
1Scientific RePorTS |  (2018) 8:6922  | DOI:10.1038/s41598-018-25025-3

www.nature.com/scientificreports

Spillover modes in multiplex 
games: double-edged effects on 
cooperation and their coevolution
Tommy Khoo1, Feng Fu   1,2 & Scott Pauls1

In recent years, there has been growing interest in studying games on multiplex networks that account 
for interactions across linked social contexts. However, little is known about how potential cross-
context interference, or spillover, of individual behavioural strategy impact overall cooperation. We 
consider three plausible spillover modes, quantifying and comparing their effects on the evolution of 
cooperation. In our model, social interactions take place on two network layers: repeated interactions 
with close neighbours in a lattice, and one-shot interactions with random individuals. Spillover 
can occur during the learning process with accidental cross-layer strategy transfer, or during social 
interactions with errors in implementation. Our analytical results, using extended pair approximation, 
are in good agreement with extensive simulations. We find double-edged effects of spillover: increasing 
the intensity of spillover can promote cooperation provided cooperation is favoured in one layer, but 
too much spillover is detrimental. We also discover a bistability phenomenon: spillover hinders or 
promotes cooperation depending on initial frequencies of cooperation in each layer. Furthermore, 
comparing strategy combinations emerging in each spillover mode provides good indication of their 
co-evolutionary dynamics with cooperation. Our results make testable predictions that inspire future 
research, and sheds light on human cooperation across social domains.

The ubiquity of cooperation in human societies and nature is a puzzling phenomenon1–4. At first glance, cooper-
ation seems unlikely: cooperators incur cost in providing benefits to others, while opportunistic individuals can 
reap rewards without returning the favour5. Nonetheless, cooperation can arise in structured populations through 
the mechanism of network reciprocity6–8. This basic observation drove deeper investigations into reciprocity in 
structured populations9–12.

Real world networks are often interdependent, where a small perturbation to one network can trigger a chain 
of events that results in cataclysmic effects on both networks13. Taking the importance of such interconnectedness 
into account has led to a recent boom in the study of multiplex networks14,15. In the same vein, evolutionary games 
on multiplex networks are attracting increasing attention (we refer readers to16 for a review).

Various mechanisms have been proposed to associate different evolutionary games taking place on otherwise 
disjoint networks. One utility function approach incorporates payoffs accumulated across games on different 
networks into each strategic decision17,18. An alternative approach allows strategic behaviour to be transmitted 
from one setting to another through peer influence and social learning19,20.

In this paper, we draw inspiration from empirical results21–25, which suggest that norms and heuristics culti-
vated during repeated interactions could “spill over” to affect decision making in one-shot situations.

In two experiments21,24, when subjects first participate in the iterated prisoner’s dilemma (IPD)26, they 
observed greater cooperation and prosocial behaviour in subsequent one-shot games. A similar increase in proso-
cial behaviour follows a repeated public goods game with conditions favourable for cooperation25. Relatedly, 
cooperation levels rose when switching from an IPD with a large continuation probability to one with a small 
continuation probability22, as well as when switching from playing an IPD with a fixed partner to playing an IPD 
in which every iteration was played with a random partner23.

The hypothesized explanation21,27,28 for these phenomena is that repeated interactions foster coopera-
tive heuristics or norms in participants which then affected subsequent one-shot games4,29. Although recent 
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endeavours27,30,31 studied spillover using an evolutionary framework, systematic exploration of spillover mech-
anisms through the lens of games on multiplex networks are still lacking, with the exception of a recent work32.

We fill this gap by modelling spillover as strategy interference between layers on a multiplex network (see 
Fig. 1A). Instead of the unstructured populations seen in the experiments, our n individuals participate in two 
layers of interactions with population structure that emulate recurring close proximity and distant one-shot 
contacts.

We represent recurring close proximity contacts using a square periodic lattice on the bottom layer where 
agents play m rounds of the IPD with their neighbours using two possible strategies C or D. Here, C refers to 
tit-for-tat (TFT), where individuals cooperates on the first iteration and play the opponent’s previous strategy 
for future iterations, and D stands for always defecting (ALLD) during every iteration. While other strategies are 
possible, we focus on these two classic strategies33,34 for simplicity. If two players play C, they both receive a payoff 
of m(b − c). If they both play D, they both receive 0. If one plays C and the other plays D, the C player gets a payoff 
of −c while the D player gets b.

