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Novel Polymer-Free Everolimus-
Eluting Stent Fabricated using 
Femtosecond Laser Improves 
Re-endothelialization and Anti-
inflammation
In-Ho Bae1,2, Myung Ho Jeong1,2,3, Kyung Seob Lim1,2, Dae Sung Park1,2,4, Jae Won Shim1,2, 
Jun-Kyu Park1, Kwang Hwan Oh5, Mi Rim Jin1 & Doo Sun Sim1,2,3

The aim of this study was to fabricate a novel polymer-free everolimus-eluting stent with nanostructure 
using a femtosecond laser (FSL). The stent were coated with everolimus (EVL) using FSL and 
electrospinning processes. The surface was rendered hydrophobic, which negatively affected both 
platelet adhesion (82.1%) and smooth muscle cell response. Animal study was performed using a 
porcine coronary restenosis model. The study groups were divided into 1) bare metal stent (BMS), 
2) poly(L-lactide) (PLA)-based EVL drug eluting stent (DES), 3) commercial EVL-eluting DES, 
and 4) FSL-EVL-DES. After four weeks of stent implantation, various analyses were performed. 
Quantitative analysis showed that the amount of in-stent restenosis was higher in the BMS group 
(BMS; 27.8 ± 2.68%, PLA-based DES; 12.2 ± 0.57%, commercial DES; 9.8 ± 0.28%, and FSL-DES; 
9.3 ± 0.25%, n = 10, p < 0.05). Specifically, the inflammation score was reduced in the FSL-DES 
group (1.9 ± 0.39, n = 10, p < 0.05). The increment in re-endothelialization in the FSL-DES group was 
confirmed by immunofluorescence analysis. Taken together, the novel polymer-free EVL-eluting stent 
fabricated using FSL can be an innovative DES with reduced risk of ISR, thrombosis, and inflammation.

Atherosclerosis is the primary cause of coronary artery disease, which contributes to high mortality rates in mod-
ern society. A drug-eluting stent (DES) is a useful tool that remarkably reduces stenosis rate and has been widely 
used as an intervention in cardiology in the past decade1,2. However, certain limitations associated with DES 
are yet to be overcome. Especially, the use of polymers for coating drugs onto bare metal stent (BMS) surfaces 
is related to severe adverse effects such as inflammation and thrombosis3,4. Moreover, polymer degradation may 
form fragments, which can cause embolism5,6. In addition, several problems should be considered prior to using 
polymers, such as the generation of surface non-uniformity by cracking or peeling, mechanical change by strut 
bridging, and occlusion in peripheral vessel by bulk erosion7–9. To overcome these limitations, the innovation 
of a special surface morphology for anchoring drugs to the stent-surface of polymer-free DES is critical. Post 
drug elution, a DES is exposed to the blood and the environment. Thus, biophysical surface modification and 
optimization have become one of the most attractive research areas in biomaterial science10,11. The application 
of femtosecond laser (FSL) pulses in medicine is a growing field of interest; for example, FSL is currently used in 
refractive surgery for vision correction12, neurosurgery13 or nanosurgery in single cells14. The main advantage of 
using FSL pulses is the high cutting precision in the micrometer range accompanied by minimal collateral dam-
age. Moreover, reports show that cell migration and organization can be directed via laser patterning15. Despite 
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the advantages of FSL, such as the ability to regulate cellular processes and accumulation of data regarding the 
utility of FSL-based medical devices, data on surface modification of stents is scarce. Previously, we have reported 
that a protein can be incorporated inside the nanoscaled pores on the surfaces of medical devices by a simple 
loading process16. Everolimus (EVL), a derivative of sirolimus that acts as an inhibitor of the mammalian target of 
rapamycin (mTOR), is commonly coated onto BMS. Owing to its ability to reduce restenosis, it has been exten-
sively studied and widely used in patients with coronary artery diseases17–19. The aim of this study was to fabricate 
a novel polymer-free DES with nanopatterns and nanopores using FSL. The cellular response regulatory ability of 
the nanopatterns and drug storage capacity of the nanopores were evaluated. Furthermore, the feasibility of FSL 
was verified by investigating the alteration of mechanical properties post-FSL and in a preclinical animal study.

