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A paradox of epidemics between 
the state and parameter spaces
Hengcong Liu, Muhua Zheng & Zonghua Liu

It is recently revealed from amounts of real data of recurrent epidemics that there is a phenomenon of 
hysteresis loop in the state space. To understand it, an indirect investigation from the parameter space 
has been given to qualitatively explain its mechanism but a more convincing study to quantitatively 
explain the phenomenon directly from the state space is still missing. We here study this phenomenon 
directly from the state space and find that there is a positive correlation between the size of outbreak 
and the size of hysteresis loop, implying that the hysteresis is a nature feature of epidemic outbreak in 
real case. Moreover, we surprisingly find a paradox on the dependence of the size of hysteresis loop on 
the two parameters of the infectious rate increment and the transient time, i.e. contradictory behaviors 
between the two spaces, when the evolutionary time of epidemics is long enough. That is, with the 
increase of the infectious rate increment, the size of hysteresis loop will decrease in the state space but 
increase in the parameter space. While with the increase of the transient time, the size of hysteresis 
loop will increase in the state space but decrease in the parameter space. Furthermore, we find that 
this paradox will disappear when the evolutionary time of epidemics is limited in a fixed period. Some 
theoretical analysis are presented to both the paradox and other numerical results.

Epidemic spreading has been well studied in the last two decades and its main attention has been focused on the 
influence of network topologies1–3. These studies involve almost all parts of epidemics such as the infinitesimal 
threshold4–9, reaction-diffusion model10–13, flow driven epidemic14–18, objective spreading19,20, temporal and/or 
multilayered networks21–30, and other aspects31–39 etc. Notice that an epidemic outbreak constitutes of both the 
growing and recovering processes. A common point of these studies is that their dynamics are only focused on 
the growing process, while little attention has been paid to the recovering process. Does it mean that the recover-
ing process can be considered only as an inverse process of the growing process and thus there is no necessary to 
study it? To confirm this argument, amounts of real data of recurrent epidemics have been rechecked recently40,41. 
It is found that for all the outbreaks in real data, their growing and recovering processes are asymmetric and thus 
form a phenomenon of hysteresis loop42, indicating that the recovering process is not a simple inverse process of 
the growing process.

To understand the mechanism of hysteresis loop, we now make an analysis on these real data and find their 
two features. The first one is that the period of an epidemic outbreak generally takes a couple of months or even 
longer. During this relatively long period, the infectious rate β will gradually increase and then decrease due to 
whether, humidity and other factors, i.e. being seriously influenced by the seasonal variation43–50. The second 
one is that the infectious process will keep going when the value of β is updated to a new one, i.e. an adiabatical 
process where the final state of system with the last β is used as the initial state of system with the updated β. In 
this sense, a model based on adiabatical increase of infectious rate β has been recently proposed to reproduce the 
hysteresis loop42, where the initial conditions of infected seeds at each updated β are inherited from the final state 
of system with the last β. This way of adiabatically changing β is completely different from the previous studies 
where β is allowed to be updated only when system reaches its stationary state and the initial infected seeds for 
each updated β are always reset randomly1–3. The consequence is that the former results in a hysteresis loop, 
while the latter has no hysteresis loop. Then, an interesting question is what is the relationship between these two 
approaches, i.e. how can we make a transition between them. On the other hand, the hysteresis loop in ref.42 is 
observed in parameter space but not in state space or data space. Considering that the collected epidemic data 
are from the state space but not from the parameter space, it will be definitely more convincing if we can directly 
explain the data from the state space, in contrast to explain them indirectly from the parameter space in ref.42. 
Moreover, it would be necessary to understand why the sizes of epidemic outbreaks in real data are different from 
one to another.
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In this work, we address these questions directly from the state space, in contrast to the hysteresis loop indi-
rectly observed in parameter space in ref.42. We first study how the infectious rate increment Δβ and transient 
time T at each updated β influence both the size of hysteresis loop and the size of epidemic outbreak. We numer-
ically find that both of these two parameters have significant influence to the transition between the status with 
hysteresis loop and that without hysteresis loop. For fixed Δβ, there is a critical Tc where the system will have 
a hysteresis loop when T < Tc but no hysteresis loop when T > Tc. While for fixed T, there is also a critical Δβc 
where the system will have a hysteresis loop when Δβ Δβc but no hysteresis loop when Δβ < Δβc. Thus, the 
size of hysteresis loop is mainly determined by the matching between Δβ and T. Then, we compare the results 
between the state and parameter spaces and interestingly find a contradictory dependence of the size of hysteresis 
loop on the parameters Δβ and T in the two spaces when the evolutionary time of epidemics is long enough, 
indicating that there is a paradox between the two spaces. To understand it, we provide a theoretical formula to 
unify this paradox. Further, we show that the paradox will disappear when the evolutionary time of epidemics is 
limited in a fixed period. Moreover, a theoretical analysis is presented to explain the numerical results.

