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square wells, we obtain exactly the energy spectrum and the wave functions in the strong spin-orbit
coupling regime. We find that regardless of how small the well height is, there are at least two bound
states in the finite square well: one has the 0* P = —1 symmetry and the other has the c*P =1
symmetry. When the well height is slowly tuned from large to small, the position of the maximal
probability density of the first excited state moves from the center to x = 0, while the position of the
maximal probability density of the ground state is always at the center. A strong enhancement of the
spin-orbit effect is demonstrated by tuning the well height. In particular, there exists a critical height V_,
at which the spin-orbit effect is enhanced to maximal.

The spin-orbit coupling (SOC), originating from the lacking of space-inversion symmetry in semiconductor
materials!, has played an important role in the studies of topological insulators>?, topological superconductors*,
cold atom physics’~%, spin quantum computings'®-', etc. In the presence of SOC, the orbital degree of freedom
of the electron is no longer separable from its spin degree of freedom, such that it is usually difficult to clarify the
strong SOC effect in quantum system. It is also of fundamental interest to explore the physical properties of the
quantum system beyond the weak SOC regime.

A semiconductor quantum dot'”, where a conduction electron of the material is localized by the nearby static

* electric gates, can be considered as an artificial atom. Unlike natural atoms, the artificial atom is more flexible
. because many system parameters are externally manipulable. The electronic'®, magnetic!?, and optical®® proper-
: ties of the semiconductor quantum dot have attracted extensive research interest.
For quantum dot confined in quasi-2D with strong SOC, many theoretical works have devoted to solving the
single electron energy spectrum. If the confining potential is of the cylindrical type, with the help of the Bessel
function, one can get the exact energy spectrum?'-**. If the confining potential is of the harmonic type?*-?’, there
is no exact solution. For quantum dot confined in quasi-1D with strong SOC"3~!>?%, the situation would be a little
different. Note that quantum dot with quasi-1D confinement, e.g., nanowire quantum dot***, can already be
fabricated experimentally. If the confining potential is of the harmonic type, the 1D quantum dot model can be
mapped to the quantum Rabi model*', the energy spectrum can be solved using iteration method?!*2.
: In this paper, we study the strong spin-orbit effect in a quasi-1D quantum dot with the confining potential
 modeled by both the infinite square well (ISW) and the finite square well (FSW). With respect to both the Z,
. symmetry of the model and the energy region, we obtain a serious of transcendental equations, their solutions

give rise to the exact energy spectrum of the quantum dot. The probability density distribution of the eigenstate

in the FSW can be very different from that in the ISW. Interestingly, when we slowly lower the well height of the
© FSW, the position of the maximal probability density of the first excited state changes from the center to x==0;
. while the position of the maximal probability density of the ground state is always at the center. Finally, we study
. the electric-dipole transition rate between the lowest Zeeman sublevels. A strong enhancement of the transition
- rate by lowering the well height is demonstrated. In particular, we find that there exists a critical well height V, at
. which the spin-orbit effect is enhanced to maximal.
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Figure 1. Schematically shown the confining potential of a nanowire quantum dot. (a) ISW with width a. (b)
FSW with width a and height V.

0.0136 50.6 0.8 1~4 50 1.38

Table 1. The parameters of a 1D InSb quantum dot used in our calculations (1, is the electron mass).

Results

The model. We consider a model of nanowire quantum dot, where a conduction electron is confined in a 1D
potential well and subject to both the Rashba spin-orbit field** and the external Zeeman field. The Hamiltonian
under consideration reads'>*** (we set i=1)

2

P z x
H=<—+ ac’p+ Ac™ + V(x),

2m OO AT+ V) 1)
where m is the effective electron mass, « is the SOC strength, A = g,113B/2 is half of the Zeeman splitting induced
by an external magnetic field B, and V(x) is the confining potential. In this paper, we only focus on the strong SOC
regime (ma® > A), and the quantum-dot confining potential is modeled by both the ISW [see Fig. 1(a)] and the
FSW [see Fig. 1(b)], i.e.,

0, |x| <a, 0, |x| <a,

Vikx) = { Vi(x) =

00, |x| > a, Vo x> a, ©)

where a and V, are the width and the height of the well, respectively.

