
1SciEnTific REporTS |  (2018) 8:7472  | DOI:10.1038/s41598-018-25913-8

www.nature.com/scientificreports

Cavitation-threshold 
Determination and Rheological-
parameters Estimation of Albumin-
stabilized Nanobubbles
Maxime Lafond   1, Akiko Watanabe2, Shin Yoshizawa3, Shin-ichiro Umemura1 &  
Katsuro Tachibana2

Nanobubbles (NBs) are of high interest for ultrasound (US) imaging as contrast agents and therapy as 
cavitation nuclei. Because of their instability (Laplace pressure bubble catastrophe) and low sensitivity 
to US, reducing the size of commonly used microbubbles to submicron-size is not trivial. We introduce 
stabilized NBs in the 100–250-nm size range, manufactured by agitating human serum albumin and 
perfluoro-propane. These NBs were exposed to 3.34- and 5.39-MHz US, and their sensitivity to US 
was proven by detecting inertial cavitation. The cavitation-threshold information was used to run a 
numerical parametric study based on a modified Rayleigh-Plesset equation (with a Newtonian rheology 
model). The determined values of surface tension ranged from 0 N/m to 0.06 N/m. The corresponding 
values of dilatational viscosity ranged from 5.10−10 Ns/m to 1.10−9 Ns/m. These parameters were 
reported to be 0.6 N/m and 1.10−8 Ns/m for the reference microbubble contrast agent. This result 
suggests the possibility of using albumin as a stabilizer for the nanobubbles that could be maintained in 
circulation and presenting satisfying US sensitivity, even in the 3–5-MHz range.

Over the past decades, the use of bubbles in the ultrasound (US) diagnostic and therapeutic arsenal has 
increased1–5. They can be used as ultrasound contrast agents (UCA) to enhance the performance of US imaging 
but also to determine physiological properties, notably blood flow6–10. Microbubbles (MBs) are approved world-
wide and widely used in characterization of kidneys, the liver, breast, spleen, and pancreas11. Bubbles can also 
be targeted via antibodies to specific molecules in locations of interest12,13. For drug delivery, bubbles are ideal 
carriers for therapeutic material14,15. They can cluster in a targeted area and release their payload either naturally 
or under the action of an external stimulus such as US16.

Cavitation is a potent mechanical effect of US and a formidable tool for a large number of applications such as 
drug delivery17–21, sonodynamic therapy22,23, hyperthermia24, immunotherapy25,26, lithotripsy27, and histotripsy28. 
However, cavitation usually requires large pressure levels to occur, which may bring about safety concerns. The 
strength of the bubbles in this case is to act as cavitation nuclei, reducing the required pressure to induce the 
desired mechanical effect. This also reduces the risk of creating collateral cavitation in untargeted zones. However, 
cavitation can be obtained only in places reachable by the bubbles in circulation. This is one of the main potential 
benefits of nanobubbles (NBs) in the therapeutic arsenal. Due to their smaller size, they can access places that are 
not reachable by MBs. Moreover, they are less prone to clearance and are likely to prolong their blood circulation 
time29. Thus, NBs are of great interest in both imaging and therapeutic purposes30–33.

The evidence and manufacturing of NBs seem straightforward as they are just a few times smaller than MBs, 
which are well characterized and routinely produced. However, there is a physical barrier to the bubble size, 
which has made the path of NB research a bit more problematic34. In the early 1950s, the Epstein-Plesset theory 
predicted the fast dissolution of NBs35. The so-called Laplace pressure bubble catastrophe describes that a bubble 
in solution will either grow and be removed by buoyancy or shrink and dissolve in the solution. This is shown to 
be particularly true for small bubbles, as they are unlikely to be thermodynamically stable36. However, various 
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encapsulation methods have been developed to reduce the surface tension and prolong NB stability37,38. This 
includes liposomes (lipid bilayer shell including an aqueous core with gas pockets)39–41, cavitation seeds acting 
as gas-pocket traps sur as nanocups42 or porous nanoparticles43, NBs of lipids, polymers, or protein shells with a 
gaseous core44–48, and nanodroplets (lipid or polymer shell with the specificity of being phase-changing agents)49. 
There are numerous applications for which NBs provide interesting results, notably drug delivery to various 
targets: tumor50–58, nerve59, retina60, vascular tissues61, brain blood barrier62. They can also be used to perform 
gene transfection63–68. Finally, they showed interesting features for imaging applications69–73 and theragnostic 
modalities74–77.

