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A DFA-based bivariate regression 
model for estimating the 
dependence of PM2.5 among 
neighbouring cities
Fang Wang1,2, Lin Wang2 & Yuming Chen  3

On the basis of detrended fluctuation analysis (DFA), we propose a new bivariate linear regression 
model. This new model provides estimators of multi-scale regression coefficients to measure the 
dependence between variables and corresponding variables of interest with multi-scales. Numerical 
tests are performed to illustrate that the proposed DFA-bsaed regression estimators are capable of 
accurately depicting the dependence between the variables of interest and can be used to identify 
different dependence at different time scales. We apply this model to analyze the PM2.5 series of three 
adjacent cities (Beijing, Tianjin, and Baoding) in Northern China. The estimated regression coefficients 
confirmed the dependence of PM2.5 among the three cities and illustrated that each city has different 
influence on the others at different seasons and at different time scales. Two statistics based on 
the scale-dependent t-statistic and the partial detrended cross-correlation coefficient are used to 
demonstrate the significance of the dependence. Three new scale-dependent evaluation indices show 
that the new DFA-based bivariate regression model can provide rich information on studied variables.

In recent years, air pollution has become a more and more serious problem around the world. The new air quality 
model presented by the World Health Organization in 2016 confirmed that 92% of the world’s population lives 
in areas where air quality levels exceed their limits1. Fortunately, more and more governments have realized the 
importance of managing air pollution and some actions have been placed. Nowadays, a common topic around the 
world is the governance of the air pollution source such as smog (the main ingredient is fine particulate matter). 
Many researchers have been involved in the study on the cause and propagation of smog2–9. Modern statistic 
methods provide some new perspectives to assess smog trends and propagation characteristics. Among them, 
most studies have focused on studying the correlations among various air pollution indicators including air pol-
lution index (API), air quality index (AQI), fine particulate matter of PM2.5 (diameter ≤ 2.5 μm) concentrations, 
and PM10 (diameter ≤ 10 μm) concentrations, and very limited studies considered the correlations among neigh-
boring areas. A common sense is that smog produced at one source place can spread to surrounding areas6–10. 
Therefore, it is more practical to explore the dependence of air pollution indicators among adjacent cities as it 
helps assess the causes of local smog and its spread behavior. It has been found by a newly proposed time-lagged 
cross-correlation coefficient in ref.10 that there are different degrees of correlation for PM2.5 series between four 
neighboring cities in Northern China. However, what has not been investigated is how the PM2.5 series of one 
city depends on those of the neighbouring cities. In this work, we will develop a detrended fluctuation analysis 
(DFA)-based bivariate regression model to investigate this dependence.

The simplest and maturest method to describe the dependence of variables is the linear regression. However, 
the information gained from the traditional linear regression cannot fully meet our need of investigation on the 
dependence among different variables at different time periods. On the other hand, note that the DFA proposed in 
1990s11,12 performs excellently in analyzing the long-range correlations13 of a nonstationary series with fractality 
and multifractality14,15 at different time-scales. To obtain the cross-correlation between two nonstationary series, 
DFA was extended to the detrended cross-correlation analysis (DCCA)16. By defining scale-dependent detrended 
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fluctuation functions, the methods of DFA and DCCA together with their extensions have been applied in a wide 
range of disciplines17–30. Since the ordinary least squares (OLS) method expresses the estimated parameters of 
standard regression framework as a form of variances and covariances, it builds a bridge between the regres-
sion framework and the family of DFA/DCCA as the latter can also produce variances and covariances. Then, 
the idea of estimating multiple time scale regression coefficients can be achieved by the DFA/DCCA. Recently, 
Kristoufek31 constructed a simple DFA-based regression framework exactly by this bridge. The selected examples 
show the relationship between the pair of variables varies strongly across scales.

