
1SCIenTIfIC RePoRtS |  (2018) 8:7682  | DOI:10.1038/s41598-018-25815-9

www.nature.com/scientificreports

Possible role of the Nipah virus 
V protein in the regulation of 
the interferon beta induction by 
interacting with UBX domain-
containing protein1
Shotaro Uchida, Ryo Horie, Hiroki Sato, Chieko Kai & Misako Yoneda

Nipah virus (NiV) is a highly pathogenic paramyxovirus that causes lethal encephalitis in humans. We 
previously reported that the V protein, one of the three accessory proteins encoded by the P gene, is 
one of the key determinants of the pathogenesis of NiV in a hamster infection model. Satterfield B.A. et 
al. have also revealed that V protein is required for the pathogenicity of henipavirus in a ferret infection 
model. However, the complete functions of NiV V have not been clarified. In this study, we identified 
UBX domain-containing protein 1 (UBXN1), a negative regulator of RIG-I-like receptor signaling, as a 
host protein that interacts with NiV V. NiV V interacted with the UBX domain of UBXN1 via its proximal 
zinc-finger motif in the C-terminal domain. NiV V increased the level of UBXN1 protein by suppressing 
its proteolysis. Furthermore, NiV V suppressed RIG-I and MDA5-dependent interferon signaling by 
stabilizing UBXN1 and increasing the interaction between MAVS and UBXN1 in addition to directly 
interrupting the activation of MDA5. Our results suggest a novel molecular mechanism by which the 
induction of interferon is potentially suppressed by NiV V protein via UBXN1.

Nipah virus (NiV) is an emerging zoonotic virus which belongs to the genus Henipavirus in the family 
Paramyxoviridae, and was first identified as the pathogen that caused an outbreak of fatal encephalitis in humans 
in Malaysia and Singapore in 19991,2. Since 2001, outbreaks of NiV have occurred sporadically almost every year 
in India, Bangladesh, and the Philippines3–7, and high mortality rates of around 40–70% in humans have been 
reported4,7. Serological evidence of henipavirus infections among humans and bats has also been reported in 
regions where no outbreaks have yet occurred8–11, implying that other areas are threatened with future outbreaks 
of henipavirus infections. Therefore, it is important to understand the molecular mechanism underlying the 
severe pathogenesis of henipavirus infections to allow the development of effective treatments.

The genome of NiV is a negative-strand nonsegmented RNA containing six genes encoding structural pro-
teins: nucleocapsid (N), phosphoprotein (P), matrix protein (M), fusion protein (F), glycoprotein (G), and pol-
ymerase (L). The P gene encodes three additional accessory proteins: V, W, and C proteins2,12. The RNA of the P 
gene is edited to generate the V and W genes, when additional guanines are inserted at the RNA editing site due to 
the stuttering of the RNA polymerase during mRNA transcription12. Thus, the P, V, and W proteins share a com-
mon N-terminal domain, but each has a unique C-terminal domain. The C protein is encoded in an alternative 
reading frame of the P gene. We have previously reported that the V and C proteins play key roles in the severe 
pathogenicity of NiV in a hamster infection model13. Satterfield B. A. et al. have also reported that V protein is a 
determinant of the disease course of NiV infection, and C protein contributes to the respiratory disease in a ferret 
infection model14,15. Mathieu C. et al. have revealed that C protein contributed to the virulence by regulating the 
early host proinflammatory response16. Recently, Marsh G.A. et al. isolated Ceder virus (CedPV) from Australian 
bats as a novel member of henipaviruses. CedPV lacked the RNA editing site for the V protein expression, and 
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was attenuated in ferrets and guinea pigs which are susceptible to NiV and Hendra virus (HeV)17. It also indicates 
that V protein is a critical for the pathogenesis of henipaviruses.

Previous studies have demonstrated that henipavirus V proteins suppress the host antiviral response by target-
ing multiple host proteins. Henipavirus V proteins interact with MDA5 to inhibit the activation of the interferon 
β (IFNB) promoter18,19. NiV V binds to the phosphatase PP1 to suppress the dephosphorylation of MDA5 and 
thereby its activation20. Henipavirus V proteins also interact with LGP2 to suppress the RIG-I-dependent induc-
tion of IFN21. NiV V also blocks signaling through Toll-like receptors 7/9 (TLRs 7/9) and inhibitor of κB kinase 
ε to suppress IFN induction22,23. V proteins of NiV and HeV interacts with signal transducer and activator of 
transcription 1 and 2 (STAT1 and STAT2) in IFN-responsive signaling pathway, through its N-terminal domain, 
which it shares with the P and W proteins, and prevents their activation and nuclear accumulation24,25. During 
viral replication, NiV V negatively regulates minigenome replication26. These reports have revealed that V protein 
interacts with multiple host proteins to contribute to the severe pathogenicity of henipavirus, and to elucidate the 
unknown molecular mechanism underlying the pathogenicity of henipavirus, the host molecule interacting with 
henipavirus V proteins should be further investigated.

In this study, we looked for unknown host proteins that interact with NiV V and identified UBX 
domain-containing protein 1 (UBXN1). We then analyzed the effects of the interaction between NiV V and UBXN1.