Similar to the quantum Rabi model®, our model is also invariant under the following Z, transformation:
(c*P)H(0*P) = H, where P is the parity operator. It follows that 0P and H have common eigenfunction ¥(x),
i.e,, the eigenstates of the quantum dot can be specified with respect to the Z, symmetry. The 0P = 1symmetry
gives

Ui(x) = ¥,(—x), (3)
and the 0P = —1symmetry gives
Uy(x) = — Uy(—x), (4)

where U, ,(x) are the two components of the eigenfunction ¥(x) = [, (x),U,(x)]".
All the allowed energies of a quantum system are actually determined by its boundary condition. For the ISW
[see Fig. 1(a)], the boundary condition simply reads

U(a) = 0. (5)
For the FSW [see Fig. 1(b)], the boundary condition reads
PU(a + 0) = ¥(a — 0), ¥'(a+ 0)=T(a— 0), (6)

where U/(x) is the first derivative of the eigenfunction. Note that the first equation is given by the continuous

condition of the wave function and the second equation is given by the integration lim f ate dx(H — E)¥(x) =0
—oJa-¢
in the vicinity of the site x=a. :

It should be noted that we do not need to consider the boundary condition at the other site x = —a. Because
when the boundary condition [see Eqs (5) or (6)] at one site x = a is satisfied, the boundary condition at the other
site x = —a is naturally satisfied due to the Z, symmetry. It should be also noted that, in our following calcula-
tions, we have chosen InSb as our nanowire material. Unless otherwise stated, the model parameters are given in
Table 1.
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The bulk spectrum and the bulk wave functions. Because ofthe specific form of the confining poten-

tial V(x) [see Fig. 1], the Hamiltonian H can be reduced to either H, = 2 + ac’p + Ac” (inside the well) or
Hy,+ V; (outside the well). In order to find the energy spectrum and the ¢ corresponding wave functions of our
model, we first study the properties of the bulk Hamiltonian H,.

2
The bulk spectrum and the corresponding bulk wave functions in the energy region E, > — %maz - &

2
can be found elsewhere®. The bulk spectrum of plane-wave solution reads® 2ma
Ef = L + Ja2k? + A
2m (7)
The bulk spectrum of exponential-function solution reads®
r 22 2
Ef=——+ ol + A
b 2m (8)

Inside the well |x| < a, the eigenfunction ¥(x) of Hamiltonian (1) can be expanded in terms of the four degen-

erate bulk wave functions®. However, outside the well |x| > a for the FSW (classical forbidden region), the elec-
2
tron must have a dissipative energy E, < — Emaz S — otherwise, the bound state can not be formed. In the

followmg, we address the bulk spectrum and the correspondlng bulk wave functions in the dissipative energy
region. The bulk wave function in this region can be assumed as

Xl ik e'®x

U (x) = ettt

) [Xz] ©

where k€' is a general complex number with amplitude k, and phase ¢. This solution can also be considered

as a combined plane-wave and exponential-function solution. Substituting the bulk wave function ¥y(x) in
Schrodinger equation (H, — E;)Wy(x) =0 with the above expression, we have

2 2ip
e + ake —E, A
2m ! NES 0
k2e2izz> X, :
A i - akpei¢ — Ey
2m (10)

Letting the determinant of the matrix (the left 2x2 matrix) equal to zero, we have the following two coupled
equations

kp2c0s2¢ = 2m(E, + ma?),
ky = 4m’(Ef — &) (1)

Combining these two equations and eliminating the variable k,, we obtain the bulk spectrum

i_—li\/(

ma’® sin 2¢> ’ (12)

Once the bulk energy E, is obtained, we can obtain four degenerate bulk wave functions via Eq. (10)

\Illl;s(x) _ [Reliiq)]eikpx cospFk x sind))

\Ili’4(x) _ [Re;i(p]eiikﬂx cosdkx sinz/),
1

(13)
where
2
ma” + ak, cos
Rcos® = ——p¢,
A
k2sin2¢ + 2mak, sin
Rsin®d = —-2 ¢ L ¢.
2mA (14)

Outside the well |x| > a (classical forbidden region), the eigenfunction ¥(x) of Hamiltonian (1) can be
expanded in terms of the above four degenerate bulk wave functions.