In this work, we focus on the interaction of PM2.5 series of three adjacent cities in Northern China, namely, 
Beijing, Tianjin, and Baoding. The three cities form a triangular shape in the map. The distances between Beijing 
and Tianjin, Beijing and Baoding, and Tianjin and Baoding are about 115 km, 140 km, and 150 km, respectively. 
All three cities have a population of more than 10 million and have been greatly affected by heavy smog in recent 
years. The real-time data of PM2.5 series of these three cities from December 1, 2013 to November 30, 2016 are 
chosen for our consideration, which are taken from the Ministry of Environmental Protection of the People’s 
Republic of China (http://datacenter.mep.gov.cn). The original data show an obvious periodic characteristic and 
roughly similar trends among the three cities, which imply that there is a possible relevance between per two cities 
of them. To verify that, the partial correlation technique is employed to get the intrinsic relations between two 
cities by deleting the interference from the third variable. Four seasons, classified as winter (December, January, 
and February), spring (March, April, and May), summer (June, July, and August), and fall (September, October, 
and November), are considered. The results are listed in Table 1.

In Table 1, we also list the t-statistics ( = −

−
t r N

r12,3
3

1 12,3
2

, where r12,3 denotes the partial correlation coefficient 

between the first and second variables eliminating the effects of the third one, N − 3 is the degree of freedom) of 
the partial correlation coefficients to assess the statistical significance at the given significance level. 
Unsurprisingly, Table 1 shows that the correlations of PM2.5 between per two cities are of statistical significance. 
It explains that the air quality in one city of Northern China cannot be irrelevant to that of its neighbouring cities, 
which implies potential dependence among the three cities. However, we also note in Table 1 that the degrees of 
relevance are different among different cities and in different seasons though all of them are significant.

To fully detect and quantify the dependence among the PM2.5 series of the above-mentioned three cities, 
in this work, we construct a new bivariate regression framework which prevails the DFA method and allows 
us to investigate the dependence of three nonstationary series with multiple time scales. With the DFA-based 
variance instead of the standard variance, this new DFA bivariate regression model provides more information 
on the dependence among variables at different time scales. We organize the rest of this paper as follows. The 
performance of the proposed DFA regression model and the results on the application to PM2.5 series analysis 
are reported and discussed in the following section, which is followed by our conclusions. The methodologies 
including the standard regression method, the DFA method, and the DFA-based regression method are intro-
duced at the end of this paper.

Results and Discussions
Performance of DFA estimators. The bivariate DFA-based regression model produces two time scale-
based regression coefficients. This allows us to detect the dependence of a response variable and two independ-
ent variables at different time scales. In order to examine the validity of the model and show its advantages, 
in this section, we perform two numerical tests on the non-stationary bivariate regression frameworks 
Y = β0 + β1X1 + β2X2 + ε.

In the first test, we investigate the performance of the DFA estimators under different levels of long-term 
dependence in X1, X2, and Y. According to31, the setting I is given as below: two artificial series X1 and X2 with 
length 10000 are generated by ARFIMA(0, d, 0) process with identical fractional integration parameter (d) and 
independent Gaussian noises (ξi(t), i = 1 and 2) as ξ= ∑ −=

∞X t a d t n( ) ( ) ( )i n n i0 . The quantity an(d) is defined by 
an(d) = Γ(n − d)/[Γ(−d)Γ(n + 1)], where Γ(⋅) is the Gamma function. The error-term ε is set as a standard 
Gaussian noise so that the response variable Y has the same parameter d as the two independent variables. The 
regression coefficients are set as β0 = β1 = 1 and β2 = 2. Figure 1 shows mean values and standard deviation of the 
two DFA estimators β̂i

DFA
 (i = 1 and 2) for the generated series with d ranging from −0.5 to 0.5 (at the step size of 

0.1). The estimators are averaged over scales between 10 and 1000 with a logarithmic isometric step. Each case is 
run 1000 times to eliminate the noise interference. It is clear that the two estimators locate the two given regres-
sion coefficients of 1 (Fig. 1a) and 2 (Fig. 1b) unbiasedly, and are independent of the value of d. In addition, the 
standard deviations of both estimators decrease with the increasing memory. The good performance shows that 