Results
Morphological analysis of femtosecond laser-treated stent. The surface morphologies of the stents 
were investigated using OM and SEM. The thickness of the patterned line that underwent FSL irradiation was 
regulated by controlling the UV intensity (Fig. 1a). The round shape of the plates (15 × 15 mm) was utilized for 
this study. The thickness gradually increased at higher UV intensity (3.6 ± 0.24 μm in 0.1% UV group, 4.9 ± 1.01 
μm in 1.0% UV group, and 17.5 ± 5.66 μm in 5.0% UV group, respectively, n = 10). We selected 1.0% UV for 
further study since it showed the high thickness without any FSL-induced metal damage. As shown in Fig. S1, 
we designed the rotating system so as to enable FSL irradiation of a 3-dimensional (3-D) tubular stent. The 3-D 
stent was irradiated with FSL using conditions identical to those of the plate study. Although the thickness of the 
patterned line was less in the 3-D stent study (4.0 ± 0.33 μm, n = 10) than in the plate study, the difference was 
not significant. The intervals between lines were approximately 102.1 ± 4.66 μm (Fig. 1b). After FSL treatment, 

Figure 1. Morphological analysis after femtosecond laser irradiation. Representative SEM images of surfaces 
2-D plates (a) and 3-D tubular stents (b) under various irradiation conditions. Representative images of 
patterning and pores on stent surfaces after femtosecond laser irradiation (c).



www.nature.com/scientificreports/

3SCIeNTIfIC REPORtS |  (2018) 8:7383  | DOI:10.1038/s41598-018-25629-9

the surface morphology was rough and wavy. Pores were created using FSL irradiation by focusing the laser, and 
the diameter was approximately 8.3 ± 2.68 μm (Fig. 1c). Unfortunately, it was hard to obtain appropriate images 
of the pores in the 3-D tubular study (data not shown).

Mechanical performance study of femtosecond laser irradiation. The finite element method 
(Fig. S2) and various mechanical tests were performed under the KTL guideline to investigate the variations 
in the mechanical properties of the stent after FSL irradiation. Results show that the mechanical performance 
did not change after FSL irradiation (pre-; 0.49 ± 0.082 N vs. post-FSL; 0.46 ± 0.066 N in flexibility, pre-; 
3.3 ± 0.42 N vs. post-FSL; 3.8 ± 0.55 N in radial force, pre-; 3.05 ± 0.220% vs. post-FSL; 2.95 ± 0.415% in recoil, 
pre-; 2.11 ± 0.810% vs. post-FSL; 2.05 ± 0.620% in foreshortening, and pre-; 0.12 ± 0.031 N/mm vs. post-FSL; 
0.10 ± 0.062 N/mm in tension, respectively, n = 10, p = ns). Trackability analysis was performed to investigate the 
accessibility of the stent to lesions. Results show that FSL did not change the accessibility (Fig. 2).

Contact angle measurement. The surface property of FSL was investigated by contact angle measure-
ment. The contact angles measured at the left and the right edges of the water drop were almost symmetrical. The 
contact angle was more significantly increased in the post-FSL group (108.5 ± 6.82°, 20.2%) than in the pre-FSL 
group (90.3 ± 5.50°, n = 10, p = 0.034), indicating that the FSL process improved hydrophobicity (Figs 3 and S3).

Cellular response by femtosecond laser irradiation. We assessed the adhesion and distribution of 
platelets on the FSL-treated surfaces by calculating the number of blood platelets. The number of blood platelets 
on the post-FSL surface (123 ± 33/mm2, 82.1%) was clearly lesser than that on the pre-FSL surface (688 ± 62/
mm2, n = 10, p = 0.002) under the same conditions (Fig. 4a). The extent of SMC migration was investigated 
to determine cellular response after FSL. SMCs migrated to the scratched area (12.0 ± 1.05 mm2) after 24 h of 
post-scratched cultivation time in the FSL non-treated group (10.8 ± 4.21 mm2, 90.1 ± 8.70%). In contrast, the 
SMC migration rate was reduced in the post-FSL group (9.0 ± 3.88 mm2, 23.0 ± 7.45%; Fig. 4b, n = 10, p = 0.003). 
Further, the XTT assay was performed to investigate the inhibitory effect of FSL. SMC proliferation was inhibited 
more in the post-FSL group (0.71 ± 0.073 at 7 days, 33.0 ± 4.13%) than in the control group (1.06 ± 0.062; Fig. 4c, 
n = 10, p < 0.004).