Here, taking the InSb nanowire quantum dot as an example, we give the bulk spectrum of the Hamiltonian in
the strong SOC regime (ma* > A). Figure 2(a),(b) and (c) respectively show the bulk spectrum of the plane-wave,
the exponential-function, and the combined plane-wave and exponential-function solutions. Also, from the
detailed expressions of the bulk spectrum given in Eqs (7), (8), and (12), we have the following general results
which are very useful for the following discussions. For the plane-wave solution [see Fig. 2(a)], Eb+ > A and
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Figure 2. The bulk spectrum of the quantum dot with strong SOC o =2.8 eV A. (a) The bulk spectrum of
plane-wave solution (7). (b) The bulk spectrum of exponential-function solution (8). (c) The bulk spectrum of
combined plane-wave and exponential-function solution (12).
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Figure 3. The lowest two energy levels as a function of the SOC strength «. (a) The results in the ISW. (b) The
results in the FSW.

- 1 N
Eb > — 7ma2 — 7.
2 3ma

~A<E, <--=
_ 3 2ma
E, < — ma”.

For the exponential-function solution [see Fig. 2(b)], —ZA;Z < E]j' < A and
maoe

12 N

For the combined solution [see Fig. 2(c)], —ma? < E;r < — ma and

2 maz

The energy spectrum and the wave functions. Since the bulk spectrum and the corresponding
bulk wave functions of our model are obtained, the calculations for the energy spectrum are straightforward.
The eigenfunction ¥(x) of Hamiltonian (1) is expanded in terms of the degenerate bulk wave functions?"?*2,
Imposing proper boundary condition [see Eqs (5) or (6)] on W(x), we analytically derive a series of transcendental
equations with respect to both the Z, symmetry and the energy region (for details see Methods). The solutions of
these transcendental equations give us the exact energy spectrum.

Figure 3(a) and (b) show the two lowest energy levels as a function of the SOC « in the ISW and the FSW,
respectively. First, with increasing the SOC, the effective Zeeman splitting becomes smaller, similar results were
also obtained in a 2D quantum dot?2 In the large SOC limit ma? > A, jie., A —0, Hamiltonian (1) is time rever-
sal invariant, hence each level is 2-fold degenerate due to Kramer’s degeneracy. Second, the effective Zeeman
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Figure 4. (a-d) The probability density distribution in both the ISW and the FSW with different SOC « (the
height of the FSW is chosen as V,=1.38 meV). (a) For the ground state in the ISW. (b) For the first excited state
in the ISW. (c) For the ground state in the FSW. (d) For the first excited state in the FSW. (e,f) The probability
density distribution in the FSW with different potential height V,, (the SOC is chosen as = 1.8 eV A). (e) For
the ground state. (f) For the first excited state.

splitting is much smaller (the spin-orbit effect is much stronger) in the FSW. The spin-orbit effect in the quantum
dot can roughly be characterized by the relative parameter (x)/x,,'*'>?, where (x) is the width of the wave func-
tion and x,, = fi/(ma.) is the spin-orbit length. Obviously, (x)y is larger than (x);, hence the spin-orbit effect is
much stronger in the FSW.