Results
Identification of a protein that interacts with NiV V protein. To identify host proteins that specif-
ically interact with the unique C-terminal domain of NiV V, which is not shared with the P or W protein, myc-
tagged wild-type NiV V and a mutant lacking the C-terminal domain (ΔCT) were expressed in HEK293T cells 
and immunoprecipitated with an anti-myc antibody. Two protein bands coimmunoprecipitated with wild-type 
NiV V, but not with ΔCT were detected (Supplementary Fig. 1A). One of the proteins with a mass of approxi-
mately 42.56 kDa was identified as UBX domain-containing protein 1 (UBXN1) by a mass-spectrometric analysis 
(Fig. 1A). To confirm the result of the mass-spectrometric analysis, the same immunoprecipitation assay was 
followed by western blotting with an anti-myc antibody and an anti-UBXN1 antibody. UBXN1 was detected as 
the protein binding to wild-type NiV V, but not to ΔCT (Fig. 1B). The interaction was also verified by the coim-
munoprecipitation of NiV V with the endogenous UBXN1 (Fig. 1C). In HeLa cells, UBXN1 was also coimmuno-
precipitated with NiV V, indicating that UBXN1 is a binding partner of NiV V in various cell types (Fig. 1D). To 
confirm the requirement of the C-terminal zinc-finger domain for the interaction, myc-tagged wild-type NiV V 
or ΔCT were coexpressed with HA-tagged UBXN1 in HEK293T cells and immunoprecipitated with either anti-
myc antibody or anti-HA antibody. The wild-type NiV V, but not ΔCT, was coimmunoprecipitated with UBXN1 
(Fig. 1E). To confirm their intracellular interaction, an immunofluorescence assay was also performed after NiV 
V or UBXN1 was expressed in HEK293T cells. As previously reported, NiV V was mainly localized in cytoplasm 
(Fig. 1F, upper lane)24. UBXN1 was also localized in cytoplasm, and formed spot-like structures (Fig. 1F, middle 
lane), which is reportedly attributable to its association with the ubiquitin–proteasome system27,28. The coexpres-
sion of both proteins caused the accumulation of UBXN1 in the cytoplasm, and its signal localized strongly with 
that of the V protein (Fig. 1F, lower lane). Furthermore, NiV V was co-localized with endogenous UBXN1 in the 
cytoplasm (Fig. 1G). These results suggest that V protein interacts intracellularly with UBXN1.

Identification of the binding domains of NiV V and UBXN1. The V protein contains two cysteine-rich 
zinc-finger motifs in its C-terminal domain (Fig. 2A), which are conserved among the paramyxoviruses29. To deter-
mine the binding domain of NiV V, the C-terminal domain was divided into three subdomains (Domain1–3) and 
vectors expressing various deletion mutants lacking each subdomain of NiV V (Del1–6), were generated (Fig. 2B). 
In an immunoprecipitation assay, the binding affinity of NiV V for UBXN1 was detected with Del1 and Del5, but 
not with Del2, -3, -4, or -6 (Fig. 2C). The results indicate that Domain1 is critical for the interaction of the two 
proteins. However, because Del2 did not coimmunoprecipitate with UBXN1, and the binding capacity of Del5 for 
UBXN1 was as strong as that of wild-type NiV V protein, whereas that of Del1 was much weaker, the intact structure 
of the proximal zinc-finger motif, including Domain1 and Domain3, must be important for the efficient interac-
tion of the V protein with UBXN1. It has been reported that UBXN1 consists of three characterized domains, a 
ubiquitin-associated (UBA) domain, a coiled-coil (CC) domain, and a ubiquitin regulatory X (UBX) domain27,28. 
To determine the V-binding domain of UBXN1, expression vectors for GST-tagged deletion mutants of UBXN1 
were generated: GST-CC, -UBA, -UBX, -ΔUBX, and -ΔCC, (Fig. 2D). In a GST pull-down assay, the V protein was 
pulled down by two mutants of UBXN1, GST-UBX and -ΔCC, both of which contained the UBX domain, but not 
by the other mutants (Fig. 2E). This result suggests that NiV V interacts with the UBX domain of UBXN1.

