
1SCIeNtIFIC RepoRts |  (2018) 8:7192  | DOI:10.1038/s41598-018-25542-1

www.nature.com/scientificreports

OSM-9 and an amiloride-sensitive 
channel, but not PKD-2, are 
involved in mechanosensation in  
C. elegans male ray neurons
Hu Zhang1, Xiaomin Yue1, Hankui Cheng1, Xiaoyan Zhang1, Yang Cai1,2, Wenjuan Zou1, 
Guifang Huang1, Lufeng Cheng2, Fang Ye3 & Lijun Kang  1

Mechanotransduction is crucial for touch sensation, hearing, proprioception, and pain sensing. 
In C. elegans, male ray neurons have been implicated to be involved in the mechanosensation 
required for mating behavior. However, whether ray neurons directly sense mechanical stimulation 
is not yet known, and the underlying molecular mechanisms have not been identified. Using in 
vivo calcium imaging, we recorded the touch-induced calcium responses in male ray neurons. Our 
data demonstrated that ray neurons are sensitive to mechanical stimulation in a neurotransmitter-
independent manner. PKD-2, a putative sensor component for both mechanosensation and 
chemosensation in male-specific neurons, was not required for the touch-induced calcium responses 
in RnB neurons, whereas the TRPV channel OSM-9 shaped the kinetics of the responses. We further 
showed that RnB-neuron mechanosensation is likely mediated by an amiloride-sensitive DEG/ENaC 
channel. These observations lay a foundation for better understanding the molecular mechanisms of 
mechanosensation.

Mechanotransduction is crucial for touch sensation, hearing, proprioception, and pain1,2. At the molecular level, 
four classes of ion channels have been considered as mechano-electrical transduction channels in the animal 
kingdom: the touch-sensitive ENaC family of Na+ channels in C. elegans (MEC-4/MEC-10 and DEG-1), the 
stretch-sensitive two-pore domain K+ channels (TREK-1/TRAAK), the N-type transient receptor potential 
(TRP) channel (TRPN1/TRP-4/NOMPC), and piezo proteins2–6. Recently, an additional class of membrane pro-
teins (Transmembrane channel-like proteins, TMC) have also been linked to mechanotransduction in vertebrate 
hair cells7,8. However, because of the difficulties associated with functionally reconstituting mechanotransduction 
channels in heterologous systems, the molecular identities of a vast majority of mechanotransduction channels 
remain poorly understood2,4,9.

C. elegans has two sexual forms, which include hermaphrodites and males. Male mating facilitates the 
exchange of genetic material and is evolutionarily beneficial10. Male mating behavior has been considered to be 
one of the most complex behaviors in C. elegans, which relies on both chemosensation and mechanosensation11,12. 
C. elegans males have unique tail fans and a hook used during mating. The male tail fan consists of a cuticle and 18 
rays. Each ray is composed of a single structural cell and two morphologically distinct sensory neurons, including 
type A ray neurons (or ray A-neurons, termed RnA neurons, which number from 1–9) and type B ray neurons (or 
ray-B neurons, termed RnB neurons, which number from 1–9)12–14. These ray neurons likely act as mechanical 
and chemical sensors to detect the proximity of or contact with a hermaphrodite during mating12,15. Nevertheless, 
whether ray neurons directly sense mechanical stimulation is not well-understood, and the underlying molecular 
mechanisms have yet to be identified.
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The TRP channel proteins, LOV-1 (TRPP1) and PKD-2 (TRPP2), are expressed in all RnB neurons (except 
R6B) and they are required for male mating behavior16,17. Males with loss-of-function mutations in pkd-2 display 
significantly impaired responses to hermaphrodite contact and vulva identification16,17. In vertebrates, depletion 
of the polycystin orthologs PKD1 and/or PKD2 may lead to an impairment of flow sensing in the primary cilium 
of renal epithelial cells in nephrons18–20. Thus, PKD-2 has been speculated to be part of the sensory receptor com-
plex mediating mechanosensation in male-specific neurons12.

