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Quantitative assessment of urban 
wetland dynamics using high 
spatial resolution satellite imagery 
between 2000 and 2013
Tangao Hu  1, Jiahong Liu1, Gang Zheng2, Yao Li1 & Bin Xie1

Accurate and timely information describing urban wetland resources and their changes over time, 
especially in rapidly urbanizing areas, is becoming more important. We applied an object-based image 
analysis and nearest neighbour classifier to map and monitor changes in land use/cover using multi-
temporal high spatial resolution satellite imagery in an urban wetland area (Hangzhou Xixi Wetland) 
from 2000, 2005, 2007, 2009 and 2013. The overall eight-class classification accuracies averaged 84.47% 
for the five years. The maps showed that between 2000 and 2013 the amount of non-wetland (urban) 
area increased by approximately 100%. Herbaceous (32.22%), forest (29.57%) and pond (23.85%) are 
the main land-cover types that changed to non-wetland, followed by cropland (6.97%), marsh (4.04%) 
and river (3.35%). In addition, the maps of change patterns showed that urban wetland loss is mainly 
distributed west and southeast of the study area due to real estate development, and the greatest loss 
of urban wetlands occurred from 2007 to 2013. The results demonstrate the advantages of using multi-
temporal high spatial resolution satellite imagery to provide an accurate, economical means to map and 
analyse changes in land use/cover over time and the ability to use the results as inputs to urban wetland 
management and policy decisions.

Wetlands are the most productive ecosystems in nature and important environments for humans1. Wetlands are 
known as the “kidneys of the earth” because of their important hydrological features and element cycles, and they 
can also be considered as “biological supermarkets” because of their large food webs and rich biological diver-
sity2,3. Wetlands have far-reaching influences on the urban environment, including on the hydrological cycle, 
flood control, shoreline protection, climatic regulation, landscape building, natural species protection, and eco-
systems service functions4–7. However, as human activity has continuously increased over the past hundred years, 
many wetlands have been lost, and the remaining wetland areas have substantially decreased, which has caused 
a large loss of natural habitats8,9. Recently, due to the progress of society and the rapid development of modern 
industry, land reclamation, water pollution and excessive deforestation have become increasingly serious issues, 
especially for urban wetlands. With the acceleration of urbanization, a large number of wetlands disappeared10. 
Monitoring urban wetlands and detecting their changes over specified time periods are necessary to ensure wet-
lands protection and optimal use11.

Satellite remote sensing provides a considerable opportunity to monitor land use and land cover (LULC) and 
detect changes because of the rapid, synoptic and repetitive capabilities of remote sensing12. Multi-source satel-
lite images provide efficient information on the temporal trends and spatial distributions of urban areas that is 
needed to understand, model, and project land changes13. Specifically, moderate-resolution multispectral sensors 
(e.g., Landsat, SPOT, and ASTER) have been successfully used for studying the extent of flooding and affected 
land cover14, detecting the presence and composition of wetlands in heterogeneous landscapes15, and monitoring 
invasive plant species16. However, few studies have focused on the detection of small wetlands and ponds as small 
as 0.2 ha that are often important critical habitats. Sensors with 10 to 30-m spatial resolution typically require a 
minimum of 9 pure pixels (0.9 ha) to identify a feature17. Because of mixed pixels, the smaller wetlands are often 
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missed18. At a local scale, the small wetlands are crucial to the stability of ecosystems, particularly for the main-
tenance of biodiversity19. Very high spatial resolution multispectral sensors (e.g., QuickBird and IKONOS) pro-
vide fine spatial resolution to capture smaller wetlands20, but the within-class spectral variance will be increased 
using these sensors. Therefore, in order to solve this problem, an appropriate classification algorithm must be 
employed21,22.