NiV V increases the stability of UBXN1. We transfected the vector expressing HA-tagged UBXN1 
together with that expressing NiV V or NiV P. The expression of UBXN1 protein increased, depending on the 
amount of the NiV V expression vector transfected, but not for NiV P (Fig. 3A). The expression of enhanced 
green fluorescent protein (EGFP) was not affected by the NiV V expression (Fig. 3B), indicating that NiV V spe-
cifically increased the expression of UBXN1. To examine the possibility that a high quantity of UBXN1 results in 
the increase of its expression amount, we generated the HEK293 cell lines whose UBXN1 gene was knocked-out 
by a genome editing (Fig. 3C). As previously reported, the induction of IFNβ was increased by the depletion 
of UBXN1 in both cell lines (Fig. S5A,B). We found that NiV V increased the expression amount of UBXN1 
in 293TUBXN1− cells, indicating that the effects of NiV V on the UBXN1 expression is not due to the artifacts 
derived from a high quantity of UBXN1 (Fig. 3D). Furthermore, this functional effect of NiV V was also observed 
in various cell types including Huh-7 and HeLa cells (Fig. 3D). Since the mRNA levels of UBXN1 were not 
affected by NiV V (data not shown), we speculated that NiV V blocks the degradation of UBXN1. Therefore, a 
cycloheximide (CHX) chase assay was performed to evaluate the rate of UBXN1 proteolysis when the de novo 
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Figure 1. Identification of a protein that interacts with NiV V. (A) Myc-tagged NiV V and a mutant lacking the 
C-terminal domain (ΔCT) were expressed in HEK293T cells. At 48 h posttransfection, an immunoprecipitation 
assay was performed, and the precipitated proteins were detected with silver staining. The band indicated by 
the arrowhead was analyzed with mass spectrometry. *Nontargeted bands. (B) The immunoprecipitation 
assay was performed as described in (A), and the precipitated proteins were detected with western blotting. 
(C) Myc-tagged NiV V was expressed in HEK293T cells, and at 48 h posttransfection, an immunoprecipitation 
assay was performed using UBXN1-specific antibody. The precipitated proteins were detected with western 
blotting. (D) Myc-tagged NiV V expressed in HeLa cells was immunoprecipitated, and the precipitated proteins 
were detected with western blotting. (E) Myc-tagged NiV V or ΔCT were expressed together with HA-tagged 
UBXN1 in HEK293T cells, and after 48 h, an immunoprecipitation assay was performed with anti-myc or 
anti-HA antibody. The precipitated proteins were detected with western blotting. (F) NiV V and HA-tagged 
UBXN1 were expressed in HEK293T cells, and after 24 h, an indirect immunofluorescence assay was performed. 
The subcellular localization of NiV V and UBXN1 was observed with confocal microscopy. (G) NiV V was 
expressed in HeLa cells, and the subcellular localization of NiV V and endogenous UBXN1 was examined by an 
indirect immunofluorescence assay. The gel and blots presented in (A–E) were cropped from different images to 
improve clarity. Full-length gel and blots are presented in Supplementary Figure S1.
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protein synthesis was blocked. When NiV V was expressed together with UBXN1, the degradation of UBXN1 was 
inhibited (Fig. 3E,F). This result suggests that NiV V increases the stability of UBXN1, causing its intracellular 
accumulation.

Figure 2. Identification of the binding domains of NiV V and UBXN1. (A,B) Schematic diagrams of the 
C-terminal domain of V protein (A) and its deletion mutants (B) are shown. (C) Wild-type NiV V and deletion 
mutants of NiV V were expressed in HEK293T cells, and an immunoprecipitation assay and western blotting 
were performed as described in Fig. 1B. (D) A schematic diagram of GST-tagged deletion mutants of UBXN1 
is shown. (E) The interactions between GST-tagged UBXN1 mutants and myc-tagged NiV V were evaluated 
with a GST pull-down assay. Pulled-down proteins were detected with western blotting. The blots presented in 
(C,E) were cropped from different images to improve clarity. Full-length blots are presented in Supplementary 
Figure S1.
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Figure 3. NiV V stabilizes UBXN1. (A) HEK293T cells were transfected with 400 ng of a vector expressing HA-
tagged UBXN1 together with various amounts (100 ng, 200 ng, or 400 ng) of vector expressing NiV V or 400 ng 
NiV P. The total amount of transfected vector was kept constant by the addition of empty vector. After 24 h, the cells 
were lysed and the proteins were detected with western blotting. (B) HEK293T cells were transfected with 400 ng 
of a vector expressing for EGFP together with various amounts of vector expressing NiV V as described in (A). The 
proteins were detected with western blotting. (C) UBXN1 genes in HEK293 and 293 T cells were knocked out by the 
CRISPR-Cas9 system. The depletion of UBXN1 in 293UBXN1− and 293TUBXN1− cells was verified with western blotting. 
(D) 293TUBXN1−, Huh-7 and HeLa cells were transfected with 400 ng of a vector expressing HA-tagged UBXN1 
together with various amounts (200 ng or 400 ng) of vector expressing NiV V. The total amount of transfected vector 
was kept constant by the addition of empty vector. After 24 h, the cells were lysed and the proteins were detected 
with western blotting. (E) HEK293T cells were transfected with 400 ng of a vector expressing for HA-tagged UBXN1 
together with 400 ng of a vector expressing NiV V or an empty vector. Then the cells were treated with CHX for 0, 1, 
2, 3, or 4 h, and the amount of proteins were evaluated with western blotting. (F) HA-tagged UBXN1 was expressed 
with or without NiV V in HEK293T cells. Then, the cells were treated with CHX, and the expression amount of 
HA-UBXN1 and GAPDH was quantitated as described in (E). The CHX assay was repeated three times, and the 
intensities of the bands were measured and summarized. Error bars indicate standard deviations (N = 3). **P < 0.01, 
***P < 0.001, not significant (n.s.) on Student’s t test. The blots presented in (A–E) were cropped from different 
images to improve clarity. Full-length blots are presented in Supplementary Figure S2.
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Stabilization of UBXN1 requires the interacting domains of NiV V and UBXN1. To determine 
the domain of V required for the stabilization of UBXN1, the deletion mutants of NiV V described in Fig. 2B 
was expressed together with UBXN1. The mutants containing Domain1 (Del1, -2 and -5) clearly increased the 
expression level of UBXN1, whereas the others did not (Fig. 4A). To determine the domain of UBXN1 required 
for its stabilization by NiV V, we generated various vectors expressing HA-tagged deletion mutants of UBXN1, 
ΔUBX, ΔUBA, UBX, ΔCC, and CC (Fig. 4B). These mutants were expressed with or without NiV V. The expres-
sion levels of the deletion mutants containing the UBX domain (ΔUBA, UBX, and ΔCC) increased when coex-
pressed with NiV V (Fig. 4C), but the others did not. These results indicate that the stabilization of UBXN1 
requires Domain1 of NiV V and the UBX domain of UBXN1, which are identical to the domains required for the 
interaction of the two proteins (Fig. 2C,E). Therefore, we infer that the stabilization of UBXN1 is caused by its 
interaction with NiV V.

