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Functional and structural 
characterization of osteocytic  
MLO-Y4 cell proteins encoded by 
genes differentially expressed in 
response to mechanical signals  
in vitro
Fanchi Meng1, Graeme F. Murray2, Lukasz Kurgan3 & Henry J. Donahue2

The anabolic response of bone to mechanical load is partially the result of osteocyte response to fluid 
flow-induced shear stress. Understanding signaling pathways activated in osteocytes exposed to fluid 
flow could identify novel signaling pathways involved in the response of bone to mechanical load. 
Bioinformatics allows for a unique perspective and provides key first steps in understanding these 
signaling pathways. We examined proteins encoded by genes differentially expressed in response to 
fluid flow in murine osteocytic MLO-Y4 cells. We considered structural and functional characteristics 
including putative intrinsic disorder, evolutionary conservation, interconnectedness in protein-protein 
interaction networks, and cellular localization. Our analysis suggests that proteins encoded by fluid flow 
activated genes have lower than expected conservation, are depleted in intrinsic disorder, maintain 
typical levels of connectivity for the murine proteome, and are found in the cytoplasm and extracellular 
space. Pathway analyses reveal that these proteins are associated with cellular response to stress, 
chemokine and cytokine activity, enzyme binding, and osteoclast differentiation. The lower than 
expected disorder of proteins encoded by flow activated genes suggests they are relatively specialized.

Mechanical fluctuations in the extracellular environment, such as interstitial fluid flow-induced shear stress, 
induce cell perturbations including membrane deformations, cytoskeletal restructuring, conformational changes 
in transmembrane proteins, changes in the glycol calyx and movement of cilia. These cell responses to mechanical 
signals are translated throughout the cell and can result in alterations in gene expression across many tissues1.

In bone, osteocytes are well positioned to detect mechanical signals from loading and communicate them to 
downstream effector cells including osteoblasts, osteoclasts, and bone lining cells2. However, the signal transduc-
tion pathways involved in this process are only partially understood. A better understanding of signaling pathways 
activated by mechanical signals in vitro may lead to a better understanding of how bone adapts to load in vivo.

We have previously used gene microarrays, proteomics and RNA sequencing analysis (RNA-Seq) to identify 
increases in inflammatory C-X-C motif chemokines, including Ccl2, and the HIF-1α, IL-17, and AMPK sign-
aling pathways induced by fluid flow3,4. However, these studies were limited as they did not examine functional 
and structural characteristics of proteins encoded by the corresponding differentially expressed genes and have 
focused only on genes with the highest signal. To address this we analyzed previously obtained RNA-seq data 
and gene micro array data3,4 using several high-throughput computational methods to quantify evolutionary 
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conservation, interconnectedness, and putative intrinsic disorder of the proteins encoded by all differentially 
expressed genes. We also functionally characterized these proteins using pathway analysis and gene ontology. We 
analyzed which of these characteristics are unique to proteins encoded by genes affected by fluid flow by compar-
ing them to a generic set of proteins from the mouse proteome.

Conservation quantifies the amount of evolutionary variation in a protein sequence across species. When 
measured at the protein level it reflects the abundance of functionally and structurally important residues that are 
typically retained across species5–7. Interconnectedness measures the number of interactions between proteins 
in protein-protein interaction (PPI) networks, and can predict, along with conservation, the extent to which this 
protein is essential8,9 and central to cellular processes10. Intrinsic disorder reflects the degree to which a protein 
lacks an ordered 3D structure under physiologic conditions11,12. While the levels of intrinsic disorder vary from 
protein to protein, disorder itself is ubiquitous. Recent estimates show that about 19% of amino acid residues 
are disordered in Eukaryotes13 and between 6% and 17% of proteins encoded by various genomes are entirely 
disordered14. Intrinsic disorder is implicated in a diverse range of cellular functions including transcription15,16, 
translation17, protein-protein interactions18,19, protein-RNA interactions20,21 and cell signaling19,22,23, to name a 
few. Functional characteristics that are specific to disorder include one-to-many binding, where one disordered 
region can interact with several structurally diverse partners; ability to fold upon binding; high accessibility to and 
regulation by post-translational modifications; and ability to implement cascade interactions24. At the same time, 
a high level of disorder is a substantial obstacle to solving protein structure25–27 and to performing rational drug 
design that relies on knowledge of protein structure28–30.