Measurement of coating amount and release velocity of everolimus. EVL was coated on the tubu-
lar stent and plates using an electrospinning machine (Fig. S4). For comparison, bare and PLA-based plates were 
subjected to electrospinning under same conditions as described above. The amount of EVL on the plate sur-
faces were expressed as cumulative EVL concentrations. Results show that the amount of EVL on the pre-FSL 
plate surface was negligible (42.5 ± 3.85 µg/176 mm2). In contrast, the amount of EVL on the post-FSL plate 
(304.5 ± 22.18 µg/176 mm2), n = 10, p = 0.0001) was considerably higher than that in pre-FSL plate. The amount 
of EVL on the post-FSL plate was slightly less than that on the PLA-based EVL coated group (358.4 ± 33.28 µg/176 
mm2, n = 10, p = 0.048) (Fig. 5a). The amount of EVL released from plate surfaces was measured as mentioned 
above. Results showed a burst-out pattern in the pre-FSL DES group (83.5 ± 10.45% in 1 day). On the contrary, the 
EVL release velocity was significantly slower in the post-FSL group, which enabled interpretation of a non-burst 
out pattern (54.3 ± 3.62% in 1 day and 66.8 ± 7.23% in 4 day). Although slightly faster than the release velocity 

Figure 2. Mechanical properties of stent pre- and post-femtosecond laser irradiation. The indicated values are 
expressed as mean ± SD (n = 10). NS, not statistically significant.
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observed with the PLA-based DES group, the amount of EVL released from stents were similar in both groups at 
7 days of incubation (63.9 ± 6.92% in PLA-based DES and 71.6 ± 7.64% in post-FSL DES, respectively) (Fig. 5b).

Analysis of animal study – nondestructive analysis. To verify the results of the in vitro experiments, 
pre-clinical animal study was performed using a porcine coronary restenosis model. BMS, PLA-based DES, 
commercial EVL-eluting DES, and FSL-EVL-DES were randomly implanted in the left anterior descending 
coronary artery and left circumflex artery with stent:artery ratio of 1.3. Four weeks after stent implantation, 
vessels surrounding the stents were isolated and fixed in 10% neutral-buffered formalin. Prior to histopatho-
logical analysis, nondestructive analysis such as OCT and microCT analysis was performed. OCT results show 
that the NIH area was reduced in the EVL-containing group (PLA-based DES; 23.6 ± 10.54 mm3, commercial 
DES; 30.7 ± 8.99 mm3, and FSL-DES; 27.6 ± 14.11 mm3, respectively. n = 10) compared to that in the BMS group 
(66.3 ± 13.12 mm3) (Fig. 6a). These tendencies were corroborated by the microCT results (BMS; 27.8 ± 2.68%, 
PLA-based DES; 12.2 ± 0.57%, commercial DES; 9.8 ± 0.28%, and FSL-DES; 9.3 ± 0.25%, respectively, n = 10). 
The distribution of occlusion with longitudinal position of microCT indicated mild type-2 ISR (Fig. 6b).

Analysis of animal study – histological analysis. After OCT and microCT analysis, the same samples 
were subjected to histological analysis. There were no significant differences in the injury score (BMS; 1.5 ± 0.51, 
PLA-based DES; 1.5 ± 0.51, commercial DES; 1.5 ± 0.41, and FSL-DES; 1.4 ± 0.45, respectively, n = 10, p = NS), 
IEL (BMS; 4.0 ± 0.41, PLA-based DES; 3.9 ± 0.49, commercial DES; 4.2 ± 0.61, and FSL-DES; 4.2 ± 0.30, respec-
tively, n = 10, p = NS), and fibrin score (BMS; 0.86 ± 0.21, PLA-based DES; 1.02 ± 0.31, commercial DES; 
0.89 ± 0.22, and FSL-DES; 0.88 ± 0.29, respectively, n  = 10, p = NS). However, the LA was significantly lower in 
the BMS group (1.75 ± 0.42) compared to that of other groups (PLA-based DES; 2.51 ± 0.68, commercial DES; 
2.74 ± 0.44, and FSL-DES; 2.81 ± 0.36, respectively, n = 10, p < 0.05). Considering the lower value of LA in the 
BMS group, the percentage area of stenosis was higher (28.5 ± 4.5%) than in the other groups (PLA-based DES; 
14.3 ± 2.55, commercial DES; 12.2 ± 5.2, and FSL-DES; 11.3 ± 3.50, respectively, n = 10, p < 0.05). Especially, the 
inflammation score was significantly higher in the PLA-based DES group (2.3 ± 0.24) compared to other groups 
(BMS; 1.6 ± 0.31, commercial DES; 1.7 ± 0.41, and FSL-DES; 1.9 ± 0.39, respectively, n = 10, p < 0.05) (Fig. 7a,b).

