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A Simple Power Law Governs 
Many Sensory Amplifications and 
Multisensory Enhancements
Vincent A. Billock1 & Paul R. Havig2

When one sensory response occurs in the presence of a different sensory stimulation, the sensory 
response is often amplified. The variety of sensory enhancement data tends to obscure the underlying 
rules, but it has long been clear that weak signals are usually amplified more than strong ones (the 
Principle of Inverse Effectiveness). Here we show that for many kinds of sensory amplification, the 
underlying law is simple and elegant: the amplified response is a power law of the unamplified response, 
with a compressive exponent that amplifies weak signals more than strong. For both psychophysics 
and cortical electrophysiology, for both humans and animals, and for both sensory integration and 
enhancement within a sense, gated power law amplification (amplification of one sense triggered by 
the presence of a different sensory signal) is often sufficient to explain sensory enhancement.

Sensory enhancement or amplification is common when one sensory activity occurs in the presence of 
another1–24. For example, lights can appear brighter when a sound comes from the same direction in space4. Often 
that amplification seems to be intensity-dependent, with weak stimuli being amplified more than stronger stimuli. 
Moreover, neural systems responding weakly to a single stimulus often have more enhanced multisensory neu-
ral responses than neurons with strong unisensory responses. In sensory integration this is called the Principle 
of Inverse Effectiveness3, but this can also be true for amplification that occurs within a sense. Amplification is 
studied in many ways and presented in many formats, but has thus far evaded lawful quantification. Here we find 
a curious near-universal invariance: the amplified response is a power law function of the unamplified response, 
with a compressive exponent that explains much of intensity-dependent enhancement. The only exception we 
have found is for bimodal cells, especially in superior colliculus. For both psychophysics and cortical spike rate 
data, power law exponents are clustered around 0.85. This is true for vision amplified by auditory modulation 
and for audition amplified by somatosensory information. This is also true for amplification seen within a sense 
(in this case for human color vision). Similar power laws govern other electrophysiological measures. The power 
laws’ r2 values are generally extremely high, suggesting that gated (triggered) amplification, not nonlinear combi-
nation, is often sufficient to explain sensory enhancement.

Results
Data showing that sensory signals are often enhanced or amplified in the presence of another sensory activity 
are shown in Fig. 1. The circumstances and nature of the amplification are diverse, but weakly effective stimuli 
generally receive relatively more amplification – the influential Principle of Inverse Effectiveness from sensory 
integration3. The details of inverse effectiveness are a subject of some controversy in sensory integration11,18,20, but 
it is a useful rule-of-thumb and the nature of intensity-dependent amplification is a matter of importance; a more 
general and fundamental rule for amplification would be welcome. Such a rule is shown in Fig. 2, where all four 
data sets from Fig. 1 are plotted in the same framework. Here the amplified or enhanced response is plotted as a 
function of the unamplified response. All four amplification functions − despite their differences in Fig. 1 − turn 
out to be power laws of the form,

= ∗ .Enhanced Response a Unenhanced Response (1)n

Note that because both amplified and unamplified response have the same units, the fitting parameters a and 
n are unitless. This may be useful for comparing electrophysiology and psychophysics.
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Figure 1. Data in various formats from four studies of intensity (or sensitivity) dependent sensory 
amplification. Fascinatingly, all four datasets turn out to obey the same law (Eq. 1, see Fig. 2). (a) Ratings of the 
brightness of five light intensities are higher when a sound comes from the direction of the light4. This is the 
single most compelling dataset on perceptual enhancement – note how the variable gap between the enhanced 
and unenhanced functions beautifully illustrates the Principle of Inverse Effectiveness (which is not always as 
clear-cut as found here). (b) Sub-threshold multisensory neurons in cat visual cortex (area PLLS) fire for visual 
stimuli, do not fire for audio, but have higher firing rates when both stimuli are present17. (Dashed line shows 
the unamplified baseline). (c) Subject ratings for loudness of seven audio signals are higher if the subject’s 
hand is also stimulated10. (d) Colored lights at short and long wavelengths look brighter32 (dotted function) 
than would be predicted based on their luminance33 (dashed function) − a performance-based measure. This 
spectral broadening (enhancement) of chromatic brightness spectral sensitivity relative to luminance spectral 
sensitivity has been thought to be due to a neural weighted combination of hue and luminance responses, but an 
alternate explanation can be seen in Fig. 2.