We also calculate the probability density distribution in the quantum dot for both the ground state and the
first excited state. It should be noted that the Zeeman sublevels here are represented by the ground state and
first excited state. Figure 4(a) and (b) show the probability density distributions of the ground state and the first
excited state in the ISW, respectively. Figure 4(c) and (d) show the probability density distributions of the ground
state and the first excited state in the FSW, respectively. When the well height of the FSW is small V;=1.38 meV,
the probability density distribution in the FSW is apparently distinct from that in the ISW, where the position of
the maximal probability density of the first excited state is not at the center [see Fig. 4(d)].

It is of interest to know how V|, affects the probability density distribution in the FSW. In Fig. 4(e) and (f), for
various well heights V;,, we show the probability density distributions of the ground and the first excited states
respectively. As can be seen from the figure, the position of the maximal probability density of the ground state is
always at the center (x=0). When the well height is large, e.g., V; = 82.8 meV, the position of the maximal prob-
ability density of the first excited state is also at the center (x=0). However, as we slowly lower V,, there exists a
critical V;;, below which the position of the maximal probability density moves to x==0 [see Fig. 4(f)]. This will
induce interesting phenomena in the following discussion of the electric-dipole spin resonance.

We also find that no matter how small the well height V/ is, there always exist at least two bound state in the
FSW; one is labeled by the 0*P = —1 symmetry and the other is labeled by the 0P = 1 symmetry.

Electric-dipole spin resonance. In the presence of the SOC, the spin degree of freedom is mixed with the
orbital degree of freedom, such that the spin in the quantum dot can respond to an external oscillating electric
field eExcos(wt), an effect called electric-dipole spin resonance!®1>¥-%5, Because the wave functions in the quan-
tum dot are obtained in the previous section, we are able to calculate the Rabi frequency of the electric-dipole
spin resonance.

When the frequency w of the electric field matches the level spacing of the Zeeman sublevels, the electric field
will induce an electric-dipole transition rate, i.e., the Rabi frequency, between the Zeeman sublevels

O = 2¢E| fo dx W (0)x Ty (x)) 15
where = = a and oo represent the integration boundary for the FSW and the ISW respectively, and ¥, (x) denotes
the ground (the first excited) state wave function.

In Fig. 5(a) and (b), we show the Rabi frequency as a function of the SOC « in the ISW and the FSW, respectively.
The Rabi frequency in the FSW can be almost one order larger than that in the ISW. Why the spin-orbit effect is so
large in the FSW? We trace back to the wave functions given in Fig. 4. In the FSW, the position of the maximal
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Figure 5. (a) The Rabi frequency as a function of the SOC in the ISW. (b) The Rabi frequency as a function of
the SOC in the FSW. (c) The Rabi frequency as a function of the well height V; in the FSW. The SOC is fixed at
a=18eVA.

probability density of the first excited state is not at x =0, while the position of the maximal probability density of the
ground state is at x=0, such that it is possible to produce a large Rabi frequency via Eq. (15). Also, in the large SOC
limit o — oo, the Rabi frequency becomes zero'*!25, This is because in the large SOC limit ma® > A, i.e., A —0,
the operator o would be a good quantum number [see Eq. (1)], hence the Rabi frequency is zero.

In Fig. 5(c), we show the dependence of the Rabi frequency on the well height V; of the FSW. Obviously, in the
large V; limit, e.g., V;— 00, the Rabi frequency in the FSW would coincide with that in the ISW (see Fig. 5). Lower
the well height can remarkably enhance the SOC effect in the quantum dot. Interestingly, we find there exists a crit-
ical well height V, at which the Rabi frequency becomes maximal [see Fig. 5(c)], i.e., the spin-orbit effect is
enhanced to maximal. Below the critical Vj;, if we continue to lower Vj, the Rabi frequency decreases sharply. This
result is reasonable, it is impossible to infinitely enhance the spin-orbit effect, in the Vj;— 0 limit, the Zeeman sub-
levels would become degenerate, such that there must exist a critical V;; somewhere when we lower the well height.