Discussion
In past decades, synthetic polymer-based everolimus-eluting DES have been widely used for effective treatment of 
obstructive coronary artery disease and prevention of ISR that is mainly caused by hyperproliferation of smooth 
muscle cells20. However, DES has been replaced with BMS to eliminate drug release after full polymer degrada-
tion from the stent surface. Thereby, the BMS is exposed to a physiological environment as a foreign material21. 
Especially, synthetic polymer-related inflammation and thrombosis remain major limitations, and surface prop-
erties have to be modified to overcome these challenges22,23. Especially, it is well-known that the acidic products 
generated during polymer degradation (i.e., lactic acid and glycolic acid) may elicit inflammatory responses in the 
vessel wall24. Several histological studies show that inflammatory reactions play a pivotal role in the proliferation 
of neointimal hyperplasia and restenosis after stent implantation, which support the results of this report25,26. 
Therefore, in this study, we developed novel polymer-free everolimus-eluting stent using the FSL irradiation tech-
nique. Previously, we have reported that nanopores on metal surfaces are able to store and deliver drugs to the tar-
geted tissue16. EVL anchoring by physical methods such as electrospinning, negative pressure, and lyophilization 
enable the exclusion of polymer during DES fabrication. First, we prepared equipment suitable for FSL irradiation 

Figure 3. Measurements of surface wettability. Images of surface static contact angles of the stents were 
represented and analyzed. The indicated values are expressed as the mean ± SD (n = 10).
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of 3-D tubular shaped stents (Fig. S1). In such an equipment system, by adjusting the condition of the jig that is 
being held, the interval of the desired patterning can be realized. This equipment enabled regulation of pattern 
thickness and creation of micropores (Fig. 1), indicating the feasibility of directing cell migration15 and EVL 

Figure 4. Platelet adhesion and smooth muscle cell response after femtosecond laser irradiation. Representative 
images and image analysis of platelet adhesion (a) and SMC migration (b) XTT analysis for SMC proliferation. 
(c) The indicated values are expressed as the mean ± SD (n = 10).