Results
Hysteresis loop in state space.  A characteristic feature of recurrent epidemic data is its multiple peaks 
or outbreaks surrounded by small amplitude backgrounds. Such examples can be found in many real data such 
as the data from Hong Kong, New York and Baltimore etc40,41. Figure 1(a) shows one of them from New York. 
Recently, ref.42 revealed that most of the outbreaks in Fig. 1(a) are asymmetric and can be illustrated by Fig. 1(b) 
for the typical one marked by the blue circle in Fig. 1(a). We see that the outbreak consists of both the growing and 
recovering processes, separated by the “dashed” line. It is easy to notice that the two processes are asymmetric. 
Letting the time t0 of the peak in Fig. 1(b) be the original point and Δt = |t − t0| be the rescaled time, the asymme-
try can be seen more clear by Fig. 1(c) in the rescaled time where the “squares” and “circles” denote the growing 
and recovering processes, respectively. We see that the two processes constitute a hysteresis loop, marking the 
asymmetry between the growing and recovering processes. Ref.42 pointed out that this kind of hysteresis loop 
exists in all the outbreaks of Fig. 1(a) and other recurrent epidemic data (not shown here), and can be understood 
in parameter space.

To go deep into the underlying mechanism, it is better to explain the phenomenon of hysteresis loop directly 
from state space, in contrast to that from parameter space in42. For this purpose, we introduce St and SΔt to repre-
sent the areas surrounded by the growing and recovering processes in Fig. 1(b) and (c), respectively. Figure 1(d) 

Figure 1.  A typical real data of recurrent epidemics and its features. (a) Represents the time series of reported 
measles infective cases I in New York, where the variable I is from 0 to 3 × 104 41. (b) Amplification of the 
outbreak marked in the blue circle of (a). (c) The hysteresis loop of (b) in the rescaled framework where the 
original point is taken as the time pointed by the dashed line in (b) and the “squares” and “circles” denote the 
growing and recovering phases, respectively. (d) The area St of each outbreak in (a) where tn is the number of 
outbreaks. (e) The area SΔt of hysteresis loops for the successive outbreaks in (a).
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and (e) show the values of St and SΔt for the successive outbreaks in Fig. 1(a), respectively, where tn represents the 
number of successive outbreaks. From Fig. 1(d) we see that St is different for different tn, indicating that the size 
of St is seriously influenced by some key factors such as the seasonal weather, humidity and sunlight etc. From 
Fig. 1(e) we see that all the SΔt are different and not zero, indicating that the existence of hysteresis loop is a gen-
eral phenomenon in recurrent epidemics.