Cavitation events can be monitored through several modalities, notably cavitation mapping, ultrafast imag-
ing78, and passive cavitation detection79. Acoustic methods have shown to be potent for determining bubble 
characteristics80,81.

The purpose of this study was to assess the possibility of using albumin-stabilized NBs as cavitation nuclei 
while monitoring the cavitation activity with a passive cavitation detector (PCD). Also, the cavitation thresh-
olds of the manufactured albumin NBs were measured for two different frequencies. From this information, 
bubble-oscillation simulations were conducted with a modified Rayleigh-Plesset equation to determine the rheo-
logical parameters (dilatational viscosity and surface tension) of the manufactured NBs.

Material and Methods
Preparation of NBs.  Human serum albumin NBs were fabricated using a high-speed agitation method. A 
high-speed agitation device, originally a tissue homogenizer device that provides a three-dimensional multi-di-
rectional motion to the fluid container tubes, was used (Precellys Evolution; Bertin Instruments, France). Two 
materials (both liquid and gas) were placed within custom-made container tubes and agitated at high speeds. The 
air in a plastic container tube (height, 30 mm, outer diameter, 25 mm) was replaced with 15 mL of perfluoro-pro-
pane (C3F8; Takachiho Chemical Industrial Co., Tokyo, Japan) gas using a 23-gauge needle inserted through a 
cap. As the perfluroro-propane is heavier than air, the air is replaced by perfluroro-and the container is full of 
propane at ambient pressure. Briefly, a 10-mL sterile solution of 0.06% human serum albumin (fraction V, purity 
96%; Aventis Behring L.L.C., IL, USA) in Roswell Park Memorial Institute medium (RPMI 1640; Nacalai tesque, 
Kyoto, Japan) was added in a C3F8 gas filled container tube. The C3F8 gas and albumin solution in the container 
were tightly sealed with a cap. This process insures that a reproducible molar amount of gas is used. All the proce-
dures were carried out within a clean bench to avoid nanoparticle contamination. The container tubes were then 
placed into a high-speed shaking-type tissue homogenizer device previously described and shaken four times 
at high speed under the following conditions: 6500 rpm, 60-second duration, 5-min pause on the ice between 
each shaking phase. After finishing all the shaking phases, the samples were incubated at room temperature for 
1 hour. To extract uniformly sized NBs from the agitate solution, centrifugation (MX-301; TOMY, Tokyo, Japan) 
was carried out at 100 g for 10 minutes to separate all MBs and NBs. The NBs included in the solution was then 
preserved at 4 °C until use. Figure 1 sums up the manufacturing process. Also, an additional video of the sample 
agitation is linked.

Bubble characterization.  Nanoparticle tracking analysis.  The particle size of albumin NBs was measured 
using a nanoparticle tracking analysis (NTA) device (Nanosight LM10; Malvern Instruments Ltd, Worcestershire, 
UK). The nanoparticle suspension can be illuminated under a 638-nm red laser by using this device. The nan-
oparticle movement expressed light scattering under Brownian motion and was recorded using a CCD camera 
(C11440-50B; Hamamatsu Photonics K.K., Shizuoka, Japan). This NTA system automatically detects the center 
position of nanoparticles and tracks the nanoparticle motion in a two-dimensional plane for calculating the 
average moving distance under Brownian motion. The particle sizes were estimated by the average moving dis-
tance to the Stokes-Einstein equation. The range of particle-size measurement with the NTA method was from 
10 to 1000 nm. An NBs suspension of 0.5 mL was injected to the sample chamber of the Nanosight system with 
a 1.0-mL-volume syringe (Terumo tuberculin syringes SS-01T; Terumo Co., Tokyo, Japan). The image of par-
ticle movement under Brownian motion was recorded for 60 seconds at room temperature. Software NTA 3.2 
Dev Build 3.2.16 (Malvern Instruments Ltd, Worcestershire, UK) was used for sample-image capturing and data 
analysis. Three independent experiments were conducted for each sample. The particle size was presented as the 
average of three measurements.