Winter Spring Summer Fall

Beijing vs. Tianjin 0.3048 0.3072 0.2625 0.1660

t-statistics 25.8011* 26.2714* 22.1366* 13.2672*

Beijing vs. Baoding 0.2745 0.4545 0.4815 0.4468

t-statistics 23.0124* 41.5216* 44.7079* 39.3711*

Tianjin vs. Baoding 0.5570 0.4517 0.3461 0.5992

t-statistics 54.0752* 41.1961* 30.0154* 58.9941*

Table 1. Partial correlation coefficients and t-statistics between per two cities of Beijing, Tianjin, and Baoding 
in four seasons. Note: *Indicates statistical significance with 0.01 significance level.

http://datacenter.mep.gov.cn
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the method is feasible. On the other hand, to investigate the performance of the DFA estimators faced with a 
long-range dependent error-term ε, we use setting II given as: the memory parameter d is fixed at 0.4 for both X1 
and X2, and the ε is produced by an ARFIMA process with dε varying from −0.5 to 0.5. Other settings are as those 
in setting I. Figure 2 records similar information as that in Fig. 1. Although the fluctuation of DFA estimators 
increases with dε, which is expected due to an increasing weight of the error-term in the dynamics of Y with the 
increasing memory of the error-term, we are satisfied to find that the two estimators are still unbiased pointing to 
the given values with a narrow range for each level of memory of the error-terms.

Figure 1. Estimated two DFA Regression coefficients with setting I of ARFIMA model. Mean values of the DFA 
estimators and standard deviation are shown as solid line (left axis) and dashed line (right axis), respectively. X1 
and X2 are two independent variables generated by ARFIMA model with the same changing fractional 
integration parameter (x-axis) and independent Gaussian noise. Y = 1 + X1 + 2X2 + ε, ε is a standard Gaussian 
noise error-term. Both of them are of length 10000 and repeated 1000 times. (a) is the result for the estimated 
β̂

DFA
1  and (b) is for the estimated β̂

DFA
2 . The DFA estimators β1 and β2 are unbiased at 1 and 2 with the error-

term ±0.002 and ±0.005, respectively, and their standard deviations decrease with the memory strength.

Figure 2. Estimated two DFA Regression coefficients with setting II of ARFIMA model with the same legend as 
in Fig. 1. X1 and X2 are generated by ARFIMA series with the same fixed d = 0.4. ε is an ARFIMA process with 
changing parameter dε (x-axis). The remaining settings are the same as those in case I. Results show that the 
DFA estimators β1 and β2 are unbiased at 1 and 2 with the error-term ±0.002 and ±0.003, respectively, while the 
standard deviations increase with the error-term memory strength.
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Our second numerical test aims to show that the DFA estimators are able to identify the dependence of studied 
variables at different time scales whereas the classical method cannot. To this end, a binomial multifractal series 
(BMFs) is employed to be regarded as the independent variable X1, which is constructed as 
X1 = pn−n[k−1](1 − p)n[k−1], k = 1, 2, …, 2n, where the parameter p ∈ (0, 0.5) (We take p = 0.3 in our test), n[k] 
denotes the number of digit 1 in the binary representation of the index k. The variable X2 is a Gauss variable with 
0 mean and 0.0001 standard deviation. Both X1 and X2 are of length 215. The bivariate regression framework 
Y = β0 + β1X1 + β2X2 + ε is set with the same coefficients as the first test (β0 = β1 = 1 and β2 = 2). The error-term 
ε is the Gauss noise of the same strength as X2. For the BMFs X1, we remove all values smaller than 0.00001 so that 
only a few of the largest elements are left. In their places, we substitute Gaussian distributed random numbers 
with 0 mean and 0.0001 standard deviation. Then we obtain a binomial cascade series embedded in random 
noise. We analyze the dependence between the response variable Y and two independent variables and find that 
the estimated β̂

DFA
2  is unbiased at 2 with a desirable error bar for every time scale, as shown in Fig. 3. However, 

the performance of β̂
DFA

1  has changed a lot. The dependence between Y and X1 is obviously less than the given 
value at the smaller scales contrary to the larger ones. This is because in the smaller scales, the dependency has 
been destroyed by the random noise. Our DFA estimators have the capability to recognize this effect while the 
classical estimators fail to do so (see the errorbar with circle symbol in Fig. 3).