To figure out the key quantities influencing the sizes of St and SΔt, we here adopt the model of reproducing the 
hysteresis loop in ref.42, which is in fact a susceptible-infected-susceptible (SIS) model with varying β. We notice 
from Fig. 1(a) that each epidemic outbreak lasts a relatively long time, i.e. a few months, marking the seasonal 
variation. On the other hand, the data in Fig. 1(a) is not from one or a few initial seeds in the same initial stage but 
a sum from different initial seeds at different initial stages. Thus, β reflects most probably the influence of envi-
ronment, i.e. a match of whether, humidity and other factors43–50. In this sense, we may assume that the growing 
process corresponds to the gradual increase of β from 0 to βmax, while the recovering process corresponds to the 
gradual decrease of β from βmax to 0. According to42, the increase or decrease of β is not continuous but discrete 
with an increment Δβ. For each updating of β, the initial conditions for the system with β + Δβ will be inherited 
from the last values of state variables at the previous β, called adiabatically increase of β. Based on the experience 
observation that we generally have a few continuously sunny days or raining days in a season, we let T be the time 
period for a β to remain unchanged. Therefore, β will be updated as follows

β β
β β β

+ = ≠ = …
+ = ± Δ = = …

t t if t nT n
t t if t nT n

( 1) ( ), , 1, 2, ,
( 1) ( ) , , 1, 2, (1)

where “+” and “−” correspond to the growing and recovering processes, respectively.
In numerical simulations, we initially choose a small value of β and a few infected seeds. Then, we let the sys-

tem freely run a period of time T where a susceptible individual will become infected with probability β if he/she 
is connected to an infected neighbor and an infected one will recover to susceptible again with probability μ1. 
When there are more than one infected neighbors, a susceptible individual will become infected with probability 

β− −1 (1 )kinf  where kinf is the number of its infected neighbors. After a time period of T, we let β have an 
increase as in Eq. (1) but keep the individual states unchanged. We repeat this process until β reaches its maxi-
mum βmax. After that, we simulate the recovering phase by letting β(t + 1) = βmax − Δβ but remain the individual 
states. Then, we let the system run as a traditional SIS model. Once t = nT for n = 1, 2, …, we let β have a decrease 
as in Eq. (1) and keep all the other aspects unchanged. We repeat this process until β reaches zero.

We take the random Erdős-Rényi (ER) network with size N = 10000 and average degree 〈k〉 = 6 as an exam-
ple51. We fix μ = 0.2 in this paper and study how the parameters Δβ and T influence the size of hysteresis loop. 
Firstly, we consider the case of fixing T = 1. We let the growing process evolve to time t = 100 and then let the 
system turn to the recovering process until t = 200. Doing the same as in Fig. 1(c), we let the time t = 100 be the 
original point t0 and Δt = |t − t0| be the rescaled time. The “squares” and “circles” of Fig. 2(a) show the results for 
Δβ = 0.01 and 0.001, respectively, where ρI denotes the infected fraction. Two points can be noticed. The first 
one is that both of the two cases show the hysteresis loop in state space, denoted as SΔt. The second one is that the 
value of SΔt for the case of Δβ = 0.01 is smaller than that of Δβ = 0.001, indicating that the decrease of Δβ will 
result in an increase of SΔt. However, we find that there is a critical Δβc with SΔt = 0. After that, we always have 
SΔt = 0 for Δβ ≤ Δβc. Thus, the system will have a hysteresis loop when Δβ Δβc but no hysteresis loop when 
Δβ ≤ Δβc, indicating a phase transition between the states with and without hysteresis loop. This phenomenon 
can be explained as follows. For a fixed T, a smaller Δβ implies a smaller transient process for each updated β. 
When Δβ is small enough, the transient process will be less than T. In this situation, the time T will be long 
enough for the system of each updated β to reach its stationary state. Notice that the hysteresis loop comes from 
the adiabatical increase of β where β is updated before the system reaches its stationary state. Otherwise, there 
will be no hysteresis loop.