Recently, object-based image analysis (OBIA) has been applied more frequently for image classification and 
change detection in wetland systems23,24. Object-based approaches consider landscapes as aggregations of mean-
ingful objects corresponding to ground entities and patches of surface cover25. In addition to being applied to 
extract features in urban and rural landscapes, OBIA techniques help provide detailed classifications of natural 
plant communities that are represented in wetland areas26,27. Previous studies have found that the OBIA approach 
performed better than the pixel-based approach for classifying urban areas and mapping LULC and LULC 
changes20,28. Fournier et al. reviewed mapping methods for wetland application and identified the OBIA approach 
as the most appropriate due to its ability to solve the spatial heterogeneity of wetlands19,29. OBIA approaches have 
also been successfully used in wetlands research to classify major wetland cover types25 wetland vegetation spe-
cies27 and map wetlands in both natural and human landscapes19.

There are various methods for using satellites to determine wetland change in urban environments30–33. These 
methods can be broadly grouped into two general types, change enhancement methods and ‘from-to’ change 
information extraction methods. The former method (for example, image differencing) does not explicitly iden-
tify the types of land that have changed and only provides change/no change information and perhaps the rela-
tive magnitude of the change. The latter method, the post-classification approach, is one of the most commonly 
used and effective techniques11. Post-classification comparison methods use separate classifications for images 
acquired at different times to produce difference maps from which ‘from-to’ change information can be gen-
erated34. In addition, ‘from-to’ quantitative information about the type of LULC changes can be gained from a 
cross-tabulated change matrix33.

The Xixi Wetland is located in downtown Hangzhou, a city in China known for its rapid economic develop-
ment and tourism, and it is a Ramsar Site11. However, with economic development and the expansion of the city, 
this area of wetlands has decreased rapidly. Its wetland functions have gradually become degraded, environmental 
pollution has substantially increased, and wetlands protection has become more difficult. The Xixi Wetland has 
faced combined pressures from natural and human factors. For protection purposes, quantitative wetland change 
detection and a driving factors analysis are essential to better understanding the relationship between anthropic 
activities and natural wetland systems.

This paper describes the methods and results of classifications and post-classification change detection of 
multi-temporal high spatial resolution satellite imagery of the Xixi Wetland for 2000, 2005, 2007, 2009, and 2013. 
The main objectives of this study are as follows: (1) develop a change detection method to map and monitor urban 
wetland changes between 2000 and 2013; (2) assess the accuracy of multi-temporal classifications; (3) quantify 
the area of change and spatial distribution change for urban wetlands; and (4) analyse urban wetland loss patterns 
and relate them to driving factors.

Materials
Study area. The Xixi Wetland, which is known as the “kidneys of the earth”, was selected as the study area 
(Fig. 1). The wetland complex is located west of Hangzhou City between 30°15′–30°17′N and 120°1′–120°6′E. 
The wetland previously covered an area as large as 60 km2, but it has shrunk to 11 km2 because of urbanization in 
Hangzhou over the past 30 years. The wetland mainly contains fish ponds, rivers, and vegetation communities. In 
addition, the wetland also contains centralized villages and a few scattered areas of houses and trees35. The circled 
squares in the map of the Xixi Wetland show the rapidly developing economic zone. The area of wetlands has 
gradually been reduced due to industrialization and urbanization, including building construction, reclamation, 
and pollution. The resources in the Xixi Wetland face combined pressures from natural and socio-economic fac-
tors that must be resolved. Therefore, the Hangzhou Xixi National Wetland Park was constructed in 2005 to pro-
tect the Xixi Wetland. In 2009, it was successfully included in the “List of Wetlands of International Importance 
(the Ramsar List)”36.

Data acquisition and processing. High spatial resolution satellite imagery. To detect LULC changes, 
images that represent several stages within the same season are preferable. However, it was difficult to find 
time-series of high spatial resolution satellite images that were well matched within the same season for several 
reasons but primarily due to the weather conditions in this area. Five cloud-free images were acquired in January 
2000, December 2005, January 2007, December 2009, and December 2013, covering the whole Xixi Wetland 
area, and these images were selected under the constraints of limited suitable images in the archives (Table 1). All 
images were acquired from the Siwei Worldview Technology (Beijing) Co., Ltd. (www.siweidg.com). All images 
were provided in the Universal Transvers Mercator projection (UTM Zone 50 N) and WGS84 datum. These were 
careful georeferenced to a root mean squared error within 2 pixels using a 1st-order polynomial transformation 
method. Finally, they were clipped to the same extent.