In this study, we employ in vivo calcium imaging to monitor touch-evoked activities in male ray neurons. We 
demonstrate that ray neurons are sensitive to mechanical stimulation in a cell-autonomous manner. The transient 
receptor potential (TRP) vanilloid channel subunit OSM-9, but not PKD-2, is involved in mechanical signal 
transduction in RnB neurons. We further show that amiloride blocks touch-induced calcium increases in RnB 
neurons, suggesting that amiloride-sensitive sodium channel(s) (ENaCs) are likely the primary mechanotrans-
duction channels in RnB neurons.

Results
RnB neurons are sensitive to mechanical stimulation. To determine whether RnB neurons respond 
to mechanical stimulation, a genetically encoded calcium indicator, GCaMP5.0, was expressed in all RnB neurons 
(except R6B) under the control of the pkd-2 promoter (Fig. 1a)21,22. A glass probe was used to exert a mechani-
cal stimulus, while the fluorescence changes were recorded (Fig. 1b). Using this method, we observed dramatic 
touch-induced calcium increases in R1B, R2B, and R3B neurons when a mechanical stimulation consisting of a 
15-μm displacement was applied to the region of rays 1/2/3 (Fig. 1c). The calcium levels in these neurons were 
recovered minutes later, and could rise up again when we gave them another mechanical stimulation (Fig. 1d, S1 
and Movie S1). Similarly, touch-induced calcium increases were observed in the R4B, R5B, R7B, R8B, and R9B 
neurons when we stimulated rays 4/5 and rays 7/8/9, respectively (Fig. 1e,f). Notably, no statistical differences in 
either the amplitude or kinetics of calcium increases in the various ray B neurons were observed when the touch 
probe moved forward to the indicated rays (Fig. 1g,h). These results demonstrate that RnB neurons are sensitive 
to mechanical stimulation.

RnA neurons occasionally respond to mechanical stimulation. We next asked whether RnA neu-
rons respond to mechanical stimulation. We expressed GCaMP5.0 in RnA neurons under the control of the tba-9 
promoter (Fig. 2a)23. We speculated that RnA neurons might be much more sensitive to mechanical stimulation 
than RnB neurons because TRP-4, a pore-forming subunit of a gentle nose touch-related mechano-gated channel, 
is expressed in some RnA neurons4,12,24,25

. Surprisingly, no detectable calcium response was observed in any RnA 
neuron when a mechanical stimulation consisting of a 15-μm displacement was applied. A mechanical stimu-
lation exceeding a 20-μm displacement occasionally induced calcium increases in some RnA neurons (4 out of 
20 worms) (Fig. 2c,d). These results suggest that RnA neurons may also be activated by mechanical stimulation, 
but their sensitivity is quite low in our experimental setting. We next focused our study on the touch-induced 
responses of RnB neurons (particularly calcium responses in R1B, R2B, and R3B neurons [R1B–R3B]) induced by 
a mechanical stimulation consisting of a 15-μm displacement applied to the region of rays 1–3.

Touch-induced calcium responses in RnB neurons do not rely on synaptic transmission. One 
possibility is that calcium increases in RnB neurons following mechanical stimulation are post-synaptically 
induced by other neurons. Therefore, we examined the touch-induced responses of RnB neurons in unc-13(e51), 
eat-4(ky5), and unc-31(e928) mutant worms. Specifically, unc-13 and unc-31 encode orthologs of the mammalian 
Munc13 and CAPS proteins, which are required for neurotransmitter and neuropeptide release, respectively26,27. 
Additionally, eat-4 encodes an ortholog of the mammalian vesicular glutamate transporter, which is necessary for 
glutamatergic neurotransmission28. Interestingly, touch-induced calcium increases in RnB neurons in mutants 
for unc-13, unc-31, or eat-4 were similar to those of wild-type worms, suggesting that RnB neurons are likely the 
primary neurons for sensing mechanical stimulation (Fig. 3a,b).