Figure 2. Amplified sensory responses are power laws of unenhanced responses. The four data sets shown 
here are the same color coded data shown in Fig. 1, modeled by Eq. 1. The slope of these power laws varies but 
slightly (Table 1). Note on units: The neural data are in spikes/sec for both axes; the psychophysical data scales 
are arbitrarily set by the original experiments (see Fig. 1). The fits have no units - ‘a’ and ‘n’ are dimensionless. 
The blue data are computed by plotting chromatic brightness spectral sensitivity as a function of luminance 
spectral sensitivity, using their common wavelengths to index the data.
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Implications of all four cases following the same rule. There are four immediate implications of these 
findings. First, it is unlikely that the amplification effects stem from attention, which is also known to enhance 
sensory signal processing25. Compare (in Fig. 2) visual brightness amplification via auditory modulation (the red 
squares and line) to the firing rate increase in cat visual neurons (black triangles and line) when an auditory signal 
is present. Because the neural data was collected in anesthetized cats17, attention (in the classic sense) is unlikely 
to be involved. (We acknowledge the existence of preconscious elements to the range of phenomena involved in 
attention, but doubt their applicability here). By extension, the similarity of the psychophysical brightness ampli-
fication function to the neural data suggests that whatever neural mechanism amplifies the neural response in 
unconscious cats would suffice to account for the human psychophysical data as well.

Second, the quality of the fits in Fig. 2 are superb, with r2 values that range from 0.989 to 0.999 (Table 1). Since 
almost all of the variance is accounted for by a function of a single variable, the enhancements seen here are con-
sistent with simple gated amplifications (a) of the unenhanced responses. The role of the modulating stimulus 
is to trigger the amplification of the modulated stimulus. It has long been known that there are essentially two 
classes of multisensory neurons: true multimodal neurons (bimodal and trimodal) and subthreshold multimodal 
neurons (also known as modulated unisensory neurons). True multimodal neurons, prominent in midbrain 
(superior colliculus/optic tectum) but also found in cortex, produce amplifications based on two or more inputs, 
and can produce remarkable amplifications (as much as 1200%3). The subthreshold multimodal neurons fire 
to only one kind of sensory stimulus, but are modulated by another, are studied mainly in cortex, and produce 
more modest amplifications, roughly a factor of two for weak stimuli in many studies15,17,19. It has been argued 
(based on refs6,7,17) that the modest amplifications produced by subthreshold neurons are more in keeping with 
amplifications seen in psychophysics than the remarkable amplifications produced by true multimodal neurons24. 
The data in Fig. 2 are consistent with that argument. The neural data shown in black in Figs 1 and 2 are from sub-
threshold multisensory neurons and the form of the subthreshold neurons’ amplification function is quite similar 
to the most relevant psychophysical data (red).

Third, a psychophysical measure − chromatic brightness spectral sensitivity − can be predicted from lumi-
nance spectral sensitivity; chromatic brightness is well described by a simple power law of luminance. Moreover 
this amplification function that describes chromatic brightness spectral sensitivity as a simple amplification of 
luminance spectral sensitivity (Fig. 2, blue data) follows the same rule as sensory integration data, suggesting 

Conditions/[Reference #] a n r2

Psychophysics (rating scales & matching)

Visual brightness modulated by audio stimulationa 4 2.407 0.818 0.999

Audio loudness modulated by tactile stimulationa 10 1.300 0.873 0.998

Brightness of luminance modulated by hue (2°)a,c 32 1.198 0.864 0.993

Brightness of luminance modulated by hue (10°)c 32 1.282 0.833 0.993

Average slope: psychophysics 0.847

Subthreshold visual cortical neurons: cat PLLS (spikes/sec)d

vision modulated by audio (55 db)a 17 1.939 0.868 0.989

vision modulated by audio (66 db)15 1.605 0.913 0.934

vision modulated by audio (75 db)15 2.175 0.837 0.911

vision modulated by audio (81 db)15 2.004 0.863 0.925

vision modulated by audio (55 db)9 2.212 0.822 0.986

Average slope: spiking subthreshold neurons 0.861

Cat bimodal neurons: (spikes/sec)b,d 23

Superior colliculus: best sense modulated by otherb 23 4.524 0.654 0.628

Cortex – AES: best sense modulated by otherb 23 2.111 0.843 0.830

Cortex – AES: best sense modulated by other19 3.427 0.687 0.864

Cortex – PLLS: vision modulated by audio9 2.114 0.831 0.911

Ave slope: cortical bimodal cells 0.754

Macaque auditory cortex, modulated by visiond,e 16 2.536 0.773 0.690

Macaque auditory cortical area A1 (audio modulated by tactile electric stimulation)12