Reference data. Reference data were developed for each of the five years and then randomly divided for clas-
sifier training and accuracy assessment. The reference data for 2013 were a field verified set of reference sites 
collected in the early spring of 2012. This data set was created by collecting cover type information for a stratified 
random sample of 160 points with 20 points per level III class. The strata were from a previous classification 
result of 2000 IKONOS imagery. At each sample point, a field computer with ArcPAD® 10.2 by ESRI and GPS 
were used to digitize a polygon of the area from the 2013 cover type identified, with other cover types near the 
sampled point. Reference data for the 2000 were derived from interpretation of very high resolution (VHR) aerial 



www.nature.com/scientificreports/

3SCIENTIfIC REPORTS |  (2018) 8:7409  | DOI:10.1038/s41598-018-25823-9

photographs acquired in the summer of 2000 that were produced by the Zhejiang Administration of Surveying 
Mapping and Geoinformation. Reference data for 2005, 2007 and 2009 were derived from the interpretation 
of historical Google Earth imagery, and the data were acquired at a similar time. The reference data included 
approximately 200 polygons for each year; approximately 70% of the data were used for training and 30% for the 
accuracy assessment.

Methods
Classification system. Currently, many international organizations and scientists have developed wetland 
classification systems based on different research perspectives37. The Land cover classification system developed 
by Anderson et al.34 and the Ramsar Convention database10 are used to define classification system used in this. 
The Ramsar definition of wetlands is broad, including not only vegetated wetlands but also lakes, coral reefs, and 
even underground caves. Therefore, the classification system is an open-ended, three-level hierarchical system 
organized by classes and types to provide robust information on wetlands (Table 2). At the first level, all land types 
are defined as urban wetlands or non-wetland areas according to the Ramsar definition. At the next level, urban 
wetland is divided into vegetation and water, and non-wetland mainly contains urban areas. At the third level, 
vegetation is classified by the dominant vegetation type: forest, herbaceous, cropland, or marsh vegetation; water 
is classified as river or pond; urban is classified as building or road.

Feature extraction. Feature extraction uses an object-based approach to classify imagery, where an object 
(also called a segment) is a group of pixels with similar spectral, spatial, and/or texture attributes. Traditional 
classification methods are pixel-based, meaning that the spectral information in each pixel is used to classify 
the imagery. With high-resolution panchromatic or multispectral imagery, an object-based method offers more 
flexibility in terms of the types of features that can be extracted. In this study, the object-based approach in the 

Figure 1. Location of the study area. The aerial photograph was produced by high spatial resolution satellite 
imagery: WorldView2 data on May 17, 2012. The data were acquired from Siwei Worldview Technology 
(Beijing) Co., Ltd. For more information about Siwei Worldview Technology (Beijing) Co., Ltd., please visit 
www.siweidg.com. This figure was created using ArcGIS® software by ESRI. ArcGIS 10.2 and ArcMap 10.2, 
which are the intellectual property of ESRI and are used here in under license. For more information about ESRI 
software, please visit www.esri.com.
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ENVI® 5.3.1 by EVIS (Exelis Visual Information Solutions, Inc., Broomfield, CO, USA) was used for wetland 
information extraction. This approach was mainly a two-step process, segmentation and classification38. In addi-
tion, to improve the accuracy of classification results, a visual interpretation based on high resolution images from 
Google Earth imagery was used for post-classification.