On the top layer, the same agents, randomly connected to four different agents during every run, play the 
(one-shot) prisoner’s dilemma35 (PD) as a proxy for distant one-shot contacts. Here, agents choose to cooperate 

Figure 1.  Spillover modes in multiplex games. In (A) On the bottom layer, individuals play the iterated 
prisoner’s dilemma on a square lattice with periodic boundary. On the top layer, they play the one shot 
prisoner’s dilemma on a random regular network with degree four. Individuals compare payoffs with 
neighbours within the layer, to decide whether to adopt a neighbour’s strategy in that layer. In addition, there 
is a probability of using one of the three spillover modes instead, to adopt strategies from another layer. For 
(B) neighbour imitation mode, the individual compares payoff with neighbours on the same layer, and applies 
adopted strategies to the opposite layer. In (C) self comparison mode, the individual compares her normalized 
payoffs on each layer, and decides whether to implement her strategy from one layer in another. For (D) context 
interference mode, the individual is susceptible to temporary interference from mistaking the context of the 
interaction, which results in temporarily using strategies from the opposite layer.
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(C) or defect (D). Two cooperators will both receive a payoff of b − c, while two defectors both receives 0. If one 
cooperates and the other defects, the cooperator gets a payoff of −c while the defector gets b.

We propose three modes for spillover. In the first, which we call neighbour imitation spillover (NIS) mode 
Fig. 1B, individuals on one layer may imitate the strategic behaviour (C or D) of a neighbour on the opposite 
layer. In the second, self comparison spillover (SCS) mode Fig. 1C, individuals compare their payoffs between 
layers and learn from their experience. Finally, for the third context interference spillover (CIS) mode, illustrated 
in Fig. 1D, individuals may make a temporary mistake and apply their strategic behaviour from another layer. A 
parameter p determines the frequency of spillover occurrences in each case, and hence is a proxy for the strength 
of the spillover effect.

Although the strategy sets differ in the IPD and PD, we allow cooperative (C) and defective (D) behaviour to 
be transmitted through spillover in order to model experimental observations. Here, we do not account for the 
fine detail interactions between games32 but instead focus on the coarse grain interface of behavioural norms and 
social heuristics acquired through two different social contexts. Furthermore, we model repeated interactions 
with close proximity contacts as occurring with greater frequency than distant one-shot contacts, and hence we 
compare the m rounds IPD to the one round PD. Finally, we only use intra-layer payoffs in this part of our inves-
tigation in order to keep the two social contexts distinct, as well as to restrict cross context interference to occur 
only through our three spillover modes.

Through these three modes, we amalgamate key ideas from prior work. NIS and SCS encapsulates the notion 
of individuals making a mistake in learning a potentially suboptimal strategy from a different social setting19,20, 
either through their own experience or by interacting with others. CIS captures the idea of individuals making 
implementation mistakes due to confounding two different social settings27,30,31. We also note that our spillover 
mechanisms model mistakes occurring between distinct network games, as opposed to random errors modelled 
by mechanisms such as weak selection and mutation.

Our main finding is that cooperation depends subtly on the strength p and the initial level of cooperation on 
both the layers - a double-edged effect where different combinations encourage or discourage cooperation. These 
results expanded upon previous work containing an alternative formulation of NIS20, which used two one-shot 
games to investigate neighbour imitation and found that there is an intermediate optimal frequency for cooper-
ation in one of the games, in the case of a well-mixed population. We also advance their results for unstructured 
populations by using pair approximation36 to derive analytical solutions that incorporate population structure, 
and demonstrate the effectiveness of our solutions with extensive simulations. These solutions allow us to study 
both the macroscopic overall cooperation level, as well as microscopic details regarding strategy combinations.

Finally, we analyse the three spillover modes as they coevolve with cooperation in the presence of mutation. 
Our findings suggest that transient implementation mistakes (CIS) outperforms mechanisms under which indi-
viduals might learn and retain suboptimal strategies (NIS, SCS). On the other hand, when we allow repeated local 
interactions to play a larger role during spillover conditions become more conducive to cooperation, making it 
less punishing to make learning mistakes with long lasting impact. This effect allows more deliberate mechanisms 
that promotes cooperation on both layers, like NIS and SCS, to thrive.