Amino acids of NiV V required for its interaction with UBXN1. Ramachandran and Horvath 
reported that Domain1 of the V protein contains the amino acids required for MDA5 interference29. In this 
study, we found that Domain1 of the V protein also interacts with UBXN1 (Figs 2C and 5A), so we considered 
whether the same region in Domain1 functions in both MDA5 interference and the interaction with UBXN1. 
To evaluate the amino-acid requirements for these two functions, we generated vectors expressing various 
myc-tagged alanine-substitution mutants of NiV V, RRE, ISI, CWD, GKR, AWV, and EEW (Fig. 5A). The mutants 
were expressed in HEK293T cells and an immunoprecipitation assay was performed. Mutants RRE and EEW 

Figure 4. Identification of the domains required to stabilize UBXN1. (A) HEK293T cells were transfected 
with equal amounts of vector expressing HA-tagged UBXN1 and vectors expressing myc-tagged wild-type 
NiV V or its deletion mutants. At 48 h posttransfection, the proteins were detected with western blotting. (B) A 
schematic diagram of the HA-tagged deletion mutants of UBXN1 is shown. (C) HEK293T cells were transfected 
with vectors expressing HA-tagged deletion mutants of UBXN1 together with a vector expressing NiV V or the 
empty vector. At 48 h posttransfection, the proteins were detected with western blotting. The blots presented in 
(A,C) were cropped from different images to improve clarity. Full-length blots are presented in Supplementary 
Figure S3.
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Figure 5. Amino acids in NiV V required for its interaction with UBXN1. (A) Schematic diagrams of 
the alanine-substitution mutants of NiV V are shown. (B) Myc-tagged wild-type NiV V and its alanine-
substitution mutants were expressed in HEK293T cells, and an immunoprecipitation assay and western blotting 
were performed as described in Fig. 1B. (C) HEK293T cells were transfected with equal amounts of vector 
expressing HA-tagged UBXN1 and vector expressing myc-tagged wild-type NiV V or its alanine-substitution 
mutants. At 48 h posttransfection, the proteins were detected with western blotting. (D) HEK293T cells were 
transfected with an IFNβ reporter vector together with vectors expressing FLAG-tagged MDA5 and wild-type 
NiV V or its alanine-substitution mutants. The total amount of transfected vector was kept constant by the 
addition of empty vector. At 24 h posttransfection, a luciferase assay was performed. (E) HEK293T cells were 
transfected with vectors expressing myc-tagged NiV V, FLAG-tagged MDA5 and HA-tagged UBXN1. At the 
48 h posttransfection, an immunoprecipitation assay was performed with anti-myc antibody. The precipitated 
proteins were detected with western blotting. Error bars indicate standard deviations (N = 3). ***P < 0.001, 
not significant (n.s.) on Dunnett’s multiple comparison test. The blots presented in (B,C,E) were cropped from 
different images to improve clarity. Full-length blots are presented in Supplementary Figure S4.
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maintained the interaction with UBXN1, although it was weaker than that of intact NiV V. However, the interac-
tions of mutants ISI, CWD, GKR, and AWV were eliminated (Fig. 5B). To confirm the stabilization of UBXN1 by 
the myc-tagged alanine-substitution mutants of NiV V, these mutants were coexpressed with HA-tagged UBXN1. 
RRE stabilized UBXN1 as effectively as did wild-type NiV V, but GKR and EEW stabilized it less effectively, and 
ISI, CWD, and AWV did not stabilize it at all (Fig. 5C). Therefore, residues ISI, CWD, and AWV are important 
for UBXN1 stabilization. To determine the amino acids required for MDA5 interference, the alanine-substitution 
mutants of NiV V were coexpressed with MDA5 in HEK293T cells, and the induction of IFN was monitored with 
an IFNβ reporter vector. MDA5 induced the activation of the IFNB promoter, and wild-type NiV V interrupted 
MDA5 activity (Fig. 5D). The alanine-substitution mutants CWD, GKR, and EEW reduced the activity of MDA5 
as strongly as did wild-type NiV V, whereas the interference activities of RRE, ISI, and AWV were weaker than 
that of wild-type NiV V (Fig. 5D). These results suggest that MDA5 and UBXN1 share the amino acid residues 
in ISI and AWV to interact with NiV V. On the other hand, CWD and GKR contains the amino acid residues 
specifically critical for the interaction with UBXN1, and RRE contains those for the interaction with MDA5. Since 
the binding sites to UBXN1 and MDA5 in NiV V were close, we evaluated the competitive binding of these pro-
teins with immunoprecipitation assay. Although the coimmunoprecipitation of UBXN1 and MDA5 was slightly 
decreased in the competitive binding, both proteins were coimmunoprecipitated with NiV V together (Fig. 5E). 
These results indicated that the binding sites of NiV V to MDA5 and UBXN1 were close but not identical, and 
NiV V could interact with both proteins together.