PKD-2 is not involved in mechanotransduction in RnB neurons. We next sought to investigate the 
molecular mechanisms of mechanotransduction in RnB neurons. PKD-2 has been implicated in contact responses 
of adult male towards hermaphrodites. Thus, PKD-2 has been speculated to be part of the sensory receptor com-
plex mediating chemosensation and/or mechanosensation in male-specific neurons12,17. Surprisingly, we found 
that touch-induced calcium responses in neither pkd-2(sy606) mutants nor pkd-2(sy606);lov-1(sy582) double 
mutants were impaired (Fig. 4a,b), strongly suggesting that PKD-2 is not involved in mechanotransduction in 
RnB neurons.

OSM-9 is involved in mechanosensation of RnB neurons. The TRPV channel subunits of OSM-9 
are required in the ASH sensory neurons for avoidance responses to nose touches and aversive chemicals29. In 
adult males, OSM-9 has been reported to be expressed in male-specific neurons in the tail (possibly in the HoB 
and RnB neurons) and in the male-specific CEM neurons in the head30,31. Furthermore, OSM-9 is required for 
male sexual attraction behaviors31. We found that osm-9(ky10) mutant males have normal touch-induced cal-
cium increases in RnB neurons (Fig. 4a,b). However, touch-induced calcium increases in RnB neurons in osm-
9(ky10) mutants were significantly slower than in wild type animals (Fig. 4c). OSM-9::GFP has been previously 
reported to localize to the endoplasmic reticulum (ER) of the cell body, but not to the cilia of RnB neurons30. 
Taken together, OSM-9 may act downstream of the primary mechanotransduction channel as a calcium modu-
lator in RnB neurons. It should be noted that we did not observe a deficit in contact responses in osm-9 mutants, 
probably because of the minor role of OSM-9 in mechanosensation of RnB neurons.
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Amiloride-sensitive channel(s) mediates the mechanosensation of RnB neurons. To further 
characterize the molecular identity of the mechanotransduction channel in RnB neurons, we tried two cation 
channel blockers, including the DEG/ENaC channel blocker amiloride and a non-specific cation channel blocker 
GdCl3

2,32. Interestingly, touch-induced calcium increases were fully eliminated by 200 μM amiloride in most RnB 
neurons except R3B, and recovered after amiloride was rinsed out (Fig. 5a,b). By contrast, touch-induced calcium 
increases in all RnB neurons were not affected by 100 μM GdCl3 (Fig. 5a,b). These results suggest that a DEG/
ENaC channel, but not a GdCl3-sensitive cation channel, is likely the basic component of the mechanotransduc-
tion channel in RnB neurons.

Figure 1. Touch-induced calcium responses in RnB neurons. (a) Micrograph of the male tail showing the 
expression of pkd-2::GCaMP5.0 in the rays. All RnB neurons, except R6B, express GCaMP5.0 by the control of 
the pkd-2 promoter. (b) A schematic illustrating of delivering mechanical stimulation toward the RnB cilia (at 
the position of rays 4–6 is shown). Worms expressing GCaMP5.0 in RnB neurons were immobilized with glue 
and immersed in a bath solution. (c) Representative time-lapse rainbow images of GCaMP5.0 based calcium 
responses from R1B- R3B neurons induced by mechanical stimulation of 15 μm displacement at the position 
of rays 1–3. (d) Calcium responses of the R1B- R3B neurons induced by two successive mechanical stimuli of 
15 μm displacement with 180 s interval at the position of rays 1–3. Solid lines show the average fluorescence 
changes and the shading indicates SEM. n = 10. (e) Representative time-lapse rainbow images of GCaMP5.0 
based calcium responses from R4B and R5B induced by mechanical stimulation of 15 μm displacement at the 
position of rays 4, 5. (f) Representative time-lapse rainbow images of GCaMP5.0 based calcium responses 
GCaMP5.0 based calcium responses from R7B- R9B neurons induced by mechanical stimulation of 15 μm 
displacement at the position of rays 7–9. (g,h) Calcium responses (g) and maximum ΔF/F0 changes (h) of the 
RnB neurons in response to mechanical stimulation. Solid lines show the average fluorescence changes and the 
shading indicates SEM. n ≥ 7. All error bars represent SEM.
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Discussion
C. elegans male ray neurons have long been considered candidate mechanosensory neurons12,15,33. However, clear 
evidence showing that ray neurons directly respond to mechanical stimulation has been lacking. Here, we demon-
strate that ray neurons can be activated by mechanical stimulation in a cell-autonomous manner. Our data further 
show that OSM-9 and an amiloride-sensitive channel, but not PKD-2, are required for mechanosensation in RnB 
neurons.