Results
We start our exploration by examining how the strength of the spillover effect impacts cooperation. To accom-
plish this, we produced simulation and pair approximation results for a range of parameter combinations. We 
present these in Fig. 2, with individual plots for each mode (NIS Fig. 2A, SCS Fig. 2B and CIS Fig. 2C).

The most striking feature of Fig. 2 is the existence of an optimal value of p which maximizes the average coop-
eration level in the multiplex network. Average cooperation initially increases with p, before reaching the opti-
mal value and subsequently plummeting. This demonstrates a double-edged effect of spillover: a little spillover 
between the two social settings allows cooperators on the repeated local interaction layer to exert their influence 
on the distant one-shot contact layer and provides a boost to overall cooperation. On the other hand, a spillover 
effect that is too strong leads to too much influence by defectors on the distant one-shot contacts layer, and is 
deleterious to cooperation.

We note that conditions that are overly favourable or hostile to cooperation will lead to one layer overwhelm-
ing the other and consequently a rapid monotonic rise or decline in cooperation, instead of an intermediate 
optimal value of p (see Supplementary Fig. S1). Similarly, when both layers are analysed with the same game and 
parameters (both IPD or both PD), the overall conditions are too hostile for cooperation to thrive in the presence 
of spillover, and average cooperation in the multiplex decline with any increase in p (see Supplementary Figs S2 
and S3).

Another feature of Fig. 2 is that CIS appears to be more resilient to this double-edge effect than NIS and SCS as 
cooperation levels for CIS tend to be higher than the other two. This is due to the fact that while implementation 
mistakes occur under CIS, payoff comparison always occurs on the layer on which the strategies are adopted. 
Hence, individuals have an easier time learning correct strategies, and implementation mistakes need not have a 
prolonged impact. On the other hand, under NIS and SCS, individuals directly learn and adopt strategies across 
layers, resulting in mistakes that have larger, long term repercussions on cooperation.

Next, we examine fine details for several parameter combinations from Fig. 2A–C highlighted with squares. 
These microscopic details (Fig. 2D–F) show the proportions of individuals for each possible strategy combination 
for the top and bottom layer. For simplicity, we let Xb

a be the proportion of individuals playing strategy a on the 
top layer and b on the bottom layer.

Figure 2D–F demonstrates that for small values of p, there is excellent agreement between simulation and our 
pair approximation results at even the microscopic level (detailed equations are presented in the SI). The most 
outstanding feature is that context interference spillover mode has much higher Xc

d than the other modes, as seen 
in Fig. 2F. This happens because, the parameter combinations in Fig. 2 leads to almost all C on the bottom layer 
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and almost all D on the top layer. As we saw above, in CIS, players learn strategies more easily compared to NIS 
and SCS, so individuals can learn the optimal strategy of playing D on the bottom layer and playing C on the top 
layer.

On the other hand, SCS (Fig. 2E) stands out as having the highest proportion of individuals who are coopera-
tors on both layers, with NIS (Fig. 2D) coming in a close second. In both cases, individuals are adopting spillover 
strategies that their neighbours or themselves have been successfully using within the opposite layer. This leads 
to a higher level of cooperation in the one-shot PD layer due to individuals learning and retaining the suboptimal 
strategy of playing C on that layer.

Figure 3 further illuminates the differences in microscopic details between the three spillover modes for a 
subset of the parameter combinations in Fig. 2. Figure 3A–C shows SCS having the highest Xc

c, while Fig. 3D–F 
shows CIS having the highest Xc

d. We get a clearer view of how NIS differs from the rest, with higher Xd
d and Xd

c 
(Fig. 3G–L). Supplementary Figs S4 and S5 extends Fig. 3 for a range of p from 0 to 0.40.

In our previous results, we have initialised individual strategies C or D on both layers uniformly at random. 
But how will spillover behave when the initial probability of being a cooperator varies on each layer? We address 
this question by exhaustively exploring the parameter space using pair approximation as illustrated by Fig. 4 (NIS 
Fig. 4A, SCS Fig. 4B, CIS Fig. 4C).