Feature development. Six input layers were used for the image segmentation process, including four multispec-
tral layers (blue, green, red, and near-infrared), a normalized difference vegetation index (NDVI) layer, and a 
standard deviation texture layer19. The NDVI is a simple graphical indicator that can be used to assess whether 
the pixel contains live green vegetation or not, and can also be used to separate water from dry land and delin-
eate wetland boundaries19. The NDVI layer was calculated from the red and near-infrared bands of the satellite 
images. Texture refers to the spatial variation of image tone as a function of scale and can reveal differences 
between classes in a digital image. Texture can also be created from satellite imagery without additional data. 
According to the method proposed by Mui et al., we created a standard deviation texture layer using a 3 × 3 pixel 
moving filter window19. Finally, all input layers were weighted equally in the segmentation process19.

Image segmentation. Segmentation is the process of partitioning an image into objects by grouping neighbour-
ing pixels with common values. The objects in the image ideally correspond to real-world features. Effective 
segmentation ensures that classification results are more accurate. An edge-based segmentation algorithm, which 
computes a gradient map based on a user defined scale level, was used in this study. The scale level was chosen so 
that adjacent pixels with similar characteristics could be grouped. Since the aim of the study was to classify the 
wetland into several levels of cover types, a scale level of 25% was chosen after several iterations. We decided not 
to merge the images after segmentation to avoid any loss of information. Texture attributes were computed for 
each kernel, and 3 was selected as the default value. Finally, watershed transformation was applied to the modified 
gradient map to produce the final segmentation results39.

Image classification. Training samples were selected using high spatial resolution satellite imagery and ground 
truth data obtained through field surveys. A minimum of 30 training samples were chosen for each class19. 
Approximately 20 samples were directly imported from field datasets and approximately 10 samples were added 
by interpretation. Different classification methods have their own merits and can achieve different classification 

Sensor Acquisition date Spatial resolution Spectral resolution

IKONOS 20 January 2000 Panchromatic: 0.82 m
Multispectral: 3.28 m

Blue: 445–516 nm
Green: 506–595 nm
Red: 632–698 nm
Near infrared: 757–853 nm

IKONOS 19 December 2005 — —

QuickBird 28 January 2007 Panchromatic: 0.73 m
Multispectral: 2.90 m

Blue: 450–520 nm
Green: 520–600 nm
Red: 630–690 nm
Near infrared: 760–900 nm

QuickBird 30 December 2009 — —

WorldView2 29 December 2013 Panchromatic: 0.52 m
Multispectral: 2.40 m

Blue: 450–510 nm
Green: 510–580 nm
Red: 630–690 nm
Near infrared: 770–895 nm

Table 1. Satellite imagery information.

Level I Level II Level III Description

Urban wetland

Vegetation

Forest Deciduous forest land, evergreen forest land, mixed forest land, orchards, groves

Herbaceous
Land where vegetation is dominated by a mix of grasses, grass-like plants, 
shrubs or bush; either naturally occurring or modified (e.g., roadside 
vegetation, meadows, mixed composition short vegetation upland)

Cropland Crop fields, pasture, and bare fields

Marsh
A wetland that is dominated by herbaceous rather than woody plant species. At 
the edges of lakes and streams, where they form a transition between the aquatic 
and terrestrial ecosystems.

Water
River Such as stream, creek, brook, rivulet, and rill

Pond A body of standing water, either natural or artificial, that is usually smaller than 
a lake

Non-wetland Urban
Building Areas of intensive use where much of the land is covered by man-made 

structures (e.g., residential, commercial, industrial, utility)

Road Such as parkways, avenues, freeways, interstates, highways, and tertiary local 
roads.

Table 2. LULC classification system.
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results. While the nearest neighbour, or k-NN approach, is among the simplest of all machine learning algo-
rithms, it performs as well as more complicated classifiers such as support vector machines (SVM) or neural net. 
In this study a nearest neighbour classifier (non-parametric classifier) was selected to classify images accord-
ing to the defined classification system. The k-NN approach is a very intuitive method that classifies unlabelled 
examples based on their similarity to examples in the training set. The separation distance between classes was 
calculated based on the mean feature values of the pixels in each object (calculated from the input layers). The 
k-NN process involved selecting training samples, comparing sample attributes, and refining training samples 
until a satisfactory result was achieved19. After the k-NN method runs, each segment is assigned the class with the 
highest-class confidence value.