Figure 3. Estimated two DFA Regression coefficients with BMFs model.

Figure 4. Bivariate DFA regression of Beijing. Main planes of subplots (a–d) show estimated DFA regression 
coefficients β1(n) and β2(n) of winter, spring, summer, and fall, respectively. Gray zones denote 95% confidence 
intervals. Inserts are standard deviations of β̂ n( )

DFA
1  and β̂ n( )

DFA
2 . Subscripts 1 and 2 denote Tianjin and 

Baoding, respectively.
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Performance of the three models’ regression coefficients. As mentioned above, air pollution in 
Northern China is very serious in recent years. Fine particulate matter from industrial exhaust and smoke dust 
forms smog to fill in the air. We now apply our DFA regression model to investigate the dependence of PM2.5 
series in these three cities. We build three bivariate models for Beijing, Tianjin, and Baoding, respectively. In 
Model I, the dependent variable (Y) is the PM2.5 series of Beijing while the two independent variables are the 
PM2.5 series of Tianjin (X1) and Baoding (X2); in Model II, Y is the PM2.5 series of Tianjin, X1 is the PM2.5 
series of Beijing and X2 is the PM2.5 series of Baoding; in Model III, Y is the PM2.5 series of Baoding, X1 and X2 
stand for the PM2.5 series in Beijing and Tianjin, respectively. In this section, we first show the performance of 
the regression coefficients at different scales in the three models and then make two statistical tests for the two 
regression coefficients in each model. Some evaluations for the DFA-based regression and the standard regression 
are conducted at the end of this section.

The two regression coefficient estimators together with their standard deviations of the three models are 
sketched in Figs 4–6, respectively. As expected, the effect is obviously positive. However, a strong variation across 
scales is found in different seasons. More specifically,

Figure 5. Bivariate DFA regression of Tianjin with the same legend as in Fig. 4. Here, subscripts 1 and 2 denote 
Beijing and Baoding, respectively.

Figure 6. Bivariate DFA regression of Baoding with the same legend as in Fig. 4. Here, subscripts 1 and 2 
denote Beijing and Tianjin, respectively.
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 (a) In the Beijing’s model, Tianjin (X1) has strongly positive effect in every season, especially for the larger time 
scales. On the contrary, Baoding (X2) has different effects on Beijing. Compared to spring and summer, the 
effect is quite weak in the other two seasons, especially in winter, β̂ n( )

DFA
2  is nearly 0 when the scale is 

more than 800 hours.
 (b) In the Tianjin’s model, Baoding (X2) presents more unstable effect at different scales. Particularly in 

summer, β̂ n( )
DFA

2  is close to 0 from the smaller scale to the larger scale at about 50 days (1200 hours), 
which implies that the positive correlation between Tianjin and Baoding can last less than 50 days. In 
addition, the two coefficients are less than 0.5 in most days, which indicates that Beijing and Baoding have 
little impact on the PM2.5 in Tianjin.

 (c) For the model of Baoding, the effect of Tianjin (X2) to Baoding is similar to that of Baoding to Tianjin in 
model II. However, the fact that after approximately 17 days (408 hours) the effect reaches the value greater 
than 1 indicates that an increase of 1 unit PM2.5 concentration of Tianjin will lead to the increase of more 
than 1 unit PM2.5 concentration in Baoding. In this regard, Tianjin has more impact on Baoding. In ad-
dition, the narrow confidence intervals and low standard deviations (less than 0.02) shown in all sub-plots 
suggest satisfied reliability of the estimates.