Figure 1.  Schematic of the albumin-stabilized nanobubbles manufacturing process.
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Dynamic light scattering.  To measure the physical properties of Sonazoid MBs, a light-scattering measurement 
system ELSZ - 2000ZS (Otsuka Electronics Co., Osaka, Japan) was used. The measurement principle is dynamic 
light scattering for observing temporal change or fluctuation of scattered light from Brownian moving particles 
to estimate the overall size distribution of bubbles. The measurement range of the device was 0.6 nm to 10 μm. 
All measurements were carried out at room temperature by adding 1 mL of the sample to the glass cell. Repeated 
measurements were carried out three times for each sample and averaged to determine particle diameter.

There are two main reasons why we used different techniques for the size measurements. Firstly, dynamic light 
scattering requires a certain bubbles concentration to be accurate (typically more than one billion NBs par mL), 
criterion that we did not meet with our manufacturing process. On the other hand, nanoparticle tracking analysis 
is accurate even with lower concentrations. The second reason is that dynamic light scattering relies on a size 
distribution symmetrically centered around the peak. This was not the case with the albumin-stabilized NBs. In 
this case nanoparticle tracking analysis is more adapted because it sizes individually each bubble with the bubble 
concentration determined from the number of bubbles within the field of view.

Flow cytometric analysis.  To estimate the NBs stability over time, the number of albumin NBs were determined 
using a flow cytometer (CytoFLEX; Beckman coulter, CA), which was equipped with 405- (violet), 488- (blue), 
and 638-nm (red) lasers to detect up to 13 fluorescence colors. The cytometer was set up to measure side scat-
ter (SS) from the violet laser for enhanced nanoparticle detection. The violet-SS signal resolution for particle 
detection was less than 200 nm. To relate violet-SS to particle size, we calibrated the flow cytometer with beads 
of known size. Polystyrene standard beads (200, 350, and 800 nm; qNano Calibration Particles; Izon sci. Ltd, 
Christchurch, New Zealand, 500 and 1000 nm; Archimedes Standard polystyrene beads; Malvern Instruments 
Ltd, Worcestershire, UK) suspended in ultrapure water were measured beforehand with the cytometer. We cre-
ated the gate based on the size of the standard beads in the range from 200 to 1000 nm for determining the size of 
our fabricated albumin NBs. The acquired violet-SS signals of the albumin NBs were analyzed using CytExpert 
analysis software version 2.0 (Beckman Coulter, CA).

Cavitation measurements.  As illustrated in Fig. 2, the cavitation-measurement experiment relies on a 
US emission transducer (a) to stimulate the bubbles circulating at a controlled flow in the focal zone (c), and an 
aligned in-house PCD (b) receiving the signal from the focal zone. This is then transmitted to an acquisition card 
for data recording and further processing.

The emission signal consisted of 200-cycle pulses generated by function generation (Wave Factory WF1943, 
NF Corporation, Yokohama, Japan) spaced by a 50,000-cycle pause between each pulse. The emission signal was 
then amplified (AG 1006, T&C Power Conversion Inc., Rochester, NY) with a varying gain factor and delivered 
to the emission transducer. The corresponding focal pressures were measured for shorter pulses (15 cycles) using 
a needle hydrophone Precision Acoustics SN2203 with a PA14235 preamplifier (Precision Acoustics, Dorchester, 
UK) for each transducer. The two different piezo-ceramic-focused transducers were used for emission at two 
different frequencies: 3.34 and 5.39 MHz.

The solutions containing bubbles were injected in circulation in an acoustically transparent tube (Cobalt 
Polymers, CA, USA; inner diameter, 2.5 mm, thickness, 38 µm) via a syringe mounted on an injection pump 
(Pump11Elite; Harvard Apparatus, MA). The tube was placed in the focal zone of the emission transducer. This 
step is particularly important as both the focal area and tube were small. To do so, the water level was first adjusted 
to coincide with the tube position. Then, on a slightly remote position from the tube (to avoid unnecessary tube 
deterioration), we adjusted the transducer elevation while emitting on a high duty cycle so that an acoustic foun-
tain forms at the water surface. The tube and focal point were thus on the same elevation at this step. Finally, the 
position of the fountain was marked with a laser pointer, and the tube was moved to this location while US was 
off, without changing the elevation. After that, the bubbles were put in circulation in the tube and exposed to US 
pulses, and the amplifier gain was manually adjusted. The experiment was conducted two times. Once with the 

Figure 2.  Schematic of experimental setup for cavitation detection. a: Emission transducer. Two different 
transducers were used: 3.34 and 5.39 MHz. b: Passive cavitation detector. c: Bubbles are circulating at controlled 
flow speed in acoustically transparent tube placed in focal zone of emission transducer.
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albumin NBs, and once with well characterized commercially available ultrasound contrast imaging microbub-
bles, Sonazoid (Daiichi Sankyo Co Japan) as micro-sized bubble control for the method.