Gene ontology (GO) is a bioinformatics framework that defines biological processes, molecular functions and 
subcellular location of genes and proteins31,32. These annotations allow for the computational identification of 
functions and locations that are characteristic of a given group of genes or proteins. In a similar manner, pathway 
and network analysis can compare differentially expressed proteins and genes to known pathways to identify 
possible downstream effects.

We hypothesized that examining protein conservation, interconnectedness, intrinsic disorder, as well as 
pathway analysis, would provide insights to the function of osteocytic proteins encoded by genes differentially 
expressed in response to fluid flow-induced shear stress. This is the first study to examine evolutionary conserva-
tion, interconnectedness and putative intrinsic disorder in the context of mechanobiology.

Results
We comprehensively characterized several major structural and functional characteristics of osteocytic proteins 
encoded by genes differentially expressed due to exposure to fluid flow-induced shear stress. Figure 1 summarizes 
results focusing on evolutionary conservation, content of putative intrinsic disorder and interconnectedness. 
We compared the entire complement of proteins encoded by differentially expressed genes as well as proteins 
encoded by genes upregulated and downregulated against a generic set of murine proteins. Figure 1A reveals 
that proteins that correspond to the differentially expressed genes, and in particular proteins encoded by genes 
that are upregulated, have significantly lower than expected evolutionary conservation (p-value < 0.05). Proteins 
encoded by genes that are downregulated are also characterized by lower levels of conservation, however, the dif-
ference did not reach statistical significance when p-value considered significant was set at 0.05 (p-value = 0.18). 
Figure 1B reveals similar observations for the content of intrinsic disorder. That is, proteins encoded by differen-
tially expressed and upregulated genes have significantly lower than expected disorder content (p-value < 0.05). 
Proteins encoded by downregulated genes also have lower disorder content, however, the difference did not reach 
statistical significance when p value considered significant was set at 0.05 (p-value = 0.32). The median disor-
der content across proteins encoded by differentially regulated genes equals 0.09 compared to the twice larger 
(0.18) content that is typical for murine proteins13. On the other hand, the degree of interconnectedness is not 
significantly different. Proteins encoded by differentially expressed genes, including both upregulated and down-
regulated subsets, have similar levels of PPIs (p-values > 0.6) compared to an overall set of murine proteins. The 
average number of PPIs in mouse listed in the metha resource equals 5.9733 and is, as expected, virtually identical 
to the number that we report for our randomly chosen subset of murine proteins (6.03), and only slightly higher 
than for the proteins encoded by differentially expressed genes (5.63).

For GO analyses, we collected the most frequent term for each path in the GO hierarchy to reduce redun-
dancy between the terms and to include the most frequent terms. Figure 2 depicts a list of subcellular locations 
(black bars), molecular functions (light gray bars) and biological processes (dark gray bars) that are significantly 
enriched in the proteins encoded by differentially expressed genes (p-value < 0.05 and at least 50% increase com-
pared to the expected value to ensure that magnitude of the difference is substantial). Our genes of interest are 
primarily located in the cytoplasm and extracellular space. The GO terms that have high enrichment and high 
counts (second number inside square brackets next to the GO term name in Fig. 2) suggests that they are involved 
in chemokine (GO:0008009 and 0070098) and cytokine (GO:0034097) activities, response and regulation of 
response to stress (GO:0006950 and 0080134), and cellular response to chemical stimulus and oxygen-containing 
compound (GO:0070887 and 1901700). Annotations of molecular functions (light gray bars) also suggest that 
they take part in enzyme and G-protein coupled receptor binding.

We further focused on several key functions related to chemokine and cytokine processes and response and 
regulation of response to stress. We visualized the distributions of the evolutionary conservation, putative intrin-
sic disorder and interconnectedness for these proteins encoded by differentially expressed genes and compared 
them to a generic set of murine proteins (Fig. 3). Consistent with the results in Fig. 1, conservation (Fig. 3A) and 
amount of intrinsic disorder (Fig. 3B) are significantly lower than expected in these three sets of proteins that 
correspond to the differentially expressed genes (p-value < 0.05, except for the difference in conservation for 
proteins with chemokine activity where p-value = 0.3). Moreover, the numbers of PPIs are similar to a generic 
murine protein (p-value = 0.99).
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Ingenuity Pathway Analysis constructs causal networks from individual relationships detailed in curated lit-
erature34. Using these networks, downstream effects can be predicted based on our data. Casual network analysis 
of our RNA-seq data found a fluid flow-induced upregulation of proteins encoded by differentially expressed 
genes that are associated with the downregulation of osteoclast differentiation (Fig. 4). Shown in Fig. 4 are all 
the proteins that correspond to the differentially expressed genes in our dataset expected to influence osteoclast 
differentiation. NOS2, LPRC17 and PLK3R1 that are associated with inhibition of osteoclast differentiation were 
moderately upregulated; PTGS2 was also upregulated but would be predicted to increase osteoclast differentiation 
while TLR2 may effect osteoclast differentiation, IPA’s database did not have enough power to generate a predic-
tion. NOS2, TLR2, and PTGS2 all play a role in the regulation of the inflammatory response which is consistent 
with our gene ontology analysis which found increase of cytokines and chemokines.