Supergranular layer, Current Source Densityb 1.676 0.590 0.992

Granular layer, Current Source Density 1.126 0.669 0.989

Infragranular layer, Current Source Density 1.040 0.797 0.973

Supergranular layer, Multi Unit Activityb 1.352 0.646 0.980

Granular layer, Multi Unit Activity 1.951 0.597 0.981

Infragranular layer, Multi Unit Activity 1.034 0.786 0.998

Table 1. Power laws (Eq. 1) for every analyzed sensory, cognitive and neural data set. aAlso plotted in Figs 1 
and 2. bAlso plotted in Fig. 3. cLuminance is energy-based physiologically-motivated spectral sensitivity33 from 
www.cvrl.org and brightness is from Table 1 of [ref.32]. Both datasets measured for 2° and 10° visual fields. dAll 
spike rate data is converted from spikes/trial to spikes/second. eRef.16 did not characterize their neurons as 
subthreshold or bimodal; based on a few highly superadditive cells, there is likely a mixture of both types.

http://www.cvrl.org
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similar (perhaps generic) amplification mechanisms can mediate both multisensory integration and sub-modal 
interactions (in this case hue-luminance interactions) within a single sense like color vision. This surprising result 
requires some background to be properly appreciated. Luminance spectral sensitivity and chromatic brightness 
spectral sensitivity were originally alternative ways of probing the spectral effectiveness of different color lights. 
Luminance was measured by using criteria that detected spatial or temporal discontinuities under conditions 
that discount color vision; chromatic brightness was measured by equating apparent brightness of different 
wavelength stimuli26. Luminance turned out to predict human performance (e.g., acuity) better, while chromatic 
brightness was the better predictor of color appearance. Chromatic brightness as a function of wavelength is 
broader than luminance; blue and red lights are brighter than they are luminous26. Luminance spectral sensitivity 
is associated with the spectral sensitivity of the achromatic channel (and can be measured physiologically), but 
there is no known color vision mechanism that corresponds to chromatic brightness. Because hue-opponent 
mechanisms like the red-green and blue-yellow channels have strong responses in the long- and short-wavelength 
(reddish and bluish) ends of the spectrum where luminance is weak, it has long been thought that chromatic 
brightness might be a weighted combination of hue and luminance responses and there is evidence that hue and 
luminance signals combine synergistically (via probability summation) at threshold. In particular, vector models 
of chromatic brightness have been popular (see refs26,27 for review). In these models chromatic brightness is the 
vector sum of weighted contributions of luminance and the absolute magnitude of the hue opponent (red-green 
and blue-yellow) channels. However, the fit of the power law amplification function in Fig. 2 contradicts theories 
that suprathreshold chromatic brightness is a combination of luminance and hue signals. Chromatic brightness 
is almost completely accounted for as a simple power law amplification of luminance (r2 = 0.993) leaving little 
variance for the hue channels to account for. The fit suggests that chromatic brightness is a simple amplification 
of luminance; likely this amplification is triggered by the presence of the hue signal, just as the visual neurons in 
Fig. 1b fire harder for vision stimuli when auditory stimuli are present.

Fourth, the mildly compressive exponent n shown by all four data sets results in stronger amplification for 
weak (or weakly effective) signals than for strong ones. This is broadly consistent with the Principle of Inverse 
Effectiveness, but does not clarify some details like the extra enhancement of some weak − but not weakest 
− stimuli found in some studies11,13,17,18,20. Some examples of this can be seen in in Fig. 1b and in Fig. 3, which 
features data from cat extrastriate visual cortex. These are modulated unisensory neurons that respond to visual 
stimuli, do not respond to auditory stimuli alone but show enhanced spike rates when both visual and auditory 
stimuli are present. If we replot the data in Fig. 3a as percent enhancement in Fig. 3b, there is much neural vari-
ability, but it can be clearly seen that most of the strongest enhancements on a percent basis are for relatively low 
(2–6 spikes/sec) unenhanced spike rate responses, consistent with the Principle of Inverse Effectiveness.