Here, we discover a bistability phenomenon. For a fixed frequency of spillover p, the parameter space is par-
titioned into two distinct regions. Depending on the initial proportion of cooperators on each network layer, the 
spillover effect can either help or hinder cooperation, as shown in more detailed plots by both simulation and pair 
approximation (Fig. 4D–I). These detailed plots are also reproduced with p = 0 in Supplementary Fig. S6 in order 
to highlight the impact of spillover. This bistability phenomenon has potential social policy implications: if the 
proportion of cooperators in one setting can be actively raised to a sufficient level, spillover can promote overall 
levels of cooperation.

As shown in Fig. 4, the number of initial cooperators on the bottom layer has a larger impact on whether 
spillover hinders or helps cooperation than the number of initial cooperators on the top layer. An example of this 

Figure 2.  Double-edged effects of spillover. (A–C) Shows simulation and pair approximation results for average 
proportion of cooperators for each spillover mode (A) neighbour imitation, (B) self comparison and (C) context 
interference. As shown in more details by (D–F), analytical and simulation results are in good agreement at low 
frequencies of spillover p. For some parameter combinations, a double-edge effect of spillover on cooperation 
reveals itself in the form of an initial increase in cooperation with p, before a subsequent decline after an optimal 
p. (D–F) presents microscopic details of strategy profile proportions associated with each spillover mode, taken 
from (A–C) at parameter combinations ( ) . Self comparison has the largest proportion of individuals 
cooperating on both layers (green line), while context interference produces the largest proportion of 
individuals cooperating on the bottom layer and defecting on the top layer (yellow line). Parameters: n = 3600, 
m = 4, β = 0.2, b = 1, α = 0.5. Simulations: 6 × 106 time steps, averaged over 100 runs. p has step size 0.01 from 
p = 0 to 0.4, and step size 0.1 otherwise.
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can be seen in Fig. 4A, where at p = 0.3, when the number of initial cooperators on the top layer is close to zero, 
sufficient number of initial cooperators on the bottom layer can still result in a spillover effect that helps coopera-
tion. In contrast, for close to zero initial cooperators on the bottom layer, no amount of initial cooperators on the 
top layer will result in a beneficial effect of spillover on cooperation.

So far, we have studied these three spillover modes separately. Next, we will compare them when all three 
modes are present and are potentially competing with each other. We initialise each individual with a spillover 
mode uniformly at random and allow the modes to coevolve with strategy while at the same time introducing 
mutation. Here, the imitation of spillover modes is decided using the sum of payoffs across both layers in order 
to isolate the effect of natural selection on spillover modes, and to avoid conflating natural selection with cross 
context interference. Figure 5 shows our results for various p.

Each bar in Fig. 5A indicates the proportion of individuals with each of the three spillover mode. For all of 
the choices of p in Fig. 5A, the highest is CIS, followed by SCS and then NIS, with this trend becoming more 
prominent as p increases. We explain the dominance of CIS for this parameter combination by the crucial role of 

Figure 3.  Microscopic characteristics of spillover modes. Figure compares proportion of individual top-bottom 
strategy combinations of each spillover mode for the parameters in Fig. 2, with different scales on the vertical 
axes. Each spillover mode differs in their microscopic characteristics. In (A–C), self comparison has the highest 
proportion of individuals cooperating on both layers, Xc

c. In (D–F), context interference has the highest 
proportion with the payoff maximizing strategy profile Xc

d. While in (G–L), neighbour imitation has the largest 
Xd

d and Xd
c proportions. Parameters: n = 3600, m = 4, b = 1, β = 0.2, α = 0.5. Simulations: 6 × 106 time steps, 