Discussion
Our results suggest that proteins encoded by genes that are differentially expressed in response to fluid flow have 
lower than expected levels of sequence conservation and putative intrinsic disorder while maintaining typical 
levels of PPIs. Given their relatively low conservation, they are likely to carry out more specialized (non-essential) 
functions compared to the functions of proteins encoded by essential genes that have older evolutionary origins 
and are more conserved34–36. Proteins encoded by these essential genes are typically involved in basic cellular func-
tions including gene expression, metabolism, morphogenesis, cell division, proliferation and differentiation, DNA 
replication, repair and transcription, and embryonic development and they are essential to the survival of the 
organism34. At the same time, the levels of interconnectedness of the proteins encoded by differentially expressed 
genes that are comparable to a typical mouse protein suggests that they are functionally important even though 
they may not be essential. The significant depletion in the putative intrinsic disorder suggests that they are highly 
structured and substantially more structured than a typical murine protein. The main implication of this obser-
vation is that structures of the proteins encoded by differentially expressed genes should be relatively easy to pro-
duce25,37. These structures can be used to decipher molecular level details of their functions38 and they are necessary 
for virtual screening and design of novel therapeutics39,40. Taken together, our analyses suggest that genes involved 

Figure 1. Comparison of the distrubutions of the evolutionary conservation quantified with the relative 
entropy scores (Panel A), content of the intrinsic disorder (Panel B) and the interconnectedness measured by 
the number of PPIs (Panel C) between the mouse proteins encoded by genes that are differentially expressed 
in response to fluid flow and a generic set of mouse proteins. The differentially expressed gene sets are also 
subdivided into upregulated and downregulated proteins. Distributions are represented with the box and 
whisker diagrams where the first quartile, second quartile (median) and third quartile are represented by the 
box and the whiskers correspond to the 10th and 90th centiles. Horizontal bars at the top of the figure summarize 
results of the analysis of statistical significance of the differences between the distribution for the two 
corresponding datasets. The significance was quantified with the two sample K-S test and the corresponding p-
values are shown above the bars.



www.nature.com/scientificreports/

4SCiEnTiFiC RepoRts |  (2018) 8:6716  | DOI:10.1038/s41598-018-25113-4

in mechanotransduction are non-essential, functionally important, and suitable for structure-based rational drug 
design. We note that the above observations rely on the putative intrinsic disorder and an incomplete PPI network, 
both of which may adversely affect accuracy of our analysis. However, we designed the analysis to reduce these 
effects. We employed a consensus of five predictors of disorder to minimize the prediction error and we used a 
recently released database that collects PPIs from a comprehensive set of five sources to provide the currently most 
complete network. Additionally, there are limitations to our fluid flow model that are shared by several in vitro 
models. These include analyses of only a single bone cell type, the two dimensional nature of our fluid flow appara-
tus and the fact that the cells are not in contact with a physiologically relevant extracellular matrix.

In this study we used IPA to assess RNA-seq data. We opted to assess RNA-seq data, rather than microarray 
data, because we previously showed that RNA-Seq yielded greater magnitude fold-changes in expression level than 
did microarrays, resulting in a broader overall dynamic range3. Furthermore, RNA-seq, compared to microarray 
was capable of detecting approximately 3 times the gene products of previously utilized microarrays. Our IPA 
analyses predicted fluid flow-induced changes in cytokines consistent with a down regulation of osteoclastogen-
esis, which one would expect as a result of exposure to anabolic mechanical signals. Additionally, consistent with 
our results, osteocytes have been shown to downregulate osteoclast differentiation through effects on TGF-β, an 
upstream inducer of IL-17, a factor that increases osteoclastogenesis41–43. On the other hand, our previous work 
showed fluid flow-induced upregulation of pathways dependent on IL-174 and another study showed that mechan-
ical load upregulates TGF-β in mesenchymal stem cells44. These findings emphasize the complexity of the bone 
microenvironment and suggest the effects of cytokines on bone are highly context dependent. Ultimately, cytokines 
can have either anabolic or catabolic effects on bone which has complicated efforts at treatment of metabolic 
bone disease45. This complexity is illustrated by IL-17 which can be upregulated in both catabolic and anabolic 
states. Phase II trials of IL-17 inhibitors such as secukinumab for rheumatoid arthritis have yielded disappointing 
results46. Thus, there is a need for further research in this area to characterize the bone microenvironment an how 
it is affected by mechanical load, especially as regards the pleiotropic effect of cytokines in bone. The complexity 
of microenvironment also suggest the therapeutic target potential of mechanotransduction pathways because we 
have shown them to be less essential while still functionally important when compared to the mouse proteome.

