in the PEL thickness enhances the charge concentration and so as the potential (see Fig. 4(a)) in both the PEL as 
well as electrolyte layer. Since an increment in the charge density leads to an augmentation in the electroosmotic 
body force in both PEL and electrolyte layer, the higher flow velocity in the soft narrow fluidic channels is 
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observed for higher PEL thickness as confirmed in Fig. 5(b). Accordingly, an enhancement in the flow rate 
through the channel with an increment in PEL thickness from d = 0.1 to 0.3 as observed in Fig. 7(a–c), signifies 
the effect of the magnitude of electrical forcing, which increases with an increment in the PEL thickness, on the 
underlying transport while all other parameters remain unaltered. In fact, with an increment in d, the cumulative 
effect of the electrical body force originating from the EDL being formed upon ionic interaction between PEL and 
electrolyte layer, enhances the flow velocity for both the shear-thinning and shear-thickening fluids, leading to an 
enhancement in flow rate through the channel as apparent from Fig. 7(a–c). In Fig. 7(a), it is observed that, for 
lower values of κ(=12), the flow rate in the channel is higher for shear-thinning fluid (n < 1) than that of 
shear-thickening fluid (n > 1), whereas for higher values of κ(=20), the opposite scenario is observed. This obser-
vation can be attributed to the conglomeration of the two phenomena, one is variation of the electrical forcing 
with κ and second one is the softness induced modification of the rheology of the non-Newtonian fluid. Since the 
viscous resistance applied to shear-thinning fluid (n < 1) is less as compared to the shear-thickening fluid (n > 1), 
the higher magnitude of electrical body force for lower value of κ(=12) enhances the transport of shear-thinning 
fluid (n < 1) in the channel (as compared to the shear-thickening (n > 1) fluid), leading to higher flow rate of 
shear-thinning fluid (n < 1) as observed in Fig. 7(a). However, for higher values of κ(=20) in case of d = 0.1, the 
smaller magnitude of electrical body force implies a case of rigid nanochannel as elaborated before in the context 
of Fig. 5(b). For thinner PEL (d = 0.1) and for higher values of κ(=20), the shear-thickening fluid (n > 1) shows 
higher velocity than that the shear-thinning fluid (n < 1) due to higher transverse momentum exchange phenom-
ena, approximately mimicking a rigid nanochannel case for d = 0.1 (see Fig. 5(b)). However, in Fig. 7(b,c), we do 
not observe such phenomena due to higher effect of the softness, induced by the increasing values of d = 0.1−0.3.

Having a closer look at Fig. 7(b,c), which depict the flow rate variation for d = 0.2 and 0.3 respectively, one may 
find that the flow rate for the shear-thinning fluid becomes higher in comparison to the shear-thickening fluid. To 
make a comment on this observation, it may be mentioned here that, with an increment in the PEL thickness 
(d = 0.2,0.3), the electroosmotic body force increases due to a relatively stronger ionic interaction of PEL and 
electrolyte layer. To be precise, because of the higher electrical body force, the rate of momentum transport by the 
shear-thinning fluid makes the flow velocity of these kinds of fluids to be either comparable = .d(for 0 2) or even 
higher = .d(for 0 3) than that of the shear-thickening fluid. Thus, the higher flow velocity gained by the 
shear-thinning fluid leads to a higher flow rate in the channel for = . .d 0 2 and 0 3 as evident in Fig. 7(b,c).

Figure 7. Plots depict the effect of a change in the PEL thickness on the volumetric flow rate in the soft narrow 
fluidic channel. We vary dimensionless PEL thickness (d) from 0.1, 0.2 and 0.3 while the variation in the Debye-
Huckel parameter and power law index remains the same as mentioned above. The other parameters considered 
are: κp = 10, α = 2.5, Γ = −0.5.
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Variation in drag parameter. In Fig. 8(a–c), we delineate the effect of drag parameter (α) on the variation of 
volumetric flow rate in the channel. Note that we have considered three different values of α = . .( 0 1, 2 5 and 5) 
for Fig. 8(a–c) respectively, while other parameters considered for plotting the figures are: κp = 10, Γ = −0.5, 
d = 0.2. The chosen values of α = . .( 0 1, 2 5 and 5) considered in obtaining the present figures mimic the situation 
of an increment in the induced drag due to increased polymer density or grafting density of PEL32.