averaged over 100 runs. c is the cost of cooperation.
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Figure 4.  Bistability phenomenon. Spillover can hinder or promote cooperation depending on initial 
conditions. (A–C) illustrates, for each frequency of spillover p, the initial level of cooperators that would result 
in zero cooperation at equilibrium, under each spillover mode. In all cases, for a fixed p, there is a threshold level 
of initial cooperators on each network layer beyond which the spillover effect switches to working in favor of 
cooperation. The initial proportion of cooperators required for spillover effect to give rise to cooperation 
becomes more demanding as p increases. Context interference is shown to be most resilient to this, followed by 
self comparison, while neighbour imitation is the most vulnerable. (D–I) demonstrates the bistability 
phenomenon for selected parameter combinations ( )  with both simulation and pair approximation. 
Parameters: n = 3600, m = 4, c = 0.35, b = 1, β = 0.2, α = 0.5. Data for (A–C) starts at 0.05 and ends at 0.95 
initial cooperators for both layers. Simulations in (D–I) 6 × 106 time steps, averaged over 200 runs.
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individuals playing D on the top prisoner’s dilemma layer, and C on the bottom iterated prisoner’s dilemma layer 
(Fig. 3). When p is small, the top layer is approximately at full defection, while the bottom layer is approximately 
at full cooperation. So, playing D on top and C on the bottom offers the highest total payoff on average. As we 
saw in Figs 2F and 3, CIS shows a relative abundance of individuals with this type of mixed strategy, providing a 
convincing explanation for the supremacy of CIS in the competition.

SCS mode produces a relatively high proportion of individuals cooperating on both layers, which might intu-
itively be what one would desire in such a social system. However, this tendency results in a loss of individuals 
playing the optimal combination of strategies (Xc

d), leading to a loss of competitiveness when pitted against other 
spillover modes, under the parameter combination of Fig. 5A. The dominance of CIS appears to be robust when 
the cost of cooperation c was lowered to c = 0.30, 0.25 and 0.20 (see Supplementary Fig. S7).

However, at c = 0.20, this dominance is reduced. Conditions are favourable for cooperation, so we have high 
equilibrium proportions of cooperators on both layers (Supplementary Fig. S8A). In this situation, Xc

c has a 
higher payoff than Xc

d and hence, NIS and SCS become more competitive. This increase in competitiveness of the 
strategy that cooperates on both layers can be overcome by an increase in p (Supplementary Fig. S7A for p = 
0.05). However, this does not happen when cooperation on both levels are high enough, and CIS once again loses 
its advantage (Supplementary Figs S7A and S8A, show the value c = 0.20, p = 0.1).

In Fig. 6, we consider an additional parameter α ∈ (0, 1) which governs the relative influence of the two layers. 
When spillover occurs under NIS and SCS, α is the probability that an individual on the top layer is chosen to 
possibly learn a strategy from the bottom layer. Under CIS, α is the probability that an individual uses her bottom 
layer strategy during spillover. We make these definitions so that parameter α consistently refers to how strong an 
influence the bottom IPD layer has when spillover occurs.

We find that higher α promotes cooperation in general (Fig. 6C–E) and this could potentially alter the results 
of coevolution. As shown in Fig. 6A, it is possible for SCS to be favoured by selection instead of CIS when we set 
α = 0.95. This happens because there is a much higher level of cooperation in both layers when α is high (Figs 5B, 
6B and S9B) which allows Xc

c to be more competitive than Xc
d. We show comparison of the cooperation level on 

both layers over time for both the α = 0.5 and α = 0.95 scenarios described in Supplementary Figs S10 and S11.

Discussion
Our results generate testable hypotheses that can inspire future research. Several experiments21–24 in the literature 
had participants play the iterated prisoner’s dilemma and then switch to various versions of one-shot games. All of 
these cases reported that the iterated prisoner’s dilemma, with conditions that favour cooperation, had a positive 
effect on cooperation level in the subsequent one-shot game.

Using setups similar to the experiments, one of the spillover mode could be incorporated to test for the 
existence of an optimal frequency of spillover p. For instance, NIS could be implemented experimentally by 
periodically hiding or revealing the strategies of neighbours on a layer. Similarly, CIS could be implemented by 
occasionally hiding or mislabelling the layers. At the same time, this can be used to test if spillover modes differ in 
the proportion of individuals playing each of the four possible top-bottom strategy combinations (Fig. 3), which 
offers a novel method for comparing and categorizing the myriad of spillover mechanisms that are possible.