Discussion

In the presence of both the strong SOC and the Zeeman field, we have obtained exactly the energy spectrum and
the corresponding wave functions in both the ISW and the FSW. The spin-orbit effect is much stronger in the FSW
than that in the ISW. Moreover, the probability density distribution in the FSW can be very different from that in
the ISW. A strong enhancement of the SOC effect is demonstrated by tuning the height of the confining potential.
In particular, we show that there exists a critical well height, at which the spin-orbit effect is enhanced to maximal.

Methods
. . 2
The transcendental equationsin the ISW quantumdot.  Energy region. —%maz - A <E<-A

2 =

2
In this energy region, as can be seen from the bulk spectrum [see Fig. 2(a)], one can find four K solutions -+ ki,
from the ‘-’ dispersion relation given in Eq. (7)

E E N
ma mao m-a (16)
Thus, the eigenfunction ¥(x) can been written as a linear combination of these four degenerate bulk wave
functions. Note that all of the four bulk wave functions belong to the ‘—” branch. In the coordinate region |x| < a,

the eigenfunction reads®

. 6, 0, 0, 0,
sin— cos— sin—= cos—=
T B T A " e
—cos— —sin= —cos=> —sin=2
2 2 2 (17)

where 6, , = arctan [A/(ak, ;)] and ¢, , 5, are the coefficients to be determined.

As we emphasized before, we can specify the eigenfunction W(x) with respect to the Z, symmetry. This sym-
metry gives some constraints on the coeflicients. For the 0P = 1 symmetry, the relationship ¥,(x) = ¥,(—x)
gives rise to ¢,= —c; and ¢,= —c;. For the 0P = — 1 symmetry, the relationship ¥, (x) = —W,(—x) gives rise to
¢, =¢; and ¢, = ¢;. In other words, we only have two coeflicients ¢, ; to be determined. Using the hard-wall bound-
ary condition ¥, ,(a) =0, we obtain the following transcendental equation
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sin[(k; — k,)a] _ sin[(6, — 6,)/2]
sin[(k, + k,)a) cos[(0, + 0,)/2] (18)

where the minus sign ‘— and the plus sign ‘+” correspond to the P = land 0P = — 1 symmetries respectively.

Energy region. A <E

As also can be seen from the bulk spectrum [see Fig. 2(a)], one can find £k, and £k, solutions from the ‘4’
and ‘—’ dispersion relations given in Eq. (7), respectively. The eigenfunction W(x) can be written as a linear com-
bination of these four degenerate bulk wave functions, i.e., two from the ‘+ branch and two from the ‘-’ branch.
In the coordinate region |x| < a, the eigenfunction reads®

0 0 0 0
cos— sin—L sin =2 cos =
U(x) = o 92 exklx + ¢ 2 e—zklx + ¢ 2 exkzx +¢ 2 e—zkzx.
sin - cos—L —cos=2 —sin—=2
2 (19)
The 0P = 1 symmetry gives rise to ¢, =c, and ¢,= —c;, and the 0*P = —1 symmetry gives rise to ¢, = —¢,

and ¢, = ¢3, such that only two coefficients ¢, ; are to be determined. The hard-wall boundary condition ¥, ,(a) =0
gives us the following transcendental equation

sin[(k; + k,)a] - sin[(6, + 6,)/2]
sin[(k; — ky)a] cos[(6, — 92)/2]’ (20)

where the plus sign ‘+” and the minus sign ‘—’ correspond to the P = land 0*P = — 1 symmetries respectively.

Energy region. —A < E< — ZA—ZZ
maq
In this energy region, one can find two solutions & k from the ‘-’ branch dispersion relation given in Eq. (7)

E E N
k:ﬁma,\/1+—2+\/1+2—z+ﬁ.
ma mao m-a (21)

One also can find two solutions £I" from the ‘—’ branch dispersion relation given in Eq. (8)

2
F:«/Ema,\/—l—iz—i-\/l—l-ziz—i—%‘
mao m «

ma (22)