Change detection. Following the classification results from the individual years, a multi-date 
post-classification comparison change detection algorithm was used to determine the changes in land cover 
for four intervals, 2000 to 2005, 2005 to 2007, 2007 to 2009, and 2009 to 2013. This process is the most com-
mon approach for change detection and has been successfully used in several land-use changes studies34,40. The 
post-classification approach provides “from-to” change information, and the type of landscape transformations 
that have occurred can be easily calculated and mapped. A change detection map of “from-to” change informa-
tion was derived for each of the five classification maps.

Accuracy assessment. An evaluation of the quality of a map derived from remote sensing data is impor-
tant not only for verifying the quality of the map and its fitness for a specific purpose but also for understanding 

Figure 2. Land-cover classification maps from 2000 to 2013 for the Xixi Wetlands. The maps were produced 
by high spatial resolution satellite imagery: IKONOS data on January 20, 2000 and December 19, 2005, 
QuickBird data on January 28, 2007 and December 30, 2009, and WorldView2 data on December 29, 2013. The 
images were acquired from Siwei Worldview Technology (Beijing) Co., Ltd. For more information about Siwei 
Worldview Technology (Beijing) Co., Ltd., please visit www.siweidg.com. This figure was created using ENVI® 
software by EVIS. ENVI 5.3.1 is the intellectual property of EVIS and is used here under license. For more 
information about ENVI software, please visit http://www.harrisgeospatial.com/SoftwareTechnology/ENVI.
aspx.

http://www.harrisgeospatial.com/SoftwareTechnology/ENVI.aspx
http://www.harrisgeospatial.com/SoftwareTechnology/ENVI.aspx
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the errors in a map and their likely implications. Many methods have been used for evaluating map accuracy. 
The most popular method includes the confusion matrix, used for maps derived from most types of classifica-
tion methods10. In this study, overall accuracy and kappa coefficient were used for accuracy assessment19. The 
kappa coefficient is a measure of chance-corrected agreement between the actual land-cover classes and the clas-
sified land-cover classes in remote sensing. In this study, the kappa coefficient was calculated using the following 
equation:
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where r represents the number of rows in the matrix, nii represents the number of observations in row i and col-
umn i, n+i and ni+ are the marginal totals of row i, column i, respectively, and N represents the total number of 
observations in the matrix.

For most purposes, kappa values are interpreted as follows: (1) values ≥0.75 indicate excellent agreement 
beyond chance, (2) values ≥0.4 to <0.75 indicate fair to good agreement beyond chance, and (3) values <0.4 
indicate poor agreement beyond chance10.

Results
Accuracy assessment of the map. A quantitative accuracy assessment was conducted to evaluate the 
accuracies of the maps. A total of 60 random samples were selected for the accuracy assessment. Sample selection 
was based upon very high resolution aerial photographs and Google Earth imagery. The samples were divided 
into verification data and training data. Ground truth data was collected in February 2012. The overall accuracies 
were calculated as 91.53% for 2000, 87.69% for 2005, 89.84% for 2007, 84.47% for 2009, and 88.24% for 2013. 
Kappa coefficients were calculated as 0.82 for 2000, 0.71 for 2005, 0.73 for 2007, 0.69 for 2009, and 0.72 for 2013. 
These results suggest that all five maps show an acceptable range of agreement with the reference data used for 
the accuracy assessment.