The variation of the drag in the PEL is essentially a manifestation of either the change in the porosity or the 
permeability of the porous structure inside the PEL matrix for which the dimensional drag parameter μc is written 
as η/K51, where η is viscosity of fluid and K is the permeability of the porous structure due to polymer density in 
the PEL. So with an increment in polymer or grafting density, the permeability of PEL decreases, which leads to a 
reduction in the fluid velocity in the PEL. In fact, a reduction in the flow velocity in PEL, accounting the exchange 
of transverse momentum phenomenon, further leads to a reduction of velocity in the electrolyte domain as well. 
As a consequence of this reduction in flow velocity in both the layers, we observe a reduction in the flow rate 
with an increment in the drag parameter from α = 0.1 to 5 as delineated in the Fig. 8(a–c). It is observed from 
Fig. 8(a) that the flow rate for small value of drag parameter α = 0.1 increases with lowering the Debye-Huckel 
parameter of electrolyte layer κ from 20 to 12 (or equivalently with a reduction in κ/κp from 2 to 1.2), while a 
change in power-law index from 1.5 to 0.7 leads to an increment in flow rate as well. However, a closer look at 
Fig. 8(a–c) reveals that, an increment in the drag parameter from α = 0.1 to 5 reduces the flow rate in the channel 
for shear-thinning fluid (n < 1) appreciably, whereas the variation of flow rate of the shear-thickening fluid (n > 1) 
with a change in α in the range considered for plotting the present figures is not significant. For the flow through a 
porous channel, the shear-thinning fluid is more susceptible to the change in the drag parameter (either increase 
or decrease) than the shear-thickening fluid, attributed primarily to the relatively lesser apparent viscosity inher-
ent with the class of shear-thinning fluid (n < 1).

Softness induced enhancement in net throughput. We here discuss about the flow rate enhancement 
in the soft nanochannel compared to the rigid nanochannel. In doing so, we show in Fig. 9(a,b), the variation 
of the flow rate ratio (QSC/QRC), defined as the ratio of flow rate in the soft nanochannel (QSC) to the flow rate in 
rigid nanochannel (QRC), with a change in power-law index from 0.7 to 1.5, obtained for different values of d and 
α respectively. It may be mentioned in this context here that for plotting the variation of flow rate in rigid nano-
channel (QRC) in Fig. 9(a,b), we have considered the thickness of the PEL (d) to be 0.01, essentially to mimic the 
underlying transport through a rigid nanochannel.

Figure 8. Plots depict the variation in the volumetric flow rate vs the power-law index (n) from 0.7 to 1.5 and 
electrolyte Debye-Huckel parameter (κ) from 12 to 20. The variation is carried out for three different cases 
of induced drag parameter (α) ranging from 0.1, 2.5 and 5. The other parameters considered are: κp = 10, 
Γ = −0.5, d = 0.2.
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It is observed from Fig. 9(a,b) that the ratio QSC/QRC is always higher than unity for all the values of d and 
α considered, except for the case of d = 0.1 in Fig. 9(a). As such, this observation holds true for the range of n 
undertaken in the plotting the present figures. Grafting of polyelectrolyte layer at the walls of soft nanochannel 
makes the induced potential (ψ) to be higher than that of the rigid nanochannel for all values of power-law index, 
leading to a comparatively stronger electroosmotic body force being applied on the fluid mass in the EDL. In 
such cases, the soft nanochannel can be called as the flow enhancer, except for the case of d = 0.1. It should be 
noted here that the magnitude of electrical forcing in such cases (d ≤ 0.1) is very less as the PEL thickness is very 
small as compared to the other cases shown in Fig. 9(a,b). Furthermore, for d ≤ 0.1, the friction drag provided 
by the PEL to the fluid leads to a reduction in flow velocity for all classes of fluids (albeit reduction is higher for 
shear-thinning fluid) in Fig. 7. Thus, lesser electroosmotic force together with the frictional drag reduces the flow 
velocity, leading to a reduction in net throughput as compared to the rigid channel as seen in Fig. 9(a). Hence, 
except d = 0.1, we observe an enhancement in net throughput for all the values of d and α considered in this anal-
ysis, calling itself a flow enhancer region.

In Fig. 9(a), we observe a decreasing trend of QSC/QRC with a change in the power-law index from 0.7 to 1.5, 
for d = 0.2 and d = 0.3, attributed primarily to the effect of the change in the fluid rheology from shear-thinning 
(n < 1) to the shear-thickening behavior of the fluid (n > 1). Since, the viscous resistance for the shear-thinning 
fluid is lesser than that of shear-thickening fluid, the flow rate obtained for shear-thinning fluid is higher than 
that of shear-thickening fluid, as witnessed in Fig. 7(a–c). In fact, the observations reflected in Fig. 7(a–c) get 
further verified in Fig. 9(a), where we find a relatively higher flow rate enhancement of shear-thinning fluid than 
that of the shear-thickening fluid. Such region of the enhancement in the flow rate for d ≥ 0.1 can be character-
ized as the flow enhancer. However, the region of d ≤ 0.1 can be called as the flow reducer since the flow of the 
non-Newtonian fluid (for all values of n = 0.7–1.5) is less than that of rigid nanochannel case (QSC < QRC). Apart 
from this, in Fig. 9(a), we observe that QSC/QRC increases with an increment in the PEL thickness from 0.1 to 
0.3. This is mainly attributed to an increment in the EDL thickness and induced potential (see Fig. 4(a)) with an 
increment in the PEL thickness from 0.1 to 0.3. An increment in d (from 0.1 to 0.3) increases the fluid velocity 
(see Fig. 5(b)) and culminates in an enhancement in the flow rate in the soft nanochannel as observed in Fig. 9(a). 
Next, in Fig. 9(b), we observe an increasing nature in the flow rate enhancement with a decrement in the drag 
parameter α from 5 to 0.1 even for the all the values of n considered, mainly attributed to the reduction in the fric-
tion drag offered by the PEL to the fluid with a decrement in α. Since a decrement in α weakens the friction drag 
applied by the PEL on the fluid, the fluid velocity as well as the flow rate in the channel enhances with a decrement 
in α as observed in Fig. 9(b). However, in Fig. 9(b), we observe two different trends of the variation of QSC/QRC 
with a change in power-law index n from 0.7 to 1.5 for α = 5. The flow rate ratio QSC/QRC initially increases with 
an increment in n from 0.7 to 1, which is then followed by a decreasing trend as n increases further from 1.0 to 1.5. 
We here take an effort to figure out the physics behind this observation as follows: it may be mentioned here that 
the higher friction drag on the flow field originating from the higher value of α(=5) leads to a relatively higher 
reduction in flow velocity for shear-thinning fluids (n < 1), since the apparent viscosity is lesser for this class 
of fluids. As such, the relative reduction in flow velocity and so is the flow rate becomes relatively lesser for the 
underlying transport of shear-thinning fluids through a soft channel, attributed to the stronger electrical forces 