Establishing the domain of the power law. It is worth seeking excursions from the amplification 
function power law behaviors, both to establish the domain of Eq. 1 and because exceptions can be instructive. 
Figure 4 explores three cases.

Figure 4a shows power law fits to two sets of bimodal cells, one set from superior colliculus and one set from 
cortical area AES, both taken from the same study23. Since the amplified response produced by bimodal cells is 

Figure 3. Repeatability and inverse effectiveness. (a) Repeatability - power law fits to similar cells from the 
same cortical area. Shown are power law fits to five neural data sets taken from three studies, each in cat visual 
cortical area PLLS9,15,17. The three datasets from ref.15 use the same neurons for different kinds of modulation. 
All neurons are subthreshold multisensory cells (see Table 1 for parameters). The dataset from Fig. 1b is 
the solid black line here. (b) Same data plotted as percent enhancement to illustrate the Principle of Inverse 
Effectiveness. Although there is neural variability, there is a strong tendency for cells with lower firing rates to 
have more firing rate enhancement when an auditory signal is presented with the visual stimulus. The dataset 
from Fig. 1b is shown as black triangles.
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(by definition) a function of two variables, a simple power law should not produce as good a fit to bimodal cell fir-
ing rates as it does to the firing rates of subthreshold neurons, and indeed it does not, especially for superior colli-
cular (midbrain) neurons (r2 = 0.63). However, the fit is somewhat better for cortical AES bimodal cells (r2 = 0.83) 
and the resulting exponent (0.84) is within the range of the exponents found for subthreshold cells (Table 1). 
Similar results were found for other cortical bimodal cells in areas AES and PLLS (see Table 1). This is interesting 
because superior collicular bimodal and cortical subthreshold neurons are sometimes thought of as two points 
along a multisensory processing continuum22, and Meredith’s findings23 from AES (reanalyzed in Fig. 4a) argue 
that cortical bimodal neurons lie somewhere in the midst of that continuum.

Figure 4b explores electrophysiological data other than spike rates. The data shown are for current source den-
sities and multiunit activity in macaque auditory cortex12. Current source densities (CSD) and multiunit activity 
(MUA) are thought to reflect massed synaptic and axonal activity respectively12. Figure 4b shows only the data 
from one neural layer, but both fits from each of three sampled cortical layers are shown in Table 1. Although 
the exponents of the power laws vary, the power law fits are quite good and consistent with a function of a single 
variable (a gated amplification). This speaks to a hypothesis raised by Laurienti et al.7, that measures of mass 
activity in cortex will likely reflect the actions of the more cortically numerous neurons that do not produce large 
amplifications (a group that would include subthreshold neurons).

Figure 4. Power law fits to other kinds of data. (a) Bimodal cells (from cat superior colliculus (SC) and from cat 
cortical area AES23) are functions of two variables, so the single-variable fit of Eq. 1 to bimodal cell firing rates 
should be poorer than for the subthreshold neurons in Fig. 2, as indeed they are (see Table 1). (b) Power laws 
fits to two other electrophysiological measures – Multi Unit Activity and Current Source Density – have good 
r2 values but more variety in exponents than the Fig. 2 data. Units for CSD are mV/mm2; units for MUA are 
μV. Data shown are from the supergranular layer of primate auditory cortex (A1)12. See Table 1 for fits to other 
neural layers. (c) A neural model of spike rate amplification24 produces an amplification function (red dotted 
line) that is approximated by a power law (red solid line), but shows small systematic deviations at low firing 
rates. Black data points and black solid line are actual spike rate data (and power law fit) from Allman et al.17 for 
comparison (reproduced from the black data and fitted line shown in Fig. 2). The neural model (red dotted line) 
is superimposed on the neural data, not fit to it.
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Finally Fig. 4c looks at the predictions of a model of spike rate amplification in simulated synaptically-coupled 
subthreshold multisensory neurons24. The amplification function produced by the model is shown by a dotted 
red line. The amplification function is well approximated by a power law (solid red line; n = 0.83; r2 = 0.97), but a 
cursory examination shows small systematic deviations from the power law at low spike rates, suggesting a venue 
for additional modeling. Real data from the cat cortical neurons in Fig. 1b (black triangles)17 and the Eq. 1 fit to 
that data, are superimposed on the model for comparison only (e.g., the model is computed from first principles, 
instead of being fit to the data).