Figure 5. Amount of everolimus on surfaces and in vitro release velocities. The amount of EVL on the stent 
surfaces after washing with PBS. (a) In vitro cumulative EVL released from surfaces. (b) The amount of 
everolimus was measured using UV-visible spectrophotometer at designated time points. The indicated values 
are expressed as the mean ± SD (n = 10). NS, not statistically significant.
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storage16 without any critical variation in the mechanical properties of the CNUH stent (Figs 2 and S2). Clinical 
studies have also suggested that restenosis is correlated with the geometric properties of stents27. These geometric 
properties are important factors in biomechanical determinations and may affect stenting techniques28. Therefore, 
it is essential to investigate changes in the physical properties of the CNUH stent with optimal conditions estab-
lished by the FSL process. Preferably, surface property was rendered hydrophobic after processing for FSL (Figs 3 
and S3). The relationship between microstructure and hydrophobicity has been well documented29,30. As shown 
in Fig. 1c, the formation of microstructure by FSL in this study seems to be a factor that increases the hydropolic-
ity of the surface. Coronary stent implantation, which is a foreign matter in the human body, may lead to in-stent 
thrombosis. Therefore, the first event in blood-biomaterial interaction is the adsorption of proteins onto the 
surface of the materials. Proteins such as fibrinogen, von Willebrand factor (vWF), albumin, and fibronectin 
rapidly adsorb onto the surface when a foreign material comes in contact with blood. The adsorbed protein layer 
determines all further events such as platelet adhesion, aggregation, and coagulation. It is well known that platelet 
adhesion is the primary cause of thrombosis. Therefore, platelet adhesion tendency was assessed to determine 
homocompatibility of the stent. The number of blood platelets on the post-FSL surfaces was lesser than that 
on pre-FSL BMS surface under the same conditions (Fig. 4). The anti-thrombogenic effect of FSL-irradiated 
surface results from its hydrophobicity, which may inhibit SMC migration and proliferation, the primary cause 
of ISR. The interaction of cells with biomaterials is of key importance for the successful long-term implantation 
of medical devices. Previously, it was reported that microstructured surface modification through femtosecond 
processing can regulate cell migration to specific regions15. Microstructure-related surface hydrophobicity affects 
the cell response29. In this study, cell proliferation and migration were also significantly suppressed on the micro-
structure surface by femtosecond processing. Electrospinning was used for EVL coating (Fig. S4). The smooth 
surface of BMS was disabled to anchor EVL (i.e. wash out by low outside force), and the anchoring, capturing, and 
delivering capacities of EVL-coated stents were greatly increased only with FSL process, negative pressure, and 
lyophilization (Fig. 5). The EVL release velocity was similar to that of sirolimus31. Pre-clinical animal study was 
performed in porcine coronary restenosis model to verify the in vitro results. There were four study groups. The 
BMS group was a negative control to compare the variation after FSL and drug-coating (i.e. DES). The PLA-based 
DES group was a control for the non-polymer stent to determine the effect of the synthetic polymer to compare 
the synthetic polymer-based DES to the non-polymeric FSL-based DES under our same processing conditions. 

Figure 6. Quantitative analysis of animal study. After 4 weeks of implantation, the vessels surrounding stents 
were isolated and subjected to OCT (a) and microCT (b) analysis. Representative images of each was shown 
(n  = 10).
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The commercial DES group was a positive control to compare the performance of the FSL-DES with that of 
products widely used in the market. Finally, the FSL-DES group comprised the final product in this study. The 
stents were implanted in the porcine coronary arteries and the stent-surrounding vessels were isolated at 4 weeks 
post-implantation and subjected to histopathological analysis (using immunofluorescence) and quantitative anal-
ysis (using OCT and microCT). Angiographic images were obtained prior to sacrificing the animals. The images 
showed the positions of the properly-expanded implanted stents and that blood was passing freely through the 
lumens of the implanted stents (Fig. S5). OCT and microCT analysis showed that occlusion was lower in all 
EVL-containing groups, but not in BMS (Fig. 6). These values were consistent with LA and percentage area 
stenosis obtained from histological observation (Fig. 7). Previous reports show that acidic degradation induces 
inflammation32. As expected, the inflammation score was significantly higher in the PLA-based DES group than 
in other groups. The FSL-DES was fabricated only with patterning since the 3-D rotating system was disabled to 
create pores. However, the animal study suggested that EVL was delivered to vessels by the nanopatterned stent. 
Further studies are warranted for analyzing the effect of patterning on drug storage and delivery. In conclusion, 
the novel polymer-free EVL-eluting stent fabricated using FSL can be an innovative DES with reduced risk of ISR, 
thrombosis, and inflammation.

Methods
Preparation of the bare metal stent. Previously, we designed a coronary BMS called CNUH (Chonnam 
National University Hospital) stent33, which was approved by the Korean Food and Drug Administration. CNUH 
stent showed superior flexibility and biocompatibility, which are important features of a good coronary stent. 
The CNUH stent was fabricated under identical manufacturing conditions as reported previously34,35. Briefly, 
cobalt-chromium alloy (Co-Cr, L605, 3.0 × 18.0 mm with tubular shape and 15 × 15 mm with round shape plate) 
was used as a stent material because several studies have demonstrated the biocompatibility of Co-Cr36. A laser 
cutter (Rofin, Starcut, Hamburg, Germany) was used for the fabrication of the BMS with the Co-Cr alloy. The 

Figure 7. Histological analysis of the porcine coronary restenosis model. After 4 weeks of implantation, the 
vessels surrounding stents were isolated and subjected to H&E and Carstair’s fibrin staining. Representative 
images of sections (a) and histomorphometric analyses (b) are shown. Magnifications of the cross-sectional 
slices were 25×. (n = 10), NS, not statistically significant.
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BMS was exposed to an acidic atmosphere (50% H2SO4) for 1 h to remove burrs, and heat treatment and polishing 
were performed to restore the mechanical properties. Thereafter, the CNUH was subjected to FSL irradiation.