Stabilized UBXN1 suppresses IFN induction. UBXN1 is reportedly induced in a late step of viral 
infection, and binds to MAVS, and this binding downregulates the induction of IFN by disrupting the MAVS–
TRAF3/6 signaling complex in RIG-I-like receptor signaling30. NiV V is known to directly interfere with MDA5, 
thus suppressing the induction of IFN18,21. To examine whether the stabilized UBXN1 increases suppression 
activity of NiV V on MDA5 signaling, IFN reporter assay was performed. The coexpression of UBXN1 increased 
MDA5-suppression activity of NiV V, depending on the expression level (Fig. 6A). To examine whether RIG-I sig-
naling was suppressed by the stabilized UBXN1, the constitutively activated RIG-I (RIG-IΔ) was expressed with 
NiV V and UBXN1, and IFN reporter assay was performed. As previously reported19, NiV V did not suppress 
RIG-I signaling directly (Fig. 6B). However, when coexpressed with UBXN1, NiV V suppressed RIG-I signaling 
depending on the expression level (Fig. 6B). This suppression effect of NiV V was also observed in 293UBXN1- cells, 
indicating that it is not due to the artifacts derived from a high amount UBXN1 (Fig. 6C). The immunoprecip-
itation assay revealed that NiV V increased the interaction between UBXN1 and endogenous MAVS (Fig. 6D). 
These results suggest that NiV V suppresses the induction of IFN via RIG-I-like receptor signaling by stabilizing 
UBXN1 (Fig. 6E).

Discussion
In this study, we newly identified UBXN1 as a protein that interacts with NiV V, and demonstrated that they inter-
act via Domain1 of NiV V and the UBX domain of UBXN1. NiV V increases the stability of UBXN1 by blocking 
its proteolysis, which requires the interacting domains of both proteins. With alanine-substitution mutants, we 
showed that Domain1 of NiV V contains the amino acids required both for UBXN1 stabilization and MDA5 
interference, but they are not identical. Our results showed that UBXN1 increased the suppression activity of 
NiV V on MDA5 activation, and conferred the suppression activity on RIG-I activation to NiV V. These results 
potentially suggest a novel molecular mechanism for the suppression of IFN induction, in which NiV V stabilizes 
the negative regulator of RIG-I-like receptor signaling, UBXN1.

After recognizing viral RNA in the cytosol, RIG-I and MDA5 recruit MAVS via the CARD–CARD homotypic 
interaction31. The CARD domain of MAVS rapidly forms prion-like aggregates, which interact with downstream 
signaling proteins, including tumor necrosis factor (TNF) receptor associated factors (TRAFs), resulting in the 
activation of IKK and TBK132. Wang et al. reported that UBXN1 is induced in a late step of viral infection, and 
negatively regulates RIG-I-like receptor signaling, interacting with the TRAF 3/6-binding site in MAVS through 
its N-terminal UBA domain as a dominant-negative binder, and thus disrupting MAVS–MAVS aggregation30. 
Our results indicate that NiV V interacts with the C-terminal UBX domain of UBXN1 to stabilize it, suggest-
ing that NiV V potentially enhances the negative regulation of RIG-I-like receptor signaling by stabilizing the 
induced UBXN1 during viral infection. It has been reported that the V proteins of the paramyxoviruses do not 
interrupt MAVS directly22, but we have shown that NiV V could indirectly interrupts MAVS by stabilizing its 
dominant-negative binding partner UBXN1. To the best of our knowledge, this is the first report of the inter-
ference of MAVS by the V proteins of the paramyxoviruses. It has been reported that V protein targets multiple 
host proteins to suppress host’s IFN system18,20–25,33–35, and therefore we speculate that the ability of V protein 
to stabilize UBXN1 potentially functions cooperatively with its other abilities such as the direct inhibition to 
MDA5, LGP2 and STAT proteins to suppress RIG-I- and MDA5-dependent IFN induction and contribute to the 
pathogenesis.