Classification and change maps. Classification maps were generated for all five years (Fig. 2), and the 
individual class areas and change statistics for the five years are summarized in Fig. 3. From 2000 to 2013, the 
building land-cover type increased the most in terms of area (by approximately 4.84 km2), and the herbaceous 
land-cover type increased by approximately 2.25 km2, while the pond land-cover type decreased the most in terms 
of area (by approximately 4.3 km2), followed by forest (decreased by approximately 1.42 km2), river (decreased by 
approximately 0.66 km2), and marsh (decreased by approximately 0.61 km2). In terms of the percent change in 
area, the non-wetland (urban) land-cover type increased by approximately 100% from 2000 to 2013, while wet-
lands (vegetation and water) decreased by approximately 20%, and pond decreased the most (by approximately 
50%).

To further evaluate the results of the LULC conversions, matrices of LULC changes from 2000 to 2005, 2005 
to 2007, 2007 to 2009, 2009 to 2013 and 2000 to 2013 were calculated (Tables 3 and 4). In the tables, unchanged 
pixels are located along the major diagonal of the matrix. From 2000 to 2005, pond (approximately 1.17 km2) and 
forest (approximately 1.03 km2) were the main land-cover types that changed to non-wetland areas. From 2005 
to 2007, herbaceous (approximately 0.62 km2) and cropland (approximately 0.35 km2) were the main land-cover 
types that changed to non-wetland areas. From 2007 to 2009, herbaceous (approximately 1.47 km2) and forest 
(approximately 0.4 km2) were the main land-cover types that changed to non-wetland areas. Compared to the 
last period, the rate of change increased. From 2009 to 2013, herbaceous (approximately 2.94 km2) and pond 

Figure 3. The change statistics for five years (2000, 2005, 2007, 2009 and 2013). This figure was created using 
Origin® 2018 by OriginLab Corporation. Origin is an industry-leading scientific graphing and data analysis 
software and is used here under license. For more information about Origin software, please visit www.
originlab.com.
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2005