Whether TRP family channels function as primary mechanotransduction channels has long been of 
great interest9. Recently, TRPN proteins (TRPN1/NOMPC/TRP-4) were confirmed to be cilia-associated 
mechano-gated channels in both C. elegans and flies4,5. The unusually long N-terminal repeat, which consists of 
28 ankyrin domains of the TRPN subunit, presumably acts as the gating spring by which force induces channel 
gating34. Nevertheless, TRPN proteins appear to have been lost in vertebrates35. Importantly, there is no evidence 
showing that any of the other TRP proteins are mechanically gated, even though many members of the TRP 
subfamily proteins have been implicated in mechanosensation4,9,36. PKD-2 has also been considered a strong can-
didate mechanotransduction channel in RnB neurons because its ortholog is likely to function in flow sensation 

Figure 2. Touch-induced calcium responses in RnA neurons. (a) Micrograph of the male tail showing the 
expression of tba-9::GCaMP5.0 in the rays. (b) A schematic illustrating of delivering mechanical stimulation 
toward the RnA cilia (at the position of rays 4–6 is shown). (c,d) Representative time-lapse rainbow images 
of GCaMP5.0 based calcium responses (c) and soma fluorescence changes (d) from R5A and R6A neurons 
induced by mechanical stimulation of 20 μm displacement at the position of ray5 and ray6.

Figure 3. Touch-induced calcium responses in RnB neurons do not rely on synaptic transmission. (a,b) 
Averaged calcium responses (a) and maximum ΔF/F0 changes (b) in R1B-R3B neurons induced by mechanical 
stimulation of 15 μm displacement at the position of rays 1–3 in wild type, unc-13(e51) mutants, unc-31(e928) 
mutants and eat-4(ky5) mutants. Solid lines show the average fluorescence changes and the shading indicates 
SEM. n ≥ 12. Data are mean ± SEM.
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Figure 4. OSM-9, but not PKD-2, is involved in touch-induced calcium responses in RnB neurons. (a,b) 
Averaged calcium responses (a) and maximum ΔF/F0 changes (b) in R1B-R3B neurons induced by mechanical 
stimulation of 15 μm displacement at the position of rays 1–3 in wild type, pkd-2(sy606) mutants, osm-9(ky10) 
mutants, and pkd-2(sy606);lov-1(sy582) double mutants. Solid lines show the average fluorescence changes and 
the shading indicates SEM. (c) Half-maximum response times of touch induced-calcium responses in R1B-
R3B neurons in wild types, pkd-2(sy606) mutants, osm-9(ky10) mutants, and pkd-2(sy606);lov-1(sy582) double 
mutants. n ≥ 12. Data are mean ± SEM. *P < 0.05, unpaired Student’s t-tests.

Figure 5. Amiloride blocks touch-induced calcium responses in RnB neurons. (a,b) Averaged calcium 
responses (a) and maximum ΔF/F0 changes (b) in R1B-R3B neurons induced by mechanical stimulation of 
15 μm displacement at the position of rays 1–3 in wild type worms with bath solution, GdCl3, amiloride or after 
rinsed amiloride out with bath solution. Solid lines show the average fluorescence changes and the shading 
indicates SEM. n ≥ 7. Data are mean SEM. ***P < 0.001, unpaired Student’s t-test.
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in the primary cilium of human renal epithelial cells12,18. Strikingly, our data show that pkd-2 mutant worms have 
no detectable defects in touch-induced calcium responses in RnB neurons, excluding the role of PKD-2 in mech-
anotransduction in RnB neurons.