Figure 9. Plots show the variation of the flow rate ratio QSC/QRC versus power-law index n (varies from 0.7 to 
1.5). QSC and QRC are the volumetric flow rates in the soft and rigid nanochannel respectively. (a) Plots depict the 
variations of QSC/QRC for different values of PEL thickness d = 0.1, 0.2 and 0.3 for α = 0.1 and (b) the variations 
in QSC/QRC for different values of drag parameter α = 0.1, 2.5 and 5, obtained for d = 0.2 are depicted. The other 
parameters chosen for plotting above figures are: κ = 12, κp = 10 and Γ = −0.5. A continual decreasing trend of 
QSC/QRC vs. n is seen for all the values of PEL thickness (d) considered. For a relatively higher value of α(=5), 
the flow rate ratio (QSC/QRC) shows an increasing trend in the shear-thinning regime, while a decreasing trend is 
witnessed in the shear-thickening regime.
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stemming from the ionic interaction between electrolyte layer and PEL. Notably, a relatively lesser reduction in 
flow rate through soft nanochannel (QSC) than the rigid channel (QRC) leads to an increasing trend of QSC/QRC in 
the shear-thinning regime (n < 1) as witnessed in Fig. 9(b). On the other hand, we observe a decreasing trend of 
QSC/QRC in the shear-thickening regime with increasing value of n i.e., with increasing non-Newtonian behavior 
of the fluid, to be precise, with the increasing value of apparent viscosity of the fluid. The decrement in the flow 
velocity and its effect on the flow rate through the soft nanochannel is relatively higher than the rigid nanochan-
nel, leading to a decreasing trend of QSC/QRC in the shear-thickening regime that too observed in Fig. 9(b). We 
attribute this observation to the effect of rheology modulated enhancement in viscous drag on the flow dynamics. 
We would like to convey the following message in the context of the variation of flow rate ratio (QSC/QRC) vs. n, 
obtained for a relatively higher value drag parameter α(=5) as follows: in the shear-thinning regime (n < 1), the 
electroosmotic body force originating from the EDL phenomenon due to a relatively stronger ionic interaction 
between PEL and electrolyte layer takes a dominating role on the underlying transport, while the rheology mod-
ulated viscous resistance governs the flow dynamics in the shear-thickening regime.

Concluding Remarks
In summary, we discuss the electrohydrodynamics of non-Newtonian fluids in a polyelectrolyte grafted soft 
narrow fluidic channel with the consideration of electrical double layer originating from the ionic interactions 
between PEL and electrolyte layer. We consider the Ostwald-de-Waele power-law model for describing the 
non-Newtonian fluid rheology in this analysis. The results unveil that the variation in the charge concentration in 
PEL as well as in the electrolyte layer, thickness of PEL and polymeric density affect the electroosmotic body force 
being applied on the fluid mass in the channel, which upon interacting with the viscous force as modulated by the 
fluid rheology, alters the velocity distribution and flow rate variation in the channel non-intuitively. We investigate 
through this analysis that, a higher PEL thickness, lesser Darcy drag and adequately low electrolyte concentration 
leads to a high flow rate in the channel for shear-thinning fluids, while the flow rate of shear-thickening fluids gets 
reduced for lower PEL thickness, higher Darcy drag and higher electrolyte concentration. Also, we show a relative 
enhancement in the net throughput through the soft narrow fluidic channel as compared to that of the rigid chan-
nel for different parameters and identify two distinct regimes. It is shown that a decrement in PEL thickness and 
increment in drag parameter leads to a reduction over the relative increment in the net throughput through the 
channel. These observations are suggestive off having polyelectrolyte layer with low grafting density and higher 
charge concentration of PEL essentially for the enhancement of net throughput in the channel. A continual dec-
rement in the relative enhancement of the net throughput or volumetric flow rate through the soft nanochannel 
with increasing n (i.e. with increasing non-Newtonian behavior of fluid) for all d and α signifies the pronounced 
effect of the viscous resistance to the flow field, attributed primarily to the increment in apparent viscosity with n.
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