Figure 7. PDF of critical points t- statistics critical values at different scales for the statistical test with 10000 
times of the shuffled PM2.5 series of fall.

Figure 8. t-statistical test of the estimated DFA-based bivariate regression coefficients. (a–d) Are for winter, 
spring, summer, and fall, respectively. The dashed line represents the tc(n) with 0.01 significant levels. Above this 
line means to decline the null hypothesis βj = 0.
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Statistic significance tests of regression coefficients. As mentioned above, the estimated β̂ n( )
DFA

 is 
able to theoretically describe the dependence between the impulse variables and the response variables at differ-
ent time scales. In theory, as long as β̂ n( )j

DFA
 is not equal to zero, the independent variable Xj will affect Y. 

However, for finite time series, β̂ n( )j
DFA

 is not always equal to 0 even in the absence of relationship between Xj and 
Y due to the size limitation. Therefore, we perform a hypothesis test for the estimated β̂ n( )

DFA
 to ensure the sig-

nificance. The standard regression analysis provides a so-called t statistic defined as =
β β

β

−ˆ

ˆ
tj

var( )

j j

j

 (j = 1, 2) for this 

purpose. We have ∼ −t t N( 3)j  for the bivariate regression model as β β β∼ˆ ˆN var( , ( ))j j j . In general, if 
|tj| > t1−α/2(N − 3) with a given α, we should reject the null hypothesis of βj = 0 and the dependence between Xj 
and Y is considered to be statistically significant. However, since lots of time scales are taken accounted in the 
DFA regression model, using a single critical value of t1−α/2(N − 3) is inappropriate. A correct way is to generate a 
critical value tc(n) for each time scale. To this end, inspired by the idea proposed by Podobnik et al.32, we shuffle 
the considered PM2.5 series and repeat the DFA regression calculations for 10,000 times. Then let the integral of 
probability distribution function (PDF) from −tc(n) to tc(n) be equal to 1 − α (here, we take α = 0.01). As an 
example, we show the PDF of tc(n) with five given n’s produced by the shuffled PM2.5 series of fall in Fig. 7.

As expected, the symmetrical PDF of tc(n) converges to a Gaussian distribution according to the central limit 
theorem. In addition, the critical value increases as n increases. This implies that large time scale may strengthen 
dependence between two variables. By using tc(n), we can determine whether the dependence between the 
impulse variable and the response variable is significant or not. In practice, the dependence between Xj and Y is 

present when 
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β β
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DFA
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DFA

 is larger than tc(n). For the four seasons, the scale-dependent t-statistics of 

regression coefficient together with the scale-dependent critical value tc(n) are presented in Fig. 8.
Note that in Model I (for Beijing), the t(n)-statistics of β̂ n( )

DFA
1  (Tianjin’s coefficient) is equal to that of 

β̂ n( )
DFA

1  (Beijing’s coefficient) in Model II (for Tianjin), the t(n)-statistics of β̂ n( )
DFA

2  (Baoding’s coefficient) is 
equal to that of β̂ n( )

DFA
1  (Beijing’s coefficient) in Model III (for Baoding), and in Model II, the t(n)-statistics of 

Baoding’s coefficient β̂ n( )
DFA

2  is equal to that of Tianjin’s coefficient β̂ n( )
DFA

2  in Model III (for Baoding). Here the 
three colored lines with different symbols represent the t(n)-statistics between each per two cities while the black 
dashed line stands for tc(n).

The partial DCCA coefficient ρPDCCA(n) is recently developed to uncover the intrinsic relation for two nonsta-
tionary series at different time scales. We also calculate the partial DCCA coefficients ρPDCCA(n) of Beijing and 
Tianjin, Beijing and Baoding, and Tianjin and Baoding, respectively, and present the results in Fig. 9. For the same 
purpose of testing the statistical significance, we also produce a critical value for the four seasons. Similarly, the 
PM2.5 data are shuffled 10,000 times in the PDCCA calculations repeatedly, and thus ρ n( )PDCCA

c  for 99% confi-

dence level is obtained, which is also shown in Fig. 9.
Comparing results in Figs 8 and 9 gives amazing similarities, which are also in agreement with the results 

shown in Figs 4–6. Based on the results, we can draw the following three main points.