Our results showed that NiV V increased the amount of UBXN1 expressed by the plasmid transfection, but 
we could not recognize the increase of endogenous UBXN1 when NiV V was expressed. Our results also indi-
cated that NiV V binds to UBX domain in UBXN1, and it has been reported that multiple host’s proteins such as 
BRCA1, Homer2 and p97 also bind to UBX domain in UBXN127,28,36. Therefore, we speculate that the only small 
amount of endogenous UBXN1 in the cells interacted with NiV V because it had already bound to other host pro-
teins, which did not allow us to recognize the functional effects of NiV V on endogenous UBXN1. On the other 
hand, exogenously expressed UBXN1 might efficiently bind to NiV V before it binds to other host’s proteins, 
which allow us to clearly show the functional effects of NiV V. It has been reported that the gene expression of 
UBXN1 is induced by the infection of RNA viruses30, which suggests that NiV V potentially interacts with newly 
synthesized UBXN1 efficiently, and stabilizes it to suppress IFN induction.
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Figure 6. Stabilized UBXN1 suppresses IFN induction. (A) HEK293 cells were transfected with an IFNβ 
reporter vector together with a vector expressing MDA5 and various amounts of vectors expressing NiV V 
and UBXN1. The total amount of transfected vector was kept constant by the addition of empty vector. At 
24 h posttransfection, a luciferase assay was performed. The values in three data sets, sample No. 1–4, 5–7 and 
8–10, were normalized by setting the value of sample No. 2, 5 and 8 to 100% respectively. Samples No. 6, 9 and 
7, 10 were statistically compared to No. 3 and 4 respectively. The original data without the normalization were 
shown in Supplementary Figure S5C. (B) HEK293 cells were transfected with an IFNβ reporter vector together 
with vectors expressing RIG-IΔ and NiV V with or without a vector expressing UBXN1. The total amount 
of transfected vector was kept constant by the addition of empty vector. At 24 h posttransfection, a luciferase 
assay was performed. (C) 293UBXN1− cells were transfected, and the luciferase reporter assay was performed as 
described in (B). (D) HA-tagged UBXN1 and myc-tagged NiV V were expressed in HEK293T cells. At 48 h 
posttransfection, endogenous MAVS was immunoprecipitated with a specific antibody, and the precipitated 
proteins were detected with western blotting. (E) The model of MAVS interference by NiV V suggested by our 
results is shown. Error bars indicate standard deviations (N = 3). *P < 0.05, **P < 0.01, *** and †††P < 0.001, 
not significant (n.s.) on Dunnett’s multiple comparison test. The blots presented in (D) were cropped from 
different images to improve clarity. Full-length blots are presented in Supplementary Figure S4.



www.nature.com/scientificreports/

1 0SCIenTIfIC RePoRtS |  (2018) 8:7682  | DOI:10.1038/s41598-018-25815-9

It is known that V proteins in paramyxoviruses shares the zinc-finger structure in their C-terminal domains, 
and interact with common host proteins such as MDA5, LGP2 and STAT proteins18,19,37–43. Therefore, paramyx-
ovirus V proteins may also share the affinity to UBXN1. Since the Domain1 in the C-terminal domain of NiV V 
was identified as a binding site for UBXN1 (Figs 2C and 4A), we evaluated the homology of amino acid sequence 
in the Domain1 among paramyxoviruses (Supplementary Table 1). The amino acid sequence of HeV V protein 
was almost identical to that of NiV V (identity: 89%), whereas those of other genera including measles virus 
(MeV), mumps virus (MuV), Newcastle disease virus (NDV) and Sendai virus (SeV) showed low similarity (iden-
tity: 33–50%). It suggests that henipavirus V proteins commonly interact with UBXN1, but other paramyxovirus 
V proteins might not have a similar interaction with it.

UBXN1 belongs to the family of UBA–UBX-domain-containing proteins (UBXNs). The UBXNs are con-
sidered to be the cofactors of an AAA ATPase, p97, which is involved in a large variety of cellular processes, 
including ubiquitin-dependent proteolysis, the fusion of homotypic membranes, nuclear envelope reassembly, 
and cell-cycle progression44. UBXN1 has been shown to interact with p97 and polyubiquitin, which negatively 
regulates the proteolysis of ubiquitylated proteins28,45. We confirmed the ubiquitylation of NiV V, but the expres-
sion levels of NiV V were unaffected by increased amounts of exogenous UBXN1 (data not shown), suggesting 
that the proteolysis of NiV V is not regulated by UBXN1. The stabilization of UBXN1 by NiV V requires the UBX 
domain of UBXN1, and the UBX domain adopts the same three-dimensional fold as ubiquitin46. Therefore, we 
speculate that the UBX domain is the determinant of the proteolytic rate of UBXN1, which is recognized by the 
proteasome system in a similar way to ubiquitin, and that the V protein blocks its recognition, resulting in the 
stabilization of UBXN1.

It has been reported that mice are resistant to intraperitoneal Henipavirus infection, despite the expression 
of a functional viral entry receptor. However, the deletion of the type I IFN receptor makes them susceptible to 
this infection47. In cell lines and primary endothelial cells, pretreatment with IFN also inhibited the replication of 
NiV14. These reports suggest the significance of the type I IFN system in controlling lethal Henipavirus infections. 
A recombinant NiV lacking the V protein induced more IFNβ in primary human microvascular lung endothelial 
cells in a late step of infection than the wild-type virus48, suggesting that the stabilization of UBXN1 by the V 
protein may contribute to the suppression of IFNβ induction in addition to its many reported IFN-suppressive 
functions. We believe that the infection experiments using infectious NiV at biosafety level 4 would reveal the 
role of the potential ability of V protein to stabilize UBXN1 in the viral replication and pathogenesis in future.

Methods
Cells. HeLa, Huh-7, HEK293 and HEK293T cells were maintained in Dulbecco’s modified Eagle’s medium 
(Sigma) supplemented with 10% fetal calf serum under 5% CO2 at 37 °C. Transfection was performed with 
Lipofectamine LTX (Invitrogen) according to the manufacturer’s instructions. The conditions of transfection for 
each experiment are not unified.