2000

2005 TotalRiver Pond Marsh Herbaceous Forest Cropland Building Road

River 0.68 0.38 0.07 0.15 0.2 0.02 0.02 0.09 1.6

Pond 0.32 4.43 0.17 0.21 0.45 0.05 0.03 0.21 5.86

Marsh 0.01 0.15 0.01 0.04 0.03 0 0.01 0.02 0.27

Herbaceous 0.02 0.78 0.19 3.36 2.22 0.29 0.49 0.55 8.07

Forest 0.32 1.24 0.21 0.71 3.85 0.13 0.09 0.43 6.98

Cropland 0.03 0.17 0.05 0.53 0.19 0.08 0.25 0.11 1.41

Building 0.18 0.9 0.19 0.49 0.71 0.16 1.36 0.88 4.87

Road 0.05 0.27 0.05 0.25 0.32 0.04 0.2 0.77 1.96

2000 Total 1.79 8.31 0.93 5.74 7.97 0.75 2.46 3.07 31.03

2007 2005 2007 Total

River 1.46 0.01 0 0.04 0.02 0.01 0 0.02 1.56

Pond 0.01 5.51 0 0.07 0.06 0.01 0.02 0.01 5.69

Marsh 0 0.02 0.25 0.08 0.04 0.04 0.18 0 0.61

Herbaceous 0.07 0.1 0.01 6.83 0.43 0.1 0.49 0.06 8.1

Forest 0.02 0.07 0 0.26 6.28 0.05 0.05 0.01 6.76

Cropland 0.01 0.05 0 0.18 0.02 0.85 0.06 0 1.18

Building 0.01 0.04 0 0.3 0.04 0.25 3.84 0.02 4.49

Road 0.02 0.06 0 0.32 0.09 0.1 0.22 1.84 2.64

2005 Total 1.6 5.86 0.27 8.07 6.98 1.41 4.87 1.96 31.03

2009 2007 2009 Total

River 0.96 0.04 0 0.11 0.32 0.02 0.02 0.03 1.5

Pond 0.09 5.03 0.01 0.2 0.64 0.02 0.05 0.07 6.1

Marsh 0 0.01 0.4 0 0.01 0 0 0.02 0.45

Herbaceous 0.35 0.24 0.13 5.48 1.48 0.18 0.25 0.87 8.97

Forest 0.11 0.15 0.02 0.4 3.87 0.01 0.05 0.1 4.69

Cropland 0 0.01 0 0.45 0.03 0.63 0.02 0.04 1.18

Building 0 0.13 0.03 0.74 0.22 0.23 4.04 0.16 5.56

Road 0.05 0.08 0.02 0.73 0.18 0.09 0.05 1.37 2.57

2007 Total 1.56 5.69 0.61 8.1 6.76 1.18 4.49 2.64 31.03

2013 2009 2013 Total

River 0.44 0.21 0 0.28 0.08 0.01 0.06 0.05 1.13

Pond 0.37 2.4 0.06 0.68 0.26 0.03 0.12 0.09 4.01

Marsh 0.01 0.16 0 0.06 0.02 0.01 0.02 0.03 0.32

Herbaceous 0.25 1.28 0.11 3.06 1.1 0.41 1.15 0.62 7.99

Forest 0.24 1.17 0.06 1.67 2.38 0.1 0.64 0.3 6.55

Cropland 0.01 0.1 0.01 0.29 0.11 0.07 0.11 0.04 0.73

Building 0.12 0.6 0.14 2.09 0.56 0.41 2.91 0.48 7.3

Road 0.06 0.17 0.07 0.85 0.19 0.15 0.55 0.96 3

2009 Total 1.5 6.1 0.45 8.97 4.69 1.18 5.56 2.57 31.03

Table 3. Matrices of LULC and changes (km2) from 2000 to 2005, 2005 to 2007, 2007 to 2009 and 2009 to 2013.

2013

2000 2013 
TotalRiver Pond Marsh Herbaceous Forest Cropland Building Road

River 0.48 0.26 0.04 0.1 0.14 0.01 0.02 0.07 1.13

Pond 0.4 2.54 0.11 0.35 0.43 0.01 0.02 0.14 4.01

Marsh 0.01 0.15 0.02 0.04 0.08 0.01 0 0.02 0.32

Herbaceous 0.35 2.07 0.23 1.98 2.03 0.15 0.25 0.92 7.99

Forest 0.28 1.44 0.21 0.64 3.02 0.06 0.38 0.52 6.55

Cropland 0.03 0.14 0.03 0.32 0.15 0.01 0.01 0.04 0.73

Building 0.17 1.28 0.23 1.65 1.63 0.22 1.5 0.64 7.3

Road 0.07 0.43 0.06 0.66 0.49 0.28 0.27 0.73 3

2000 Total 1.79 8.31 0.93 5.74 7.97 0.75 2.46 3.07 31.03

Table 4. Matrices of LULC and changes (km2) from 2000 to 2013.
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(approximately 0.77 km2) were the main land-cover types that changed to non-wetland areas. The greatest 
increase in non-wetland area occurred from 2007 to 2013. Based on the matrices of the LULC changes, her-
baceous, forest, and pond are the areas most likely to be converted to new buildings and roads. In addition, we 
found that the main change areas are distributed around the Xixi National Wetland Park because the areas in the 
park are strictly protected by law36. To analyse how many wetlands were converted to the non-wetland land-cover 
type, we calculated the specific change types shown in Table 5. The results show that herbaceous (32.22%), forest 
(29.57%) and pond (23.85%) are the main land-cover types that changed to non-wetland, followed by cropland 
(6.97%), marsh (4.04%) and river (3.35%).