Figure 9. Statistical test of DPCCA coefficients among the three cities. (a–d) Are for winter, spring, summer, 
and fall, respectively. The dashed line represents the critical value of ρDPCCA which is obtained from 10000 times 
Monte-Carlo simulations with 99% confidence level. Below this line suggests no cross-correlated significance.
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 (a) The dependence between Beijing and Tianjin (the blue square line) gradually increases with the increasing 
time scales in all seasons. However, the dependence between the two cities is lower than other cities. This 
finding uncovers that the reason for the serious air pollution in these two cities are mainly due to their own 
heavy smog or are impacted by other cities.

 (b) The dependence between Beijing and Baoding (the green triangle line) is significant in spring, summer, 
and fall. In winter, however, the dependence disappears at long time scale, which implies that the two cities 
can only affect each other at relatively short term. Moreover, compared to winter and fall, the dependence 
is much stronger in spring and summer, especially at long time scales, which indicates that they affect 
much longer in warm weather.

 (c) In spring and summer, the t(n)-statistics and ρPDCCA(n) of Tianjin vs. Baoding (the red circle line) go down 
through the critical lines of tc(n) and ρ n( )PDCCA

c  at about 800 hours, respectively. This suggests that the 
dependence between Tianjin and Baoding will disappear when it’s more than one month. However, the 
exact opposite occurs in winter and fall. In these two seasons, both t(n)-statistic and ρPDCCA(n) increase 
with the increasing time scales, which demonstrates that the interaction of bad air quality between the two 
cities will last longer in cold days.

Figure 10. Determination coefficients of bivariate DFA and standard regression model. (a–d) Are for models of 
Beijing, (e–h) are for models of Tianjin, and (i–l) are for models of Baoding. The solid line denotes R n( )DFA

2  and 
the dashed line denotes R2.

Figure 11. Beta coefficients and elasticity coefficients of bivariate DFA and standard regression model of 
Beijing. The four columns from left to right are for winter, spring, summer, and fall, respectively. The subscript 1 
of β* and η denotes Tianjin and 2 denotes Baoding.
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Evaluations of DFA-based regression model. To evaluate our estimated DFA-based bivariate regression 
model, we plot the scale-dependent determination coefficient R n( )DFA

2 , and the beta coefficient β*DFA(n) and the 
average elasticity coefficient ηDFA(n) in Fig. 10, Figs 11–13, respectively.

To show the new model provides more information than the standard regression model does, we also include 
the three corresponding coefficients of standard bivariate regression model in these figures. As seen from Fig. 10 
that R n( )DFA

2  is superior to the standard R2 at most time scales. The good performance illustrates that one will gain 
richer information in explaining the response variable when using our DFA-based regression model. On the other 
hand, we can conclude from Figs 11–13 that (1) Baoding has more influence than Tianjin on Beijing in all seasons 
except for winter. (2) Tianjin is more sensitive to Baoding’s changes in air quality than Beijing’s in winter and fall. 
(3) Tianjin affects Baoding more than Beijing does in winter and fall, but less in the other two seasons. In addi-
tion, Figs 11–13 illustrate that the standard β⁎

j  and ηj can be seen as the mean values of the DFA-based β⁎ n( )j
DFA  

and η n( )j
DFA , respectively. This means that β⁎ n( )j

DFA  and η n( )j
DFA  are able to measure the dependence degree of the 

studied independent variable on the dependent variable in all directions. Thus one can access the measurement 
according to his/her needs. For example, in winter of Model I, we find that the β ⁎ n( )DFA

2  and η n( )DFA
2  are larger 

than β ⁎ n( )DFA
1  and η n( )DFA

1 , respectively, at smaller scales but much smaller at larger scales, which shows that the 

sensitivity of Y to X2 (Baoding) is greater than that of Y to X1 (Tianjin) for short term (≤300 hours) but Tianjin is 

Figure 12. Beta coefficients and elasticity coefficients of bivariate DFA and standard regression model of 
Tianjin with the same legend as in Fig. 11. Here the subscripts 1 and 2 denote Beijing and Baoding, respectively.