Femtosecond laser irradiation process. The specimens were subjected to FSL irradiation to create nano-
scale topographical patterns and pores (Supplementary Fig. S1). An ultra-short FSL with a maximum power 
of 6 W and center wavelength of 1,030 nm was used as the light source to direct patterned microgroove arrays 
on the work piece. The 2 mm-diameter laser beam was expanded five times using a beam expander and then 
tightly focused on the surface of the work piece with an objective lens (5×, focal length = 40 mm, working dis-
tance = 37.5 mm, numerical aperture = 0.14, depth of focus = 14 µm) after passing a linear polarizer and a quarter 
wave plate for optical isolation and polarization control. The laser spot diameter at the focus is calculated using 
the Gaussian beam equation, d = 4fλ0/nπD, where f is the focal length of the objective lens, λ0 is the laser beam 
wavelength, and n is the refractive index of air. Using n = 1 (air) and D  = 11.3 mm, the laser spot diameter was 
estimated to be approximately 4.6 µm and this value is used as the representative spot diameter throughout this 
study. The beam was circularly polarized at the surface of work piece to avoid a possible polarization dependence 
of the patterning process37. The direct-writing of the pattern was performed by translating the work piece using a 
high resolution (0.5 µm/pulse) air-bearing X-Y stage and motorized Z stage with the resolution of 1 m/pulse. The 
work piece was placed on a vacuum chamber that was installed on the X-Y-θ stage. All patterning processes were 
monitored in real time with a charge-coupled-device camera. Machining results were examined using an optical 
microscope and 3-dimensional surface profiler after ultrasonically cleaning of the samples.

Surface morphology and properties. Optical microscopy (OM) was used to study the sample surface 
morphologies and for visual identification of color and deformation. Detailed morphologies such as patterning 
and pores were examined by scanning electron microscopy (SEM, Hitachi, Tokyo, Japan) with an acceleration 
voltage of 5 kV. The samples were dried overnight and sputter-coated using gold prior to SEM observation. The 
hydrophilicity of the stent surface was determined from static contact angle measurements of deionized water 
droplets. The degree of dispersion of 5 µL deionized water drops on the surfaces was measured with a contact 
angle meter (SEO300A, SEO, Suwon, Korea). For contact angle measurement, a round-shaped Co-Cr plate was 
used. Each data point represents an average of at least 10 independent measurements.

Study of mechanical performance. To investigate the variation in the mechanical properties of the 
stent after FSL, the flat plate compression and 3-point bending tests, which provide radial force and flexibility 
measurements, respectively, were performed. Furthermore, we conducted foreshortening and recoil tests using 
simple mathematical equations to obtain the length and radius values of the stent before and after expansion. 
All mechanical performance studies, including a trackability, which is accessibility of the stent to lesions, were 
performed at the Korea Testing Laboratory (KTL) as reported previously33. A large deformation analysis was 
performed using the ABAQUS commercial code (Hibbit Karlsson & Sorenses Inc., Pawtucket, RI, USA) based on 
the finite element method.

In vitro cellular response. To verify the effect of FSL on smooth muscle cell (SMC) proliferation, which are 
involved in stent restenosis (ISR), XTT analysis was performed at 1, 4, and 7 days of cultivation. Briefly, a 40 µL 
EZ-Cytox reagent (Daeil Lab Service Co., Seoul, Korea) was added to a 24-well culture dish. XTT is metabo-
lized by mitochondrial dehydrogenases to form a formazan dye that can be spectrophotometrically determined 
by measuring the absorbance at 450 nm with a spectrophotometric microplate reader (Bio-Tek Instruments, 
Winooski, VT, USA). The amount of formazan salt formed corresponds to the number of viable cells in each 
well. A scratch assay for cell migration was performed to verify the results of the XTT assay. As we reported 
previously35, SMC (1 × 104 cells/cm2) were seeded in 12-well plates containing pre-FSL and post-FSL disk. After 
24 h of incubation, a line, 50 µm in thickness, was created by scraping through the center of the cell monolayer 
with a sterile tip. After 24 h of additional incubation at 37 °C in a humidified 5% CO2 atmosphere, fields of the 
scratched areas were randomly selected for imaging38. Cell migration was calculated as 100 × [(initial scratched 
area - remaining scratched area at 24 h incubation)/initial scratched area]. To estimate the thrombogenicity of the 
metal surface after FSL, a platelet adhesion test, which assesses hemocompatibility, was performed as reported 
previously39. Briefly, platelet-rich plasma (PRP) was obtained from fresh porcine whole blood by centrifuging 
blood with a 5 mL 3.0 wt% solution of sodium citrate at 150 × g for 15 min and 500 × g for 20 min. The PRP was 
harvested carefully and diluted to 3.0 × 107 platelets/mL. The PRP solution was loaded onto the metal surfaces 
and allowed to rest at room temperature for 180 min. Thereafter, the non-specifically adhered PRP was removed 
by gently rinsing the surface. The samples were dehydrated with a concentration gradient of ethanol. Thereafter, 
the plates were subjected to SEM observation.