In summary, this is the first study to quantify the structural and functional characteristics such as intrinsic 
disorder, evolutionary conservation, and interconnectedness of the proteins encoded by differentially expressed 
genes involved in mechanotransduction. These results suggest that the osteocytic signaling pathways activated by 
fluid flow are non-essential and populated by highly structured proteins. Furthermore, extracellular inflamma-
tory mediators are involved in the downregulation of osteoclast differentiation. The well-defined tertiary struc-
ture of proteins encoded by differentially expressed genes in this pathway suggests that protein modeling could 
be successful in developing a better understanding of the signaling molecules involved in the response of bone to 
mechanical load.

Figure 2. Summary of GO terms significantly enriched (p-value < 0.05) in the mouse proteins encoded by 
genes differentially expressed in response to fluid flow. The analysis was peformed using the PANTHER system67 
separately for each of the three classes of GO terms: molecular functions, biological processes and cellular 
component (subcellular location). Horizontal bars show the value of enrichment, defined as the fold increase 
when compared to the expected value measured on the mouse proteome, and the corresponding p-values are 
given next to the bars. The number of each GO term occurence in the mouse proteome and among the proteins 
encoded by differentially expressed genes is given inside the square brackets. We only consider GO terms that 
occur at least five time and for which the enrichment is greater than 150% and p-value < 0.05.
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Figure 3. Comparison of the distrubutions of the evolutionary conservation quantified with the relative 
entropy scores (Panel A), content of the intrinsic disorder (Panel B) and the interconnectedness measured by the 
number of PPIs (Panel C) between functionally clustered subsets of the mouse proteins coded by genes that are 
differentially expressed in response to fluid flow (proteins of interest (POI)) and a generic set of mouse proteins. 
We considered three clusters that correspond to the proteins with chemokine activity (GO:0008009; 6 proteins), 
cytokine activity (GO:0034097; 15 proteins) and to those that are involved in the response of regulation of 
response to stress (GO:0006950 and 0080134; 35 proteins). Five of them were identified across the three clusters 
and additional eight are in common between the latter two clusters. Only three proteins encoded by differentially 
expressed genes with the cytokine activity had the PPI information and thus the analysis was not performed 
due to the low sample size. Distributions are represented with the box and whisker diagrams where the first 
quartile, second quartile (median) and third quartile are represented by the box and the whiskers correspond to 
the 10th and 90th centiles. Horizontal bars at the top of the figure summarize results of the analysis of statistical 
significance of the differences between the distribution for the two corresponding datasets. The significance was 
quantified with the two sample K-S test and the corresponding p-values are shown above the bars.

Figure 4. IPA predicted inhibition of the differentiation of osteoclasts with an activation Z score of −1.07 with 
a p-value < 0.001.
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Methods
Collection of experimental data. In the original study3, murine osteocytic MLO-Y4 cells were cultured 
in normal growth medium (α-MEM [Invitrogen, Grand Island, NY] with 2.5% calf serum [Hyclone, Logan, UT], 
2.5% fetal bovine serum [Lonza, Walkersville, MD], 1% Penicillin/Streptomycin) throughout all portions of the 
experiment. Cells were seeded 48 h prior to fluid flow on 75 × 38 × 1 mm glass slides coated with 300 μg/ml Type I 
Collagen (BD Biosciences, Bedford, MA) for 1 h and washed. Cell seeding density was 1.35 × 104 cells/cm2 so that 
upon flow exposure, cells were roughly 60% confluent and interconnected by dendritic processes. Cells were then 
exposed to 2 hours of sinusoidally oscillating fluid flow in parallel plate flow chambers, inducing 1 Pa (10 dynes/cm2)  
shear stress at 1 Hz. Paired sham controls were maintained in identical, static chambers. Triplicates of both flowed 
and static cells were collected following post-incubation in fresh medium for 2 hours.