Figure 13. Beta coefficients and elasticity coefficients of bivariate DFA and standard regression model of 
Baoding with the same legend as in Fig. 11. Here the subscripts 1 and 2 denote Beijing and Tianjin, respectively.
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more sensitive to Beijing at the long term. This can help air quality inspectors make the correct analysis for 
Beijing’s PM2.5 at different periods.

Conclusions
The study of dependence between variables helps expose the causal relationship and correlation of the variables of 
interest in the real world. The linear regression model is undoubtedly one of the simplest methods among many 
approaches. However, single variety of regression coefficient and evaluation index cannot show all aspects of the 
dependence between independent variables and dependent variable. As a meaningful extension, we design a new 
framework for bivariate regression model using the prevailing DFA method. The proposed bivariate DFA regres-
sion model allows us to estimate multi-scale regression coefficients and other corresponding scale-dependent 
evaluation indicators. It has been shown via two artificial tests that these DFA-based regression coefficients are 
able to describe the dependence between the response variable and two independent variables exactly; and can 
capture different dependence at different time scales.

An application of the new model to the study of dependence of PM2.5 series among three heavily air pol-
luted cities in Northern China unveils that huge difference of the dependence exists in per two cities in differ-
ent seasons and at different periods. Three new indicators of the scale-dependent determination coefficient, the 
scale-dependent beta coefficient, and the scale-dependent elasticity coefficient are proposed, which turned out to 
be more practical than those in standard regression models. Three main points can be concluded as (1) Beijing 
and Baoding have little impact on the PM2.5 in Tianjin while Tianjin takes more impact on Baoding and the 
air quality of Beijing is more sensitive to the changes in Baoding. (2) In contrast, the air quality in Beijing and 
Tianjin is not significantly relevant, while the air quality in Tianjin and Baoding has a very significant impact on 
each other especially in the cold weather. (3) In comparison, the fluctuation of PM2.5 in Baoding has the greatest 
impact on the other two cities in most days. While Baoding’s air quality is more sensitive to Beijing’s changes in 
spring and summer, and is more sensitive to Tianjin’s changes in winter and fall. These findings may provide some 
useful insights on understanding air pollution sources among cities in Northern China.

Methods
The standard bivariate regression model. To study the dependence of air quality among three neigh-
boring cities, we consider a bivariate linear regression model as

β β β ε= + + +Y X X , (1)0 1 1 2 2

where Y is a dependent variable, X1 and X2 are two independent variables, ε is a Gaussian error term with zero 
mean value, and βj (j = 1, 2) is the partial regression coefficient characterizing the dependence on Xj. The most 
critical work in empirical studies is to estimate β1 and β2. The OLS method gives
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where 〈·〉 denotes the mean value of the whole time period, x1t = X1t − 〈X1〉, x2t = X2t − 〈X2〉, and yt = Yt − 〈Y〉. 
Then the estimator of residuals can be determined by β β β β= − − − 〈 − − 〉ˆ ˆ ˆ ˆ ˆe Y X X Y X Xt t t t t t t1 1 2 2 1 1 2 2 . With it 
one can obtain the estimators of variance of the two regression coefficients as
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The variance illustrates the accuracy of the estimated parameters. The estimated regression coefficients 
together with their variances can be further employed for hypothesis test and model evaluation. As an important 
indicator to evaluate the regression model, the determination coefficient R2 is defined by

σ

σ
= − ∑

∑
= − ε=

=

�

�
�

R
e
y

1 1 ,
(3)

t
N

t

t
N

t Y

2 1
2

1
2

2

2

with the range of [0, 1]. R2 measures a proportion of variance of Y explained by X1 and X2 and higher value of R2 
implies better model interpretation ability. Moreover, to quantify sensitivity of explained variable to each explain-
ing variable, two quantities, namely, the beta coefficient (denoted as β⁎

j ) and the average elasticity coefficient 
(denoted as ηj), are defined
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which can explain the relative importance of variables X1 and X2 to Y. According to31, the advantage of translating 
the standard notation into variance and covariance shown on the right-hand side of Eqs (2)–(5) is available to use 
the DFA/DCCA methods based on the same idea.