Acoustic noise emitted by the bubbles was recorded for increasing the focal pressure at the two frequen-
cies. The PCD is an in-house polyvinylidenfluorid (PVDF) hydrophone with a wide broadband in the entire 
frequency range of interest. Signals were acquired using a Red Pitaya StemLab 125-10 acquisition board (Red 
Pitaya, Ljubljana, Slovenia) and synchronized with the function generator. The cavitation indexes (CI) were cal-
culated in Matlab (The Mathworks, Inc., Natick, MA) from the average value of the Fourier transform between 
2 and 20 MHz:
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where N designates the number of points in the frequency interval considered and S(f ) is the Fourier transform 
of the received signal S(t) calculated by the fft function.

Numerical study.  We used a Rayleigh-Plesset-type equation to model the oscillation of a bubble under the 
US excitation p t( )A  with the Newtonian rheology parameters of the bubbles. This rheological model takes into 
account a viscous encapsulation of the bubble, characterized by the surface dilatational viscosity κS and surface 
tension γ the bubble oscillation can be expressed as
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where ρ, P0, and µ are the density, hydrostatic pressure, and viscosity of the surrounding medium, respectively, R 
is the bubble radius, R and ̈R its temporal first and second derivative (thus the bubble wall speed and acceleration), 
and k is the polytropic exponent of the gas inside the bubble: =k 1 corresponds to isothermal gas behaviour. For 
the Sonazoid MBs, this exponent is very small: = .k 1 00681. As both the Sonazoid MBs and manufactured NBs 
were observed to be stable for at least 2 hours, we can assume a pressure equilibrium ensuring bubble stability as 
an initial condition. Thus, the initial pressure inside a bubble PG0 can be expressed as
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Equation (2) is solved using a fourth-order Runge-Kutta method implemented in Matlab with the ode45 function. 
We determine if the bubble reached the cavitation threshold by assessing the inward bubble wall speed: the iner-
tial cavitation threshold is considered reached for inward speeds above 340 m/s.

The bubble oscillation was modeled for a large range of the two investigated rheological parameters κS and γ. 
For each set of values, we attributed a score depending on how this set corresponds to the measured pressures. A 
score of 1 indicates that this set of values allows cavitation inside the measured pressure interval for one frequency 
only. A score of 0 indicates that the calculated threshold is outside the measured interval for both configurations. 
If the threshold from simulation is inside the measured interval for the two frequencies, a score of 2 is attributed. 
A score of −1 indicates aberrant results. Thus, the region with a score of 2 gives the range of rheological parame-
ters of the studied bubbles. This parametric investigation was run twice; once on a very wide parameter range with 
a rough grid and once in the resulting region of interest with a more refined grid.

Results
Bubble-size measurements.  Figure 3 presents the size distribution of the albumin NBs and the Sonazoid 
MBs. From these measurements, we consider 165-nm bubbles in simulations for albumin NBs. The mean size of the 
Sonazoid MBs was measured at 1.9 µm. This is slightly at odds with the expected size. In fact, the size of the Sonazoid 
MBs was indicated to be in the 2.3–2.9 µm range according to the manufacturer’s information82. Fig. 4 shows the 
stability over time of the albumin-stabilized NBs on two hours (approximate duration of the experiment).

Cavitation-threshold determination.  Figure 5 illustrates the cavitation index (CI) measured from the 
received signal for various focal pressures for the Sonazoid MBs, albumin NBs, and in reference degassed water. 
The elevation of the CI level above the reference values (water) provided evidence of cavitation presence. This was 
less clear for the Sonazoid case in the 5.39 MHz configuration. A significant elevation was still detected for a pres-
sure of 7.2 MPa. The elevation was also substantial at 3.1 MPa without being very clear. We thus consider 1.9 MPa 
to be our considered pressure below the cavitation threshold.