Total RNA was isolated using Qiagen RNeasy Mini Kits, deep sequenced using Illumina HiSeq 2500, and pro-
cessed computationally to identify genes that are differentially expressed between the samples exposed to the fluid 
flow and the controls4. Similar and complementary analysis was performed using DNA microarrays to identify 
further gene products that are characterized by differential abundance3. In both cases only the genes character-
ized by significant differences (p-values < 0.05) were selected. These data are available in the Gene Expression 
Omnibus with accession number GSE70667 for the RNA-Seq and GSE42874 for the microarrays.

Dataset. Our prior analyses revealed two sets of 55 differentially expressed genes based on the RNA-Seq and 
microarray experiments. After removing duplicates of the 6 genes that were in common between the two sets, we 
mapped 99 genes to their UniGene identifiers. The remaining 5 genes could not be mapped to these identifiers. 
Next, we searched the UniProt resource47,48 to map the UniGene identifiers to the corresponding mouse proteins. 
Once we removed duplicate proteins and protein fragments, we extracted 103 proteins encoded by the 99 differ-
entially expressed genes that we were able to map into unique UniProt accession numbers. Among the 103 pro-
teins encoded by the differentially expressed genes, 45 and 58 that are significantly upregulated or downregulated 
by fluid flow, respectively.

Analysis. The 103 proteins encoded by differentially expressed genes in response to fluid flow were subjected 
to a comprehensive bioinformatics analysis. We contrasted their structural and functional characteristics against 
the reference mouse proteome collected from UniProt (C57BL/6 J strain, proteome ID: UP000000589). Since the 
amount of intrinsic disorder in eukaryotic organisms was shown to depend on the protein length49, we randomly 
selected a matching number of mouse proteins to obtain the same distribution of lengths when compared to our 103 
proteins encoded by differentially expressed genes. This ensures that our comparison of intrinsic disorder accom-
modates sequence-length bias; the same correction was made in several recent studies50,51. Equalization of sample 
size (103 proteins encoded by differentially expressed genes plus 103 proteins sampled from the reference proteome) 
also ensures that these data are suitable for robust statistical analysis. This is in contrast to using the whole mouse 
proteome of over 50 thousand proteins, which would result in over two orders of magnitude difference in sample 
size relative to proteins differentially expressed in response to fluid flow. The two sets have virtually identical distri-
butions of protein length; p-value = 1 based on the two-sample Kolmogorov-Smirnov test. The difference in their 
median chain length, which is 412 and 416 for the random set of mouse proteins and our proteins encoded by differ-
entially expressed genes, respectively, is not significant; p-value = 0.97 based on the Mann-Whitney test.

We estimated evolutionary conservation from multiple alignment profiles generated with HHblits against 
the UniProt-20 database52. These profiles were used to compute relative entropy from each amino acid53,54. An 
average per-amino acid conservation was used to quantify conservation for each proteins encoded by differen-
tially expressed genes. We collected the mouse PPI network from the mentha resource that integrates data from 
five manually curated source databases33. With that integrative approach, the mentha resource offers arguably 
the most complete currently available PPI network in mouse. The degree of interconnectedness was quantified 
by its number of PPIs. We annotated putative intrinsic disorder using a majority-vote based consensus of five 
predictors: three versions of the Espritz method55 and two versions of the IUPred method56; These methods are 
characterized by complementary designs and were empirically demonstrated to offer strong predictive quality 
for the prediction of intrinsic disorder57–59. We used the consensus to minimize the prediction error, which is in 
line with an observation that this results in a better predictive quality when compared to the use of individual 
predictors60,61. Such consensuses are also implemented in the current databases of putative disorder: MobiDB62,63 
and D2P2 64, and were utilized in many other studies13,17,21,50,51,65,66. We quantified amount of disorder with the 
disorder content, which is defined as a fraction of disordered amino acids in a given sequence. We measured 
statistical significance of differences in distributions of conservation, disorder and interconnectedness values 
between our proteins of interest and the mouse proteome using a two-sample Kolmogorov-Smirnov test (K-S 
test) and assumed that a given difference is significant at p-values < 0.05.

We performed functional analysis using GO with the PANTHER system67. PANTHER performs enrichment 
analysis of GO terms associated with our proteins encoded by differentially expressed genes against the expected 
frequency of these terms in the mouse proteome68. We executed this analysis separately for each of the three 
classes of GO terms: molecular functions, biological processes and cellular component (subcellular location). The 
pathway and causal network analyses was completed using the Ingenuity Pathway Analysis (IPA) tool69.
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