Analysis of change patterns. Although similar statistics could be generated for other units such as county, 
township, or census tract, etc., the above change statistics shed minimal light on the question of where LULC 
changes are occurring. However, by constructing a change detection map (Fig. 4), the advantages of satellite 
remote sensing in spatially disaggregating change statistics can be more fully appreciated. Figure 4 shows the 
process of urban wetland loss in the study area from 2000 to 2005 (approximately 1.81 km2/year), 2005 to 2007 
(approximately 0.61 km2/year), 2007 to 2009 (approximately 1.26 km2/year) and 2009 to 2013 (approximately 
1.35 km2/year). Therefore, urban wetlands declined most from 2000 to 2005, followed by 2009 to 2013 and 2007 to 
2009. The unchanged areas from 2000 to 2013 were about 15.4 km2. In addition, after 2005, in the protected area, 
urban wetland areas only slightly declined, because the local government established Xixi National Wetland Park 
to protect Xixi Wetlands in 2005. However, the regions outside of the protected area declined rapidly, especially 
after 2007. Based on Fig. 4, the increase in urban areas is mainly distributed west and southeast of the study area, 
and the greatest increase occurred from 2007 to 2013. In summary, information from satellite remote sensing can 
play a significant role in quantifying and understanding the nature of changes in LULC and where the changes are 
occurring. This information is essential to planning for urban growth and development.

Discussion and Conclusions
The LULC changes in the Xixi Wetland are affected by many factors including natural and human factors. Natural 
factors, which often operate on large spatial and temporal scales, combine with landscape effects to control 
changes in wetlands at a large environmental scale. However, human-related factors operate at short time scales 
and are important driving forces that affect changes in wetlands, especially in urban wetlands. In order to protect 
urban wetlands, the Xixi National Wetland Park was constructed in 2005 and the local government established 
several laws to protect wetlands in the park35. However, these laws only protect the wetlands inside the park, 
and the wetlands outside the park are not protected. The local economy developed rapidly because of tourist 

Change type Specific change types Area (km2) Percent (%)

Wetland to 
non-wetland

River to non-wetland (urban) 0.24 3.35

Pond to non-wetland (urban) 1.71 23.85

Marsh to non-wetland (urban) 0.29 4.04

Herbaceous to non-wetland (urban) 2.31 32.22

Forest to non-wetland (urban) 2.12 29.57

Cropland to non-wetland (urban) 0.50 6.97

Table 5. Specific change types from 2000 to 2013.

Figure 4. Urban wetland loss from 2000 to 2013. This figure was created using ArcGIS® software by ESRI. 
ArcGIS 10.2 and ArcMap 10.2 are the intellectual property of ESRI and are used here under license. For more 
information about ESRI software, please visit www.esri.com.
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attractions, especially after 200741. Therefore, while the region inside of the protected area remains stable, the 
adjacent area declined rapidly. As shown in Fig. 4, most of the wetland changes occurred west and southeast of the 
study area, and patterns emerged that highlight urbanization activity (e.g., real estate exploitation and population 
growth). The Xixi Wetland is a primary example of the nature-based tourism attractions in the southern part 
of China, and it is the first national urban wetland area in China to receive five A grades for tourist attractions. 
Because of the comfortable environment, many real estate enterprises are investing in the area and developing and 
building houses around the Xixi National Wetland Park41. Many houses have even been built directly on herba-
ceous, forest, and pond land-cover types. Many rivers and ponds have been filled, and landscape connections have 
been altered by the buildings and roads found throughout the wetlands. Therefore, large areas of urban wetlands 
have been replaced by built-up land due to urbanization42.

High spatial resolution satellite images covering several years and an object-based classification method were 
used to interpret the study area, classify different types of wetlands and analyse spatial and subordinate relation-
ships based on the reference data. This approach guarantees the consistency of the wetlands classification system 
and allows for a rapid acquisition of historical data for the wetlands. Therefore, this method plays an impor-
tant role in analysing the variation rules and driving mechanisms of urban wetlands. However, there are some 
uncertainties and errors in the change detection results, which are mainly due to variations in the data and the 
classification accuracy. For example, the remote sensing images were obtained over five years, from 2000 to 2013, 
and between January and December. Next, some of the land-cover types such as forest and herbaceous are easily 
confused in terms of their spectral characteristics, which can affect the classification. Moreover, training samples 
of every LULC type will affect the classification accuracy.
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