For each configuration, we selected a pressure value above and one below the assumed cavitation threshold. 
Those pressure are indicated by the dashed lines. The statistical significance (p < 0.01 with a Student t-test) of the 
difference of CI with degassed water is indicated by the asterisk. One could notice that is some cases (Albumin NBs 
at 3.34 MHz and Sonazoid MBs at 5.39 MHz), the chosen pressure values do not strictly correspond to just before 
and after significance as it is the case in the other conditions. In the first, it is because the CI elevation according to 
the excitation pressure is very steep. We hypothesized that it was due to the strong echogenicity of these NBs and we 
preferred to take a higher value of pressure to be sure to comprise the cavitation threshold in the interval. In the other 
case (Sonazoid MBs at 5.39 MHz), the CI value at 3.2 MPa was not significantly different from the degassed pressure 
value, but with a p-value of close to 0.1. Thus, as previously, we preferred taking some margin to be sure to comprise 
the cavitation threshold in the chosen interval. The pressure values in MPa are summarized in Table 1.
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Figure 3.  Measurement of bubble size for albumin NBs (top) and Sonazoid MBs (bottom).

Figure 4.  Albumin NBs stability over time. Total number of NBs remained unchanged for at least 2 hours, 
which was approximate duration for cavitation experiment. Errors bars represent the standard deviation with 
N = 3. Student t-test does not indicate a significant change in the percentage of bubbles compared to their initial 
number (at t = 0).



www.nature.com/scientificreports/

6SciEnTific REporTS |  (2018) 8:7472  | DOI:10.1038/s41598-018-25913-8

Rheological-parameter determination.  Figure 6 illustrates the rheological-parameter determination for 
the Sonazoid MBs. The region in yellow corresponds to plausible parameter sets (scored 2). This region includes 
the parameters set of 0.6 N/m and 1.10−8 Ns/m, which has been reported for Sonazoid MBs81. Fig. 7 illustrates the 
rheological parameters estimated for the manufactured albumin NBs. The plausible parameters are located on a 
thin conical region ranging from 0 N/m to 0.06 N/m in surface tension. The corresponding values of dilatational 
viscosity ranged from 5.10−10 Ns/m to 1.10−9 Ns/m.

Discussion
In this study, we showed that albumin NBs can be used effectively as cavitation nuclei, with inertial cavitation 
thresholds under 2 MPa. We also showed that information on cavitation thresholds can be used to investigate the 
rheological parameters of these NBs through bubble-oscillation simulations.

The Sonazoid MBs, the parameters of which have been reported, were used as a test case. The potential rhe-
ological parameters were found in a relatively wide range, including the reference value from the literature81. 
Applying the same method to the albumin NBs permitted estimation of their rheological parameters. These are 
located in a conical region ranging from 0 N/m to 0.06 N/m in surface tension. The corresponding values of 

Figure 5.  Cavitation-threshold measurements for two types of bubbles at frequencies of 3.34 MHz (top) and 
5.39 MHz (bottom). Error bars represent standard deviation of CI over 10 measurements for each pressure 
level. The blue and red dashed lines (for Albumin NBs and Sonazoid MBs, respectively) represents the pressure 
interval that is assumed to comprise the cavitation threshold. The asterisk states a statistically the lower pressure 
parameter with a significant difference relatively to the CI in degassed water (p < 0.01) (it is not displayed for 
higher pressures for figure clarity).

Configuration
P above 
(3.34 MHz)

P below 
(3.34 MHz)

P above 
(5.39 MHz)

P below 
(5.39 MHz)

Sonazoid MBs 1.4 0.9 7.2 1.9

albumin NBs 1.0 0.1 1.9 1.2

Table 1.  Pressure parameters used in simulations from cavitation measurements.
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dilatational viscosity ranged from 5.10−10 Ns/m to 1.10−9 Ns/m. These values are both orders of magnitude below 
those of the Sonazoid. As a comparison, the surface tension at a water-air interface is 0.072 N/m and in an aque-
ous albumin solution between 0.035 and 0.072 N/m depending of the albumin concentration83. Moreover, the 
cavitation measurements prove that the dilatational viscosity is a key parameter, as no parameters set was found 
plausible with a null dilatational viscosity. The experiments we conducted did not provide precise information 
on the manufactured bubbles’ structure. Nevertheless, we can hypothesize that these are either comparable with 
extremely soft-shelled NBs (as we modelled) or gas vesicles (the albumin trapping the gas during shaking). The 
observations and possibility to simulate the NB behavior with a rheological model tend to confirm the hypothesis 
that they behave as NBs. The most likely hypothesis is that albumin acts as a surfactant rather than a shell such 
as the Sonazoid lipid hard shell. This would prove the possibility to stabilize NBs with only viscous surfactant. 
In the albumin-stabilized NBs stability results presented in this study, we displayed only their stability along the 
approximate two hours of the experiment. However, to be pertinent in a clinical context, the produced NBs have 
to remain stable longer. Additional analysis on the storage stability of these nanobubbles remains to be done. As 
the shaker to produce the bubbles is quite standard, affordable and possible to miniaturize, it is conceivable that 
in future developments, the bubbles can be produced routinely, directly in the clinical environment by shaking 
prepared samples.