The DFA-based variance and DCCA-based covariance functions. DFA and DCCA methods are 
described as follows. For a time series {zt}, t = 1, 2, …, N, we split its profile = ∑ − 〈 〉=Z z z( )t i

t
i1  into Nn = [N/n] 

nonoverlapping segments of equal length n, denoted as Zj,k, k = 1, 2, …, n. The same procedure is repeated starting 
from the opposite end to avoid disregarding a short part of the series in the end and thus 2Nn segments are 
obtained altogether. In the jth segment, we have Zj,k = Z(j−1)n+k for j = 1, 2, …, Nn and = − − +Z Zj k N j N n k, ( )n

 for 
j = Nn + 1, Nn + 2, …, 2Nn, where k = 1, 2, …, n. In each segment, the local linear (or other) trend33,34 can be fitted 
as Xj k,  (in our work, we use 2nd order polynomial to fit the trend in each segment). Fluctuation function f n j( , )Z

2  
is then defined for each segment as
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Averaging the fluctuation f n j( , )Z
2  over all segments yields
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which is the so-called DFA-based scale-dependent variance function. To obtain the scale-dependent covariance 
of two equal length series {z1t} and {z2t}, t = 1, 2, …, N, we only need to translate the univariate fluctuation func-
tion in each segment and average fluctuation into the bivariate case directly,
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The scale-characteristic fluctuation F n( )Z Z
2

1 2
 is the so-called DCCA-based covariance, which expresses the 

cross-correlation fluctuations between the series of {z1t} and {z2t}. Thus we have obtained all objects to create the 
DFA-based regression model. But for purpose of testing, we need some accessories of the DFA process. The 
DCCA cross-correlation coefficient ρ(n), proposed by Zebende35, can measure the cross-correlation between two 
nonstationary series at multiple time scales, which is defined as

ρ = .Z Z n
F n

F n F n
( , , )
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( ) ( ) (10)
DCCA

Z Z

Z Z
1 2

2

2 2
1 2

1 2

To access intrinsic relations between the two time series on time scales of n, Yuan et al.36 and Qian et al.37 
developed a so-called partial DCCA coefficient independently, which applies partial correlation technique to 
delete the impact of other variables on the two currently studied variables. This coefficient is defined as

ρ = −Z Z n
C n

C n C n
( , , )
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,

(11)
PDCCA

j j

j j j j
1 2

,

, ,
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where C is the inverse matrix of the cross-correlation matrix produced by ρDCCA(n) of Z1, Z2, …, and subscripts j1 
and j2 stand respectively for the row and column of the location of ρDCCA(Z1, Z2, n).

The DFA-based bivariate regression model. We now translate the standard bivariate regression process 
described above into the DFA-based bivariate regression model. The two estimators in Eq. (2) can be extended to 
the scale-dependent estimators in the following way using the scale-dependent variance and covariance defined 
in Eqs (7) and (9),
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Similarly, the scale-dependent residuals are
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with zero mean value. Inserting the calculated ê n( )t  into the DFA process, we obtain the fluctuation εF n( )2  to esti-
mate the variances of β̂ n( )
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1  and β̂ n( )
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2  via Eq. (12) as
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Then Eqs (3)–(5) can be translated into the DFA regression form as
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Comparing to the standard R2, β*, and η, the scale-dependent R n( )DFA
2 , β*DFA(n), and ηDFA(n) express more 

abundant information on model interpretation from multiple time scales.
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