Our study also demonstrates that mechanotransduction in RnB neurons is mediated by amiloride-sensitive 
channels. These are most likely DEG/ENaC, but not GdCl3-sensitive stretch-activated cation channels, such as 
the TRP and PIEZO family proteins2,37. The C. elegans genome encodes 32 DEG/ENaC genes. Among these, three 
DEG/ENaC channel subunits, DEG-1, MEC-4, and MEC-10, have been identified as mechanosensory recep-
tors3,38–40. Some other DEG/ENaC subunits, such as UNC-8, UNC-105, DEL-1, and DEGT-1, have also been 
implicated in mechanosensation40–42. Given the large number of DEG/ENaC genes present in C. elegans, the 
primary mechanosensory receptor in RnB neurons has yet to be identified.

Male RnA neurons are thought to be essential for contact responses, scanning, and turning, whereas 
RnB neurons are only crucial for contact responses12. Since most steps of the mating behavior involve direct 
male-hermaphrodite body contact, RnA neurons are speculated to play a more important role in mechanosen-
sation than RnB neurons12. Our data support the idea that RnA neurons may act as mechanosensory neurons. 
Nevertheless, we only got low efficiency on recording of touch-induced calcium responses in RnA neurons. 
TRP-4, a mechano-gated TRP channel, mediates touch sensation in CEP neurons and PDE neurons4,25, and it is 
expressed in some RnA neurons12,24. Surprisingly, our data hint that TRP-4 might not participate in mechanosen-
sation in RnA neurons, consistent with previously reported observations that trp-4 null mutants appear almost 
normal for all male mating sub-behaviors12. Our study suggests that male-specific neurons of C. elegans may 
provide an outstanding context for teasing out the molecular mechanisms of mechanosensation in vivo.

Materials and Methods
Strains. C. elegans strains were maintained under standard conditions43. Well-fed day 1 adult male were used 
in all experiments. The strains used in this study are as follows: Bristol N2 (Caenorhabditis Genetics Center), 
ST693 (him-5(e1409); kanIs5[pkd-2::mCherry + pkd-2::GCaMP5.0 + odr-1::DsRed]), ST677 (him-5(e1409); 
kanIs6[tba-9::mCherry + tba-9::GCaMP5.0]), ST1295 (him-5(e1409); unc-13(e51); kanIs5), ST781 (him-5(e1409); 
eat-4(ky5); kanIs5), ST1298 (him-5(e1409); unc-31(e928); kanIs5), ST699 (him-5(e1409); pkd-2(sy606); kanIs5), 
ST704 (him-5(e1409); pkd-2(sy606); lov-1(sy582); kanIs5), ST767 (him-5(e1409); osm-9(ky10); kanIs5). Strains 
carried him-5(e1409) mutation could generate high incidence of males.

Calcium Imaging. Individual animals were glued on a coverglass using a cyanoacrylate-based glue (Gluture 
Topical Tissue Adhesive, Abbott Laboratories) and immersed in bath solution (145 mM NaCl, 2.5 mM KCl, 1 mM 
MgCl2, 5 mM CaCl2, 10 mM HEPES, 20 mM glucose, pH adjusted to 7.3 with NaOH). The calcium indicator 
GCaMP5.0 was used to measure the intracellular calcium signals22,44,45. Imaging was acquired on an Olympus 
microscope (BX51WI) with a 60× objective lens. Raw image data were acquired with an Andor DL-604M 
EMCCD camera and micro-Manager 1.4 software. GCaMP5.0 was excited by a Lambda XL light source and flu-
orescent signals were collected at a rate of 1 Hz. The average GCaMP5.0 signal from the first 10 s before stimulus 
was taken as F0, and ΔF/F0 was calculated for each data point. The data was analyzed using Image J.

Mechanical Stimulation. Touch stimulation was delivered to the cell using a tip diameter of ~1 μm borosil-
icate glass capillary driven by a piezoelectric actuator (PI) mounted on a micromanipulator (Sutter)43. The needle 
was placed perpendicular to the worm’s tail. In the “on” phase, the needle was moved toward the worm’s tail so 
that it could probe into the worm’s tail on the cilia of the ray neurons and then held on the cilia for 500 ms. In the 
“OFF” phase the needle was returned to its original position.

Statistical Analysis. Data analysis was performed using GraphPad Prism 6 software. Error bars were 
mean ± SEM. N represents the number of cells. P values were determined by Student’s t test. P < 0.05 was 
regarded as statistically significant.
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