Thus, in the coordinate region |x| < g, the eigenfunction W(x) can be expanded as a linear combination of the
four degenerate bulk wave functions, i.e., two from the ‘—’ branch of the plane-wave solution and two from the
‘—’ branch of the exponential-function solution®

\Il(x) _ Clefl_'x[_elfﬁﬂ] + Czel"x[_;ﬁp] + Cseikx 2 + C4e7ikx 20 ,
(23)
where 0= 0(k) = arctan [A/(ak)] and ¢ = ¢(I") = arctan(al'/ —a’T? + A?).Forthe c™P = 1 symmetry, the

relationship U (x) = ¥,(—x) gives rise to ¢, = —c,e™** and ¢, = —c¢;. The boundary condition ¥, ,(a) = 0 gives us
the following transcendental equation

2la
cos(ka — @/2) — e2F cos(ka + ¢/2) — tan(012).
cos(ka + ¢/2) — e” * cos(ka — ©/2) (24)

For the c*P = — 1 symmetry, the relationship ¥,(x) = —¥,(—x) gives rise to ¢, = c,e""¥ and ¢, = ¢;. The
boundary condition ¥, ,(a) =0 gives us the following transcendental equation

2Ta

sin(ka — p/2) + e~ “sin(ka + ¢/2) — tan(0/2).
sin(ka + ©/2) + e*Msin(ka — ©/2) (25)

Energy region. — ZA% <E<A

In this energy rergiyon, one can find two solutions £k from the ‘—” branch dispersion relation given in Eq. (7).
One also can find two solutions £I" from the ‘+ branch dispersion relation of given in Eq. (8). Thus, in the coor-
dinate region |x| < a, the eigenfunction ¥(x) can be expanded as a linear combination of these four degenerate
bulk wave functions, i.e., two from the ‘—” branch of the plane-wave solution and two from the ‘4 branch of the
exponential-function solution
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o i sin — cos—
U(x) = Cle—rx[e ] + Czerx[e ] + C3ezkx 29 + C4e—zkx
1 1 —Cos— —sin—
2 2 (26)
For the 0P = 1symmetry, the relationship ¥, (x) = W,(—x) gives rise to ¢, = ¢,¢'¥ and ¢, = —c;. The boundary
condition ¥, ,(a) =0 gives us the following transcendental equation

: 2l'a _. _
sin(ka + ©/2) + ezr sin(ka — ¢/2) — _tan(0/2).
sin(ka — p/2) + e “ sin(ka + ¢/2) (27)

For the 0™P = —1 symmetry, the relationship ¥,(x) = —¥,(—x) gives rise to ¢, = —c,e'¥ and ¢, = ¢;. The
boundary condition ¥, ,(a) = 0 gives us the following transcendental equation

_ J2la _
cos(ka + ¢/2) e2F cos(ka — ¢/2) _ — tan(02).
cos(ka — p/2) — e~ cos(ka + ¢/2) (28)

The transcendental equations in the FSW quantum dot.  Outside the square well x > a, because of
the constraint lim,_,, W(x) =0, the eigenfunction can only be written as

U(x) = C5[Rii¢]eikpx cosp—kx sing + 66[Re;iq)]e—ik”x cosdp—k,x sin¢$,

(29)
where ¢ 4 are the coefficients to be determined and
E—V, /(E—V)Z—AZ
k, cos¢p = ma,|l + L+ Y ,
P J el ot
E-V E—- V) - N
k,sinp = maJ—l— 20+ ( 2)4 .
mao m-« (30)

The other two bulk wave functions ¥;*(x) are divergent in the limit x — co. Inside the square well |x| < a, the
eigenfunction can still be written as those given in Eqs (17), (19), (23), and (26) with respect to the energy region.