Plasmids. To construct the expression vectors for viral proteins, pNiV(6+)49 were used as the polymerase 
chain reaction (PCR) templates. The expression vectors for untagged NiV P and V proteins were constructed by 
inserting the PCR-amplified cDNA into pcDNA3.1(+) (Invitrogen). The expression vectors for myc-tagged NiV P 
and V were constructed by inserting the PCR-amplified cDNA into pCMV-myc (Clontech). The deletion mutants 
of NiV V were constructed with inverted PCR using various combinations of primers, which were phosphorylated 
with T4 PNK (Toyobo). After electrophoresis and gel extraction, the purified PCR products were self-ligated with 
T4 DNA ligase (Promega). The alanine-substituted mutants of NiV V were constructed with inverted PCR using 
various combinations of primers containing the mutated nucleotide sequences. To clone the host genes for use as 
PCR templates, the total RNA was extracted from HeLa cells with ISOGEN (Nippon Gene), and the cDNA was 
synthesized by reverse transcription with PrimeScript Reverse Transcriptase (Takara) and an oligo(dT) primer. 
The expression vector for hemagglutinin (HA)-tagged UBXN1 was constructed by inserting the PCR-amplified 
cDNA into pCMV-HA (Clontech). The expression vectors for glutathione S-transferase (GST)-tagged UBXN1 
were constructed by inserting the PCR-amplified cDNA into pGEX-4T-2 (GE Healthcare). The deletion mutants 
of GST-tagged UBXN1 were constructed with inverted PCR, as described above. The expression vectors for 
FLAG-tagged MDA5 and MAVS were constructed by inserting the PCR-amplified cDNA into pFLAG-CMV 
(Sigma). The expression vector for constitutively active RIG-I (RIG-IΔ) which lacks C-terminal domain corre-
sponding to amino acids 735–925 was constructed by inserting the PCR-amplified cDNA into pcDNA3.1(+). 
To construct the interferon β (IFNβ) reporter vector, the HeLa genome was extracted with the phenol–chloro-
form method and used as the PCR template. The promoter region of the IFNB gene, corresponding to nucleo-
tides −300 to +25, was amplified by PCR and inserted into pGL3-Basic (Promega). The expression vector for 
EGFP (pEGFP-C1) was purchased from Clontech. The vector for the genome editing to deplete UBXN1 gene 
(px330-UBXN1) was constructed by inserting the cDNA corresponding to 62,678,723–62,678,742 in human 
chromosome 11 (5′-GAGAAGGCTCTGGCCCTCAC-3′) into the downstream of U6 promoter in px330 vector50. 
PCR was performed with KOD -Plus- Neo DNA polymerase (Toyobo), and the nucleotide sequences of all the 
constructed vectors were verified with DNA sequencing.

Immunoprecipitation assay and proteomic analysis. At 48 h posttransfection, the cells were washed 
twice with phosphate-buffered saline (PBS), and lysed in whole-cell extract buffer (50 mM Tris-HCl [pH 8.0], 
280 mM NaCl, 0.5% NP-40, 0.2 mM EDTA, 2 mM EGTA, 10% glycerol, 1 mM dithiothreitol, 1 mM sodium vana-
date) supplemented with cOmplete Protease Inhibitor Cocktail (Roche). The cell debris was removed by centrif-
ugation at 17 900 g for 10 min, and the supernatant was collected. For the immunoprecipitation of myc-tagged 
NiV V and HA-tagged UBXN1, Protein G Sepharose (GE Healthcare) conjugated with equal amounts of anti-myc 
mouse monoclonal antibody (Clontech), anti-HA mouse monoclonal antibody (Sigma), and mouse control 
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IgG (R&D Systems) was used. For the immunoprecipitation of endogenous MAVS, Protein A Sepharose (GE 
Healthcare) conjugated with anti-MAVS (CT) antibody (Millipore) was used. For the immunoprecipitation of 
endogenous UBXN1, Protein A Sepharose (GE Healthcare) conjugated with anti-UBXN1 rabbit polyclonal anti-
body (Proteintech) was used. After incubation with the cell lysate at 4 °C for 1 h, the beads were washed three 
times with wash buffer (50 mM Tris-HCl [pH 8.0], 300 mM NaCl, 0.5% NP-40 10% glycerol), and the precipitated 
proteins were eluted with elution buffer (0.1 M glycine-HCl [pH 2.0]).

The immunoprecipitated proteins were separated with sodium dodecyl sulfate polyacrylamide gel electropho-
resis (SDS-PAGE) and detected with silver staining (Apro Science). The bands were excised from the polyacryla-
mide gel and destained. After digestion with trypsin, the peptides were extracted with 5% (v/v) formic acid and 
acetonitrile, and analyzed with nanoscale liquid chromatography electrospray tandem mass spectrometry. The 
detected peptides were analyzed with the Mascot search engine.

GST pull-down assay. Escherichia coli strain BL21 was transformed with the vector expressing 
GST-tagged UBXN1, and the expression of the recombinant protein was induced with 1 mM isopropyl 
β-D-1-thiogalactopyranoside at 30 °C for 3 h. After the bacterial cells were washed three times with PBS, they 
were lysed and sonicated in lysis buffer (1% Triton X-100, 1% N-lauroylsarcosine in PBS). The cell debris was 
removed by centrifugation at 15 000 g for 15 min, and the supernatant was incubated with Glutathione Sepharose 
4B (GE Healthcare) at 4 °C for 1 h. After the beads were washed three times with wash buffer (described in the 
“immunoprecipitation assay” section), they were incubated in the cell lysate at 4 °C for 1 h. The beads were washed 
three times, and the proteins were eluted with elution buffer (25 mM glutathione, 100 mM Tris-HCl [pH 8.9]).