Everolimus coating. EVL (20 mg/mL) was dissolved in tetrahydrofuran (THF) and coated onto the BMS 
and the plate using an electrospinning machine (ESB200, NanoNC, Seoul, Korea) under optimized conditions 
(5 kV voltage, 10 kgf/cm2 air pressure, 15 cm distance from the nozzle to the stent, 50 rpm rotation speed of the 
stent, and 60 µL/min spray speed). Thereafter, it was rotated with a homogenizer to prevent run-down of the EVL 
solution in a 37 °C dry oven for 30 min. Then, the samples were lyophilized under negative pressure. For the com-
parison group, poly(L-lactide) (PLA) (Mn  =  50,000 g/mol, Sigma Aldrich, USA) (20 mg/mL) and EVL (20 mg/
mL) were dissolved in tetrahydrofuran (THF, Duksan Chemical, Seoul, KOR) and coated on the BMS surface.

Determination of loading efficiency and release velocity of everolimus. The total amount of EVL 
on the plate surface before and after FSL was estimated. One hundred microliters of EVL solution (10 mg/mL) 
was carefully loaded onto the plates and incubated for 24 h to instill EVL on the surfaces. After gently washing 
the surface with de-ionized water to remove simple laid EVL from the surface, the plates were lyophilized as 
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reported previously40,41. To measure the amount of EVL on the plates, the plates were immersed in THF solution 
with gentle shaking. The THF solution was then analyzed using an ultraviolet (UV) spectrophotometer at 278 nm. 
This measurement was continued till UV value was zero. The UV absorbance values were used to plot the EVL 
standard curve and cumulated. To determine the release velocity of EVL from the plates, the lyophilized plates 
were placed in phosphate-buffered saline (PBS, pH 7.2) solution. The PBS solution was taken out at every desig-
nated day and the absorbance was measured using the UV-visible spectrophotometer. The concentration of drug 
released was calculated by comparing it to the drug standard curve, and it was expressed in a cumulative manner.

Animal preparation and stent implantation. All animal experimental procedures were performed in 
accordance with the The Ethics Committee of the Chonnam National University Medical School guidelines and 
regulations and all protocols were approved by Chonnam National University Hospital. Animal studies were per-
formed with castrated male pigs weighing 20–25 kg. Study groups were divided into four groups: BMS, PLA-based 
DES, commercial EVL-eluting DES, and FSL-EVL-DES. The stents (40 stents) were randomly implanted in the 
left anterior descending coronary artery and left circumflex artery with a stent:artery ratio of 1.3. Four weeks after 
stent implantation, the animals were sacrificed by injecting 20 mL potassium chloride through the left carotid 
artery. Vessels surrounding the stents were isolated and fixed in 10% neutral-buffered formalin.