Secondly, we consider the case of fixing Δβ = 0.01. Figure 2(b) shows the results where the “squares” and 
“circles” represent the results of T = 1 and 5, respectively. Comparing them each other we see that the value of SΔt 
for the case of T = 1 is smaller than that of T = 5, indicating that SΔt increases with T. We also find that there is 
a critical Tc with SΔt = 0. The system will have a hysteresis loop when T < Tc but no hysteresis loop when T > Tc, 
confirming again the phase transition between the states with and without hysteresis loop. The reason is that for a 
fixed Δβ, a larger T implies a smaller difference between the final state of each updated β and its stationary state. 
When T is large enough to make the difference disappear, we will have a zero SΔt.

In sum, both the decrease of Δβ and the increase of T will make SΔt increase, indicating that they are the two 
key factors to influence the size of SΔt. To see their relationship in details, Fig. 2(c) shows the dependence of SΔt 
on Δβ for fixed T, where the three curves with “squares”, “circles” and “triangles” represent the cases of T = 1, 2 
and 3, respectively, and the inset shows the log-log plot. We see that SΔt decreases monotonously with the increase 
of Δβ and the three curves in log-log plot are approximately parallel each other, indicating that SΔt depends on 
Δβ by an approximate power law with a fixed scaling. Figure 2(d) shows the dependence of SΔt on T for fixed 
Δβ, where the three curves with “squares”, “circles” and “triangles” represent the cases of Δβ = 0.02, 0.01 and 
0.005, respectively, and the inset shows the log-log plot. We see that SΔt increases monotonously with T and the 
three curves in log-log plot are also approximately parallel each other, indicating that SΔt depends on T also by an 
approximate power law with a fixed scaling.

To see the dependence of SΔt on Δβ and T more clear, Fig. 3 shows its 3D plot. We see that for each fixed T, 
the relationship between SΔt and Δβ is similar to the curves in Fig. 2(c). At the same time, for each fixed Δβ, 
the relationship between SΔt and T is similar to the curves in Fig. 2(d). Thus, SΔt is determined by the matching 
between Δβ and T.
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It will be more interesting to study the relationship between Δβ and T when SΔt is fixed. Figure 4 shows the 
results where “squares”, “circles”, and “triangles” represent the cases of SΔt = 14.0, 14.5 and 15.0, respectively. We 
see that all the three cases are straight lines, indicating a linear relationship between Δβ and T. Thus, to keep SΔt 
unchanged, a larger Δβ needs a larger T to balance it, i.e. Δβ and T take the inverse role in sustaining the hyster-
esis loop.

A paradox on the size of hysteresis loop between the state and parameter spaces.  It is inter-
esting to check the relationship between the state and parameter spaces. For this purpose, Fig. 5(a–d) show the 
results in parameter space corresponding to Fig. 2(a–d), respectively, where Sh represents the area of hysteresis 

Figure 2.  Hysteresis loops in state space where the arrows denote the evolutionary directions. (a) ρI versus 
Δt for fixed T = 1 where the curves with “squares” and “circles” represent the cases of Δβ = 0.01 and 0.001, 
respectively. (b) ρI versus Δt for fixed Δβ = 0.01 where the curves with “squares” and “circles” represent the 
cases of T = 1 and 5, respectively. (c) SΔt versus Δβ where the curves with “squares”, “circles” and “triangles” 
represent the cases of T = 1, 2 and 3, respectively. The inset shows the log-log plot. (d) SΔt versus T where the 
curves with “squares”, “circles” and “triangles” represent the cases of Δβ = 0.02, 0.01 and 0.005, respectively. The 
inset shows the log-log plot.