Discussion
In summary, sensory enhancement for psychophysical data and for all electrophysiological data (except data 
from bimodal cells) is consistent with gated (triggered) power law amplification. Nothing about the second signal 
− other than its presence as an amplification trigger − is required to predict the amplification of the enhanced 
sensory response from the unenhanced response. The power law exponent varies from slightly compressive 
(0.9) to more compressive (0.6), consistent with the amplification of weak stimuli, relative to strong ones, found 
throughout the sensory literature. If the generality of these findings hold up, this may have other consequences. 
For example, S.S. Stevens and his associates spent much effort describing power law responses for single sensory 
responses; there is a rich database here covering many sensory variables28. Figure 1a shows a nice illustration of 
this – Stein’s lab4 finds a Stevens’ law for brightness of (quiet) lights, with an exponent of 0.6. They also found 
that the Stevens’ law for enhanced data has an exponent of 0.5. The generality of the results of this paper suggest 
that estimates for Stevens’ laws for multisensory amplifying conditions (in various senses), could be obtained by 
multiplying the exponents that Stevens obtained by about 0.85 (the average of the four psychophysical exponents 
from the amplification functions shown in Table 1).

Compressive nonlinearities like those usually found in Stevens’ law are common in electrophysiology and psy-
chophysics and contribute to a larger dynamic range for sensory systems. The compressive exponents found here 
can be a second order effect arising from interactions of already compressive sensory systems. For example, in 
Fig. 4c, a binding-theory-based model of amplification employs mutual excitatory synaptic connections between 
two responding sensory systems, and has been used to model amplification in rattlesnakes and cats24. The mutual 
excitation results in amplification as each system enhances the other’s firing rates. The compression in this case 
arises partly from spike rate compression in the firing neurons and partly from a simulated synaptic depression, 
which tempers amplification at high firing rates more than low.

The similarity of the amplification functions for sensory integration and chromatic brightness (Fig. 2, Table 1) 
are intriguing for three reasons. First, it implies that the mechanisms involved may be quite generic and may be 
applicable to other psychophysical phenomena. Second, it provides a fascinating alternate explanation of the 
origins of chromatic brightness, a fundamental color percept. Third, it prompts consideration of the relationship 
between different kinds of neural information integration problems. This has a precedent in multisensory inte-
gration. For example, rattlesnake optic tectum integrates infrared information from their facial pits and visual 
information from their eyes and this is considered multisensory integration29,30, but if the rattlesnake’s infrared 
transduction had taken place in the retina, the integration of the infrared and visual spectral bands would almost 
certainly be considered an aspect of color vision.

Finally, it is surprising that so much perceptual and neural data can be accounted for as a gated amplification 
of an underlying sensory variable, because there is a rich literature on linear and nonlinear weighted cue com-
binations, and on strong- and weak-fusions of sensory information (see31 for recent reviews). The phenomena 
described here and the phenomena described in the cue combination literature seem to belong to different per-
ceptual regimes and it would be interesting to understand whether the gulf between them is fixed and sharply 
delineated, or to explore the perceptual processing regime between them.

Theoretical Methods. Data from ref.17 was obtained from the authors. Data from refs10,32,33 were taken from 
published tables. Data from refs4,9,12,15,19,23 were digitized from greatly magnified graphs using digital calipers 
(Lakatos provided better graphs than those available in ref.12 for this purpose). Datasets that had too many closely 
packed unresolvable data points were not employed unless the author made the data available. The data (red 
dotted line) shown in Fig. 4c (labeled neural model) was computed from a model24 that consists of two simulated 
Hodgkin-Huxley-like neurons with mutual excitatory synaptic coupling. The eight coupled differential equations 
that represent these spiking neurons and their synapses were integrated using a fourth-order Runge-Kutta algo-
rithm in MATLAB.
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