Western blotting. The proteins in the cell lysate and the eluted product were separated with SDS-PAGE 
and detected with western blotting. After the proteins were transferred to PVDF membrane, the membrane 
was cut according to the bands of proteins marker (Precision Plus Protein™ Dual Color Standards, BIO-RAD) 
to probe multiple proteins. As the primary antibodies, we used anti-myc rabbit polyclonal antibody (Sigma), 
anti-HA mouse monoclonal antibody (Sigma), anti-HA goat polyclonal antibody (Novus Biologicals), anti-FLAG 
mouse monoclonal antibody (Sigma), anti-UBXN1 rabbit polyclonal antibody (Millipore), anti-glyceraldehyde 
3-phosphate dehydrogenase (GAPDH) mouse monoclonal antibody (Millipore), anti-GST mouse monoclonal 
antibody (Santa Cruz Biotechnology), anti-MAVS rabbit polyclonal antibody (described in the “immunoprecipi-
tation assay” section), anti-EGFP mouse monoclonal antibody (Clontech), and anti-NiV V rabbit polyclonal anti-
body, which has been described previously51. As the secondary antibodies, horseradish-peroxidase-conjugated 
goat anti-mouse IgG antibody (Dako), anti-rabbit IgG antibody (Dako), or anti-goat IgG antibody (Dako) were 
used. Chemiluminescence was detected with ECL Prime Western blotting Detection Reagent (GE Healthcare) 
and an ImageQuant LAS 4000 biomolecular imager (GE Healthcare).

Cycloheximide chase. At 24 h posttransfection, the cells were trypsinized and split into five equal portions. 
After 24 h, the cells were treated with 100 µg/ml cycloheximide (Sigma), and lysed as described in the “immuno-
precipitation assay” section.

Genome editing. The cells were transfected with px330-UBXN1 together with pQCXIP (Clontech), and 
were treated with 2 µg/ml puromycin (Sigma) for 9 days. After the cells were maintained in the medium without 
puromycin for 5 days, the depletion of UBXN1 was verified with western blotting analysis.

Indirect immunofluorescence assay. At 24 h posttransfection, the cells were fixed with 4% paraform-
aldehyde for 30 min. After the cells were washed three times with PBS, they were incubated in blocking buffer 
(3% bovine serum albumin, 0.1% Triton X-100 in PBS) at room temperature for 30 min. For the staining of 
myc-tagged NiV V, UBXN1 and HA-tagged UBXN1, anti-myc rabbit polyclonal antibody (Sigma), anti-myc 
mouse monoclonal antibody (Clontech), anti-UBXN1 rabbit polyclonal antibody (Millipore) and anti-HA mouse 
monoclonal antibody (Sigma) were incubated with the cell in blocking buffer at 4 °C for over night. For control 
staining, rabbit serum was used. After the cells were washed three times with wash buffer (0.05% Tween 20 in 
PBS), they were incubated with Alexa-Fluor-488-conjugated goat anti-rabbit antibody (Invitrogen), Alexa-Fluor-
568-conjugated goat anti-mouse antibody (Invitrogen), and Hoechst 33342 (Cambrex) in blocking buffer at room 
temperature for 1 h. After the cells were washed three times, their immunofluorescence was observed with an 
IX70 laser confocal microscope and the FluoView FV1000 system (Olympus).

Luciferase assay. For the MDA5 and RIG-I signaling assay, the cells were transfected with the IFNβ reporter 
vector and phRL-TK (Promega) as the internal control, together with vectors expressing MDA5, RIG-IΔ, NiV 
V and UBXN1. At 24 h posttransfection, the cells were washed once with PBS and lysed in Passive Lysis Buffer 
(Promega). The luciferase activities in the cell lysates were measured with the Dual Luciferase Assay System 
(Promega).

Quantitative PCR assay. The template DNA fragment of the NiV minigenome RNA was described 
previously51. The RNA was synthesized with the T7 RiboMax™ Express Large Scale RNA Production System 
(Promega) and purified according to the manufacturer’s instructions. After the quality of the synthesized 
RNA was checked with formaldehyde gel electrophoresis, the RNA was transfected using Lipofectamine 
2000 (Invitrogen). Total RNA was extracted from the cells with TRIzol Reagent (Invitrogen), and was 
reverse-transcribed with PrimeScript Reverse Transcriptase (Takara) and an oligo(dT) primer. The quantita-
tive PCR was performed with THUNDERBIRD® SYBR® qPCR Mix (Toyobo) and specific primers for IFNβ 
(forward: 5′-CAGGAGAGCAATTTGGAGGA-3′; reverse: 5′-CTTTCGAAGCCTTTGCTCTG-3′) and β-actin 
(forward: 5′-TGGACTTCGAGCAAGAGATGG-3′; reverse: 5′-GGAAGGAAGGCTGGAAGAGTG-3′).
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Statistical analysis. Quantitative data were presented as means ± standard deviations of triplicate samples. 
For the assessment of the normality, Kolmogorov-Smirnov test was used. The statistical significance between 
two groups were examined by Student’s t test after their homoscedasticity was assessed by F test. For the multiple 
comparison, one-way analysis of variance (ANOVA) followed by Dunnett’s multiple comparison test was used. P 
value of <0.05 was considered statistically significant.
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