Albumin NBs present a much lower dilatational viscosity and are much softer than Sonazoid-shelled MBs. 
This can explain why albumin NBs can be kept stable for hours and even injected in circulating flows but main-
taining an impressive sensibility to US and a low cavitation threshold. The lowering of sensitivity to US has been 

Figure 6.  Determination of rheological parameters of Sonazoid MBs. Region in yellow corresponds to plausible 
parameter sets. Red dot corresponds to rheological parameters found in literature.

Figure 7.  Determination of rheological parameters of albumin NBs. Region in yellow corresponds to plausible 
parameter sets.
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reported to be one of the major issues of the submicron transition38. One of the main advantages of albumin NBs 
is that the sensitivity to US remains excellent, even for standard therapy and imaging frequency range (3–5 MHz). 
These frequencies are relevant of imaging and therapy using NBs48. This range permits the preservation of the 
penetration depth and low thermal effects. The sensitivity and noise emission from inertial cavitation was even 
greater than with the Sonazoid MBs.

As the pressure values we selected become closer to the actual threshold, the accuracy of the suggested method 
to determine the rheological parameters would improve. However, the bubbles present a relatively wide size 
distribution. Consequently, the threshold in this case is not a single pressure value but rather a pressure range. 
The pressure range can be quite wide: in the case of the albumin NBs, the interval ranged from 0.1 to 1.0 MPa. 
Although the cavitation threshold seemed to be reached even for very low amplitudes, we hypothesized that 
these early cavitating bubbles may be the upper limit of the size distribution. Consequently, the two values we 
selected for simulations were the pressure value before this threshold and an upper value after that the curve slope 
becomes gentler. It should be noted that we modeled the oscillation of single bubbles, and a few factors affecting 
their growth were not taken into account. Notably, rectified diffusion (higher gas inflow than gas outflow during 
oscillation phases)84, coalescence, and Ostwald ripening (growth by diffusion: the larger bubbles “vampirize” the 
smaller)85, were not taken into account. Nevertheless, it was observed in simulations that collapses occur very 
early in the oscillation process for these bubble parameters, within the first cycle, discarding rectified diffusion as 
a leading growth mechanism in this particular case. Ostwald ripening and coalescence are much more delicate 
to evaluate. However, the bubble-size distribution was measured to be stable for at least 2 hours (duration of the 
sonication experiment), and no change in the cavitation activities were reported while using longer pulses (400 
and 600 cycles instead of 200, data not shown). This suggests that the presence of US did not affect coalescence 
and Ostwald ripening. Furthermore, it was shown that NB clusters (which would possibly be the case under 
an acoustic field due to Bjerknes forces)86,87 can exhibit a shielding effect against Ostwald ripening85,88. Finally, 
another factor that could affect the results is that we only considered the mechanical stress of US. However, ther-
mal effects occurring locally during the pulses may result in a denaturation of the albumin constituting the NBs. 
This denaturation might change the tension surface of the albumin89; thus, the cavitation threshold.

Conclusion
We demonstrated that albumin NBs in the 100–250-nm range were sensitive to US and could be used as efficient 
cavitation nuclei in the 3–5-MHz range at least. Their inertial cavitation threshold was lower than the commer-
cially available Sonazoid micro-sized UCA. Simulations were conducted with a modified Rayleigh-Plesset equa-
tion according to Newtonian rheology. The determined values of surface tension and dilatational viscosity ranged 
from 0 N/m to 0.06 N/m in surface tension. The corresponding values of dilatational viscosity ranged from 5.10−10 
Ns/m to 0 1.10−9 Ns/m. These values were 0.6 N/m and 1.10−8 Ns/m for the reference Sonazoid MBs. This suggests 
that NBs can be stabilized using surfactant only, providing high US sensitivity.
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