Figure 3.  3D plot of the dependence of SΔt on the two parameters Δβ and T where the other parameters are the 
same as in Fig. 2(c) and (d).
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loop in parameter space. From Fig. 5(a) we surprisingly find that the area Sh for the case of Δβ = 0.01 is larger 
than that of Δβ = 0.001, in contrast to the relationship of SΔt in Fig. 2(a). The similar situation has been observed 
in Fig. 5(b) where Sh for the case of T = 1 is larger than that of T = 5, which is also in contrast to the relationship 
of SΔt in Fig. 2(b). Therefore, we have observed two contradictory results of the same phenomenon that with the 
increase of Δβ, SΔt decreases in Fig. 2(c) but its corresponding Sh increases in Fig. 5(c), indicating a paradox 
that the size of hysteresis loop has an inverse dependence on the parameter Δβ between the state and parameter 
spaces. This paradox has been further confirmed by the case of increasing T where SΔt increases in Fig. 2(d) but 
its corresponding Sh decreases in Fig. 5(d).

To understand this paradox, we go back to the definitions of SΔt and Sh. Let ρI
g  and ρI

c be the infected fractions 
for the growing and recovering processes, respectively. Then, we have

∫

∫
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Figure 4.  The relationship between Δβ and T for fixed SΔt where the curves with “squares”, “circles” and 
“triangles” represent the cases of SΔt = 14.0, 14.5 and 15.0, respectively.

Figure 5.  Hysteresis loops in parameter space where (a–d) corresponds to Fig. 2(a–d), respectively.
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where β
βΔ

 denotes the integer of t/T, and δt is the fraction of t/T located in between 0 and T. Notice that β is a con-
stant when δt changes from 0 to T. If we approximately use the average of ρI

g  and ρI
c in the period from 0 to T to 

replace ρ t( )I
g  and ρ t( )I

c , Eq. (2) can be rewritten as

∫ ρ β ρ β
β

β
β

≈ −
Δ

=
ΔΔS T d T S( ( ) ( ))

(3)t I
c

I
g

h

Based on Eq. (3), we obtain a new quantity β=
βΔ

t T  for each β in Fig. 5(a) and (b). Then, we transform all the 
ρI(β) in Fig. 5(a) and (b) into their corresponding ρI(t) and plot them in the new framework of ρI(t) versus Δt. The 
“squares” and “circles” in Fig. 6(a) and (b) show the results corresponding to that in Fig. 5(a) and (b) by Eq. (3), 
respectively. For comparison, we also replot the curves of Fig. 2(a) and (b) into Fig. 6(a) and (b) by the solid lines, 
respectively. Comparing the solid lines with their corresponding symbols in Fig. 6(a) and (b), respectively, we see 
that they are consistent each other, confirming the correctness of Eq. (3). Therefore, the paradox can be unified by 
Eq. (3).

We have to point out that the evolutionary times of the two cases in Fig. 2(a) or (b) are different, implying that 
we have long enough time for the different cases to finish their hysteresis loop. However, this condition of long 
enough evolutionary time is not always guaranteed in realistic situations. For example, we notice from Fig. 1(a) 
that the time periods of different outbreaks are generally in the same level, i.e. a few months, although their St 
in Fig. 2(d) or SΔt in Fig. 2(e) may have significant difference. To incorporate this feature into simulations, we 
need to take the same evolutionary time for all the cases of Fig. 2(a) and (b). After considering this condition, 
Fig. 7(a) and (b) show the results corresponding to Fig. 2(a) and (b), respectively, where the evolutionary time for 
both the growing and recovering processes are fixed as tmax = 20. From Fig. 7(a) and (b) we see that their sizes of 
hysteresis loops can be large, small or even zero, depending on the values of Δβ and T. This result well explains 
the observation in Fig. 1(e), where the larger SΔt corresponds to a larger Δβ and a smaller T while the smaller SΔt 
corresponds to a smaller Δβ and a larger T. A zero SΔt can be expected when Δβ is smaller than Δβc or T is larger 
than Tc, which corresponds to the background in Fig. 1(a). More important, we notice from Fig. 7(a) and (b) that 
SΔt has different relationship with Δβ and T from that in Fig. 2(a) and (b), indicating that the paradox disappear 
when the total evolutionary time is fixed.