Optical coherence and micro computed tomography analysis. Optical coherence tomography 
(OCT) images were acquired using a non-occlusive technique, through a 2.7 Fr C7 Dragonfly Imaging Catheter 
(LightLab Imaging Inc., Westford, MA, USA) that was flushed with undiluted contrast dye. Post-calibration, the 
catheter was inserted distal to the lesion of interest. Mechanical pullback at a speed of 20 mm/s was started during 
continuous automatic flushing of iodixanol (Visipaque™ 320 mg I/mL, GE Healthcare, Amersham, UK) at the 
rate of 2–5 mL/s, using a Medrad injector (Medrad Inc., Warrendale, PA, USA) to ensure blood clearance from the 
coronary arteries. Quantitative measurements were obtained using the neointimal hyperplasia (NIH) area (stent 
area–lumen area) (automatically traced and manually adjusted when required) as reported previously42. Prior to 
histological analysis, the isolated samples were subjected to micro-computed tomography (microCT; SKYSCAN 
1172, Kontich, Belgium) analysis to quantify and visualize the ISR as reported previously35,43. Prior to scanning, 
the contrast media was injected into the lumen of the stent to highlight differences in the CT values of the lumen, 
strut, and occlusion. The samples were placed on microCT specimen table and scanned at 50 kV and 200 µA, with 
an exposure time of 1.2 s. The images were obtained by CTAN software (SKYSCAN, Kontich, Belgium). The ISR 
rate was calculated by subtracting the lumen extent from the stent extent. The distributions of occlusions were 
represented as a histogram.

Histopathological analysis. Histopathological evaluation of the arteries was performed by an experi-
enced cardiovascular pathologist. The specimens were embedded and 50–100-µm-thick sections were obtained 
at approximately 1 mm distance and subjected to hematoxylin-eosin (H&E) and Carstairs’ fibrin staining for 
histological analysis. Histopathological sections were measured using a calibrated microscope, digital video imag-
ing system, and microcomputer program (Visus 2000 Visual Image Analysis System, IMT Tech, San Diego, CA, 
USA). Borders were manually traced for the lumen area (LA), area circumscribed by the internal elastic lamina 
(IEL), and innermost border of the external elastic lamina. Morphometric analysis of the neointimal area for 
a given vessel was calculated as the measured IEL area minus the LA. Measurements were obtained from five 
cross-sections from the proximal and distal ends, and three midpoints of each stent. The histopathological reste-
nosis area was calculated as 100 × (1 − (lesion LA/lesion IEL area)44.

Immunostaining assay. Immunocytochemistry (ICC) and immunofluorescence (IF) were conducted as 
previously described45. All samples were sectioned at 4 µm intervals, analyzed, and quantified with integral calcu-
lus. Representative images were selected from the mid-region of the stents. Serial sections of paraffin-embedded 
tissue were rehydrated by serially immersing them in xylene, alcohol, and water, washing with PBS and 0.1% 
Triton X-100, and then microwaving for 20 min in citrate buffer at pH 6.0 (Abcam, Cambridge, UK) for anti-
gen retrieval. Sections were then blocked with bovine serum albumin (BSA, Sigma Aldrich). Primary antibody 
(1) mouse anti-smooth muscle actin antibody (Dako, 1A4), (2) rabbit anti-CD31 polyclonal antibody (Bioss, 
MA, USA), (3) anti-CD68 antibody (ab125212, Abcam) were diluted 1:400 in 0.05% Triton X-100. The sec-
tions were incubated overnight at 4 °C. Afterward, the sections were incubated with the respective Alexa Fluor 
488 goat anti-rabbit IgG (green color) or 568 (red color) diluted in PBS at 1:400 and then washed with PBS. 
Sudan-block B at 0.1% was applied for 30 minutes and washed with 0.02% Tween 20 in PBS. After washed with 
PBS, 4′,6-diamidino-2-phenylindole (DAPI) staining was performed for 4 h at 4 °C. Slides were imaged through 
bright-field microscopy with a Nikon Eclipse E600 and a SPOT RT digital camera with accompanying software 
(Diagnostic Instruments). Excised stents were stored in formaldehyde solution. A 1.5 mL eppendorf tube was 
filled with clay, and the clay was molded into a V shape to hold the stent during contrast agent staining. The 
formaldehyde-fixed stents were placed vertically in the V-shaped opening in the clay. Each stent was positioned 
in the clay so that there was no movement of the stent inside the eppendorf tube. One milliliter of contrast agent 
(Omnihexol) was injected through the opening at the center of the stent with a 5 mL syringe.

Statistical analysis. Statistical analysis was performed using commercially available software (SPSS version 
15, Chicago, IL, USA). The data are presented as the mean ± SD. Unpaired Student’s t-test was used to compare 
the stent groups.
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