The eigenfunctions can still be specified with respect to the Z, symmetry. For eigenfunction inside the well, we
have two coefficients ¢, ; to be determined. Also, for eigenfunction outside the well, we have the other two coef-
ficients ¢5 ¢ to be determined [see Eq. (29)]. The boundary condition, given by Eq. (6), give us a matrix equation

M-C=0 (31)

where M is a 4x4 matrix and C = (¢,,¢;,¢5,¢6)". Let the determinant of the matrix M equal to 0, we obtain a tran-
scendental equation which is an implicit equation of the energy E

det(M) = 0. (32)

Similar to the discussions in the ISW, here we also can obtain a series of transcendental equations with respect
to both the Z, symmetry and the energy region. The detailed expression of the matrix M is given as followes. In
2

the energy region —%maz -3 & < E < — A, the matrix M reads
m

o~
ika . O kg ikga . 02 —ikya ika—k —ilkya+®)—k
e‘sm?:Fe 1 ezsm?:Fe 2 — TR —Rxe e
0, 02
cos—- Cos—
2 2
a0 ik e 02 i(k a+®)—k ik a—k
—e‘cos;ie 1 —ezcosyi —R x " ¥ —e MRS
sinﬁ e ™ sin
2
M, = . 0 . 02 . P
- ikl[e”‘l“ sin = ikz[e’““ sin=—~ —(ike — k) Rk, + k) x e et mha
ika—kya
. . 02 X e
+ ¢ ke cosﬁ 4 ¢ Hhan cos—]
2 2
. ik 0 . i 02 . . —ik,a—k
71k1[e’ 1@ cos?1 fzkz[e’kza cos=—~ —R(ik, — k) (ik, + k) x e kxa—kya
'(kxa+<l>)—k},a
] ) x e'
+ ¢ tha sinﬁ] £ ¢ kan sine—z]
2 2 (33)
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In the energy region E > A, the matrix M reads

o COS% n o2 Sin92_2 + ok _pka—kya LR x e ikt ® kg
e e sinﬁ cos—
2 2
ok sin% Ly ogka ik COSGZ_Z Lok _p oy pitkat®) -k e kakya
cosﬁ sing—2
2 2
M, = . 0 . . )
* ikl[flkla C0571 ikz[ezkza Sin92_2 —(ik, — k) R(ik, + k,) x g kst ®)—kya
ikya—kya
T e sin& 4 ¢k cosa—2 e
2 2
i 0 i ik
ikl[e’k‘“ sin71 T —ikz[e'kZ“ cos—— £ —R(ik, — k) (ik, + k) x e "k
) ) % ei(kxa+<1>)—k},a
e M cos ﬁ] e 2 gin 9—2]
2 2 (34)
2
In the energy region —A < E < — = ~, the matrix M reads
2mao
_pTamiv T eikasing + e—ikacosg _ ok _R x o ikat®) -k
e*l"a ¥ el"afiw _eikucosg + efikasing _R x ei(kxaﬁ»q))fk},a _efikxafk},a
_Ta—i o ika. O i 0 X .
Mj: — F(E Ta—ip + eI‘u) lk[elkaslng + e ’kacosg] —(lkx — k),) R(lkx + k},)
% ekxa—kya x g ikt )=k
—T(e ™ £ ") fik[eik“cosg + e_ik“sing] —RGk, — k) (k, + k) x e 7
~ ei(kqur‘I))*kya (35)
2
In the energy region 72A—2 < E < A, the matrix M reads
mao
oTatip | la pika sing Tk cosg _ ok _R x ¢ ikt ®) kg
e—Fa 4+ eFa+i<p _eika COS? + e—ika Sil’lg _R % ei(kxa+<1>)—kya _e—ikxa—kya
Tati o ika . O i 0 . .
My = |_T(eTot% £ (1 1k[e’ka smE + e cos 5] —(ik, — k) R(ik, + k)
x eikxa—kya x e—i(kxa+4p)—kya
_ i i [% i 0 ikea—
—T(e " F ot —ik[e’k“ cosg 4+ ¢ ke sing] —R(ik, — k) (ik, + k)) x e kya—kya
% ei(kxa+<1>)—kya (36)

here k,=k,cos ¢, k,=k,sin ¢, and M, means M xp_,.
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