Similarly, the fixed evolutionary time can be used to explain the different sizes St in Fig. 1(d). Figure 7(c) and (d)  
show the results for fixed evolutionary time tmax = 20, which correspond to Fig. 7(a) and (b), respectively. From 
Fig. 7(c) and (d) we see that St increases with Δβ and decreases with the increase of T, indicating that St has dif-
ferent behaviours with that of SΔt in Fig. 2(a) and (b). That is, the size of St is mainly determined by the outbreak 
of epidemic but not the asymmetry between the growing and recovering processes.

A brief theoretical analysis.  Based on the mean-field theory, we make a brief theoretical analysis for the 
above numerical results. For the SIS model, the evolution of ρI satisfies the following equation

ρ β ρ ρ μρ= − − − −


t(1 (1 ( )) ) (1 ) , (4)I
k

I I I
I

where kI represents the average number of infected neighbors of a node. During the evolutionary process, kI will 
change with time. That is, kI will gradually increase with t in the growing process but decrease in the recovering 
process. For convenience, we rewrite Eq. (4) as

ρ β μ ρ β ρ= − − − − − −


t t(1 (1 ( )) ) (1 (1 ( )) ) (5)I
k

I
k

I
2I I

In the following, we will solve Eq. (5) for the growing and recovering processes, respectively.

The growing process.  In this process, we have β(t) = nΔβ for nT < t < (n + 1)T and the initial condition 
ρI(t) = ρI(nT) for each updated β(t). Substituting them into Eq. (5) we have

Figure 6.  Consistence between the state and parameter spaces where the “squares” and “circles” in (a) and  
(b) come from Fig. 5(a) and (b) by Eq. (3), respectively, and the solid lines in (a) and (b) are the replotted 
Fig. 2(a) and (b), respectively.
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ρ β μ ρ β ρ= − − Δ − − − − Δ


n n(1 (1 ) ) (1 (1 ) ) (6)I
k

I
k

I
2I I

By dividing ρI
2 on both sides of Eq. (6), we have

β μ
ρ

β= − − Δ − − − − Δ
ρ

d

dt
n n(1 (1 ) ) 1 (1 (1 ) )

(7)
k

I

k

1

I I I

Letting 1/ρI be a new variable, we can obtain the solution of Eq. (7) as

ρ μ
β

=

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with t ∈ [nT, (n + 1)T]. Doing some simple operations, we have
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Letting t = nT, we obtain

β μ
β ρ
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Substituting Eq. (10) into Eq. (9) and letting t = (n + 1)T, we obtain

ρ
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β
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The recovering process.  In this process, we have β(t) = 1 − nΔβ for nT < t < (n + 1)T. Substituting it into Eq. (5) 
we have

Figure 7.  Case of fixed total evolutionary time as 2 × 20 (20 for the growing process and 20 for the recovering 
process) where all the parameters in (a) and (c) are the same as in Fig. 2(a) and that in (b) and (d) are the same 
as in Fig. 2(b). (a) and (b) represent the cases of SΔt for fixed Δβ and fixed T, respectively. (c) and (d) represent 
the cases of St corresponding to (a) and (b), respectively.
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ρ β μ ρ β ρ= − Δ − − − Δ
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Similarly, we divide ρI
2 on both sides of Eq. (12) and obtain
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The solution of Eq. (13) can be obtained as
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


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β μ

β μ

− Δ −

− Δ −
t

n
c e

c e
( ) 1

1 ( ) 1 (14)
I k

n t

n t
1

(1 ( ) )

1
(1 ( ) )I

kI

kI

with t ∈ [nT, (n + 1)T]. Letting t = nT, we obtain

β μ
β ρ

=





− Δ −

− Δ
−






β μ− Δ −

c
n

n nT
e1 1 ( )

1 ( )
1

( )
1

(15)

k

k
I

n nT

1

(1 ( ) )I

I
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Substituting Eq. (15) into Eq. (14) and letting t = (n + 1)T, we obtain

ρ
μ

β
+ =






−
− Δ




 +

β μ

β μ

− Δ − +

− Δ − +
n T

n
c e

c e
(( 1) ) 1

1 ( ) 1 (16)
I k

n n T

n n T
1

(1 ( ) )( 1)

1
(1 ( ) )( 1)I

kI

kI

So far, we have obtained the theoretical formulae Eqs (11) and (16) for the growing and recovering processes, 
respectively. Based on them, we can calculate ρ ρ= ∑ −ΔS t t( ( ) ( ))t t I

c
I
g , ρ ρ= ∑ +S t t( ( ) ( ))t t I

c
I
g , and their 

dependence on the two key parameters Δβ and T. The solid lines in Fig. 8(a–d) show the corresponding theoret-
ical results, respectively. For comparison, we also put their corresponding numerical simulations, see the 
“squares”. We see that they are consistent with each other very well, indicating that the numerical results can be 
explained by the mean-field theory.

Figure 8.  (a) and (b) represent the dependence of SΔt on the two parameters Δβ and T in state space, 
respectively, where the “squares” denote the numerical simulations and the solid lines are the theoretical results 
from Eqs (11) and (16). (c) and (d) represent the corresponding St of (a) and (b) in state space, respectively, 
where the “squares” denote the numerical simulations and the solid lines are the theoretical results from Eqs 
(11) and (16). The other parameters are the same as in Fig. 2(c) and (d).
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Discussion
All the above results are based on the random ER network. Do they depend on the network topology? To check 
this robustness, we construct a scale-free (SF) network with the same size N = 10000 and the same average degree 
〈k〉 = 6 as the ER network by the approach of ref.52. Based on this SF network, we have done the same process 
of numerical simulations as in the ER network and found the similar hysteresis loop and its dependence on the 
parameters Δβ and T with that of the ER network. Figure 9 shows the results, corresponding to Fig. 2. Comparing 
the corresponding panels between Figs 2 and 9, respectively, we see that they are all qualitatively similar to each 
other, confirming the robustness of the dependence of SΔt on Δβ and T.

In detail, Fig. 10 shows the dependence of SΔt on both the parameters Δβ and T for the SF network. We see 
that for each fixed T, the relationship between SΔt and Δβ is similar to the curves in Fig. 9(c). At the same time, 

Figure 9.  Hysteresis loops in state space for the case of SF network. (a) ρI versus Δt for fixed T = 1 where the 
curves with “squares” and “circles” represent the cases of Δβ = 0.01 and 0.001, respectively. (b) ρI versus Δt for 
fixed Δβ = 0.01 where the curves with “squares” and “circles” represent the cases of T = 1 and 5, respectively. 
(c) SΔt versus Δβ where the curves with “squares”, “circles” and “triangles” represent the cases of T = 1, 2 and 
3, respectively. The inset shows the log-log plot. (d) SΔt versus T where the curves with “squares”, “circles” and 
“triangles” represent the cases of Δβ = 0.02, 0.01 and 0.005, respectively. The inset shows the log-log plot.

Figure 10.  3D plot of the dependence of SΔt on the two parameters Δβ and T for the case of SF network where 
the other parameters are the same as in Fig. 9(c) and (d).
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for each fixed Δβ, the relationship between SΔt and T is similar to the curves in Fig. 9(d). Thus, Fig. 10 confirms 
the result of Fig. 3 that SΔt is determined by the matching between Δβ and T.

We now understand that the outbreaks in recurrent epidemic data can be described by two ways. One is the size 
of outbreak, represented by St. For this one, it is mainly determined by the values of β and T. The other is the size 
of hysteresis loop, represented by SΔt, which is mainly determined by the matching of Δβ and T. Very interesting, 
we notice from Fig. 1(d) and (e) that there is a positive correlation between St and SΔt, i.e. they show either larger or 
smaller values in most of the time. This correlation can be explained as follows. Because of the seasonal change of 
weather, the time period of epidemic outbreaks will be limited in a few months, see Fig. 1(a). Under this condition, 
a too small Δβ or too large T will not result in a larger accumulation of β, thus there will be no epidemic outbreak. 
With the increase of Δβ or decrease of T, the accumulation of β will increase to pass its critical value and thus result 
in an outbreak. At the same time, the increase of Δβ or decrease of T will make the system stay away from its steady 
state at each updated β and thus result in an increase of SΔt. In this sense, St and SΔt can be unified in the same frame-
work of Δβ and T, indicating that the hysteresis is a nature feature of epidemic outbreak in real case.

Basically, the existence of hysteresis loop is a memory effect from the adiabatical process. Without the adiabati-
cal inheritance, for each concrete β, we will take random initial conditions for both the growing and recovering 
processes. In this way, the epidemic spreading will not have much difference between the growing and recovering 
processes for the case of either T > Tc or T < Tc, indicating that the adiabatical process is one necessary condition for 
the hysteresis loop. Another necessary condition is that the parameter β has to be updated before the system reaches 
its steady state, i.e. T < Tc; otherwise, there will no be difference between the growing and recovering processes when 
T > Tc. Once these two conditions are satisfied, we will have the hysteresis loop. In details, for the case of adiabatical 
process with T < Tc, its ρI(T) will be less than the stabilized value of ρI(Tc) in the growing process as β is updated 
before ρI(T) grows to its stabilization ρI(Tc), i.e. ρI(T) < ρI(Tc). While in the recovering process, its ρI(T) will be 
larger than ρI(Tc) as β is changed before ρI(T) decreases to its stabilization, i.e. ρI(T) ρI(Tc). This distinction causes 
the hysteresis loop for ρI(Tc). Thus, the area of hysteresis loop SΔt will be larger when the difference Tc − T is larger. 
On the other hand, the value of Tc depends on Δβ, i.e. a larger Δβ corresponds to a larger Tc. Therefore, a larger SΔt 
will come from either a larger Δβ or a smaller T, which make a shorter transient process at each updated β and thus 
make the system stay away from its steady state. While a smaller SΔt will come from either a smaller Δβ or a larger 
T, which make the system close to its steady state at each updated β.

Moreover, it is necessary to say a few more words on the differences between this work and that of ref.42. The 
main contributions of ref.42 are two aspects: (1) the finding of asymmetry between the growing and recovering 
processes; and (2) the explanation form the angle of hysteresis loop. However, the former is from the state space 
while the later is from the parameter space, i.e. an indirect explanation. This work gives an explanation to the hys-
teresis loop directly from the state space and find a positive correlation between St and SΔt. Moreover, we reveal 
a paradox between the state and parameter spaces and show a way to explain it. These findings imply that more 
attention should be paid to the features of epidemics in state space in the future, in contrast to the majority focus 
of epidemics from parameter space in previous studies.

In conclusion, we have studied the hysteresis loop mainly in the state space. Based on the SIS model, we find that 
there is a phase transition between the states with and without hysteresis loop in recurrent epidemics and the transition 
is controlled by two parameters, i.e. Δβ and T. The system will be in the state of no hysteresis loop when either Δβ is 
small enough or T is large enough, and in the state with hysteresis loop, otherwise. We also find a positive correlation 
between the size of outbreak and the size of hysteresis loop. It is shown that both St and SΔt depend on the parameters 
Δβ and T in power law, and Δβ and T take the inverse role for sustaining the hysteresis loop. Further, with the increase 
of T or the decrease of Δβ, a paradox of the area of hysteresis loop is observed, i.e. SΔt increases in the state space but Sh 
decreases in the parameter space. This paradox can be unified by Eq. (3). However, this paradox may not appear when 
the evolutionary time is fixed and not long enough. A theoretical analysis is given to explain the numerical simulations.
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