Figure 5.  Coevolution of spillover modes and cooperation. Figure 5 shows the proportion of each spillover 
mode, for low values of p, when spillover modes coevolve with strategy in the presence of mutation. Self 
comparison (red) is second place in (A) despite having the most individuals who cooperate on both layers. 
Context interference (yellow) has the largest proportion due to having the most individuals playing the payoff 
maximizing combination of C on the bottom layer and D on the top layer. Neighbour imitation (blue) accounts 
for the least proportion of the population. (B) shows that cooperation in the top layer increases with p but at the 
expense of cooperation in the bottom layer. Parameters: n = 400, m = 4, c = 0.35, β = 0.2, b = 1. Mutation rate 
μ = 10−4, 7.2 × 109 total time steps, combined from at most 7 runs for both (A and B).
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Finally, our findings regarding the bistability that arise from varying the initial levels of cooperation on each 
layer (Fig. 4) could be leveraged to promote cooperation through spillover. As was done in a recent human behav-
iour experiment37, mixing automated bots with human subjects can lead to the desired cooperation level.

Methods
In our model, n individuals are placed on two network layers. The top layer, T, is a random regular network of 
degree four, regenerated with every run, while the bottom layer, B, is a two dimensional lattice with periodic 
boundaries. Individuals play a special version of the prisoner’s dilemma game, known as the donation game, with 
their neighbours on the top layer: they are initially a cooperator C = [1, 0]T or defector D = [0, 1]T with equal 
probability. The payoff matrix MT that we use for prisoner’s dilemma is,

= 



− − 


.M b c c

b 0 (1)T

where b is the benefit of cooperation, while c is the cost of cooperation. On the bottom layer, individuals play the 
iterated prisoner’s dilemma game with their partners, where the game is repeated m times. They initially start with 
the strategy C or D with equal probability. In this case, C refers to tit-for-tat (TFT), where the individual cooper-
ates on the first iteration and plays the opponent’s previous strategy for future iterations. Here, D stands for always 
defecting (ALLD) during every iteration. The payoff matrix MB for this is,

=






− − 




.M m b c c

b
( )

0 (2)B

Figure 6.  Uneven influence of multiplex layers in spillover process. Figure 6 shows the effect of varying 
parameter α ∈ (0, 1) which governs the relative influence of the two multiplex layers. (A) shows that as α 
increases, self comparison spillover mode can have the highest proportion instead. A high α allows repeated 
interactions in the bottom layer to have a large influence and creates more favourable conditions for cooperation 
in the top layer, as shown by (B). This allows for individuals cooperating on both layers, which is plentiful under 
SCS, to become competitive during coevolution. (C–E) shows how cooperation in the multiplex increases with 
α under each spillover mode. Context interference is seen to be most resilient against the effect of spillover. 
Parameters for (A,B) n = 400, m = 4, b = 1, c = 0.35, β = 0.2, p = 0.05. Mutation rate μ = 10−3, at least 109 
total time steps, combined from at most 10 runs. Parameters for (C–E) m = 4, b = 1, c = 0.35, β = 0.2, p = 0.05, 
generated using pair approximation.
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Let ∈s {[1, 0] , [0, 1] }i
k T T  be the strategy of individual i on layer k = {T, B}, and Mk be the payoff matrix of 

the game on layer k = {T, B}. Then, the total payoff of an individual i on layer k is given by,


∑=
∈

P s M s( ) ,
(3)

i
k

j
i
k T

k j
k

i
k

where i
k  is the neighbourhood of i on layer k.

At each discrete time step, we randomly choose a focal individual. Under NIS and SCS, with probability 1 − p, 
this individual updates her strategy. Otherwise, with probability p, spillover occurs. Spillover results in the trans-
mission of cooperative (C) or defective (D) behaviour across layers, these behaviours correspond to the strategies 
C or D in both the IPD and PD games. Under CIS, this individual always updates her strategy using a modified 
procedure described below.

Strategy updating.  If individual i chooses to update her strategy, the top layer is chosen as the focal layer 
with probability 1

2
. Otherwise, the bottom layer is chosen as the focal layer. Next, one of her neighbour j on the 

focal layer is picked at random. Then, the probability that i copies the strategy of j on the focal layer k is given by 
the Fermi equation38,39,

→ =
+ β− −

F s s
e

( ) 1

1
,

(4)
j
k

i
k

P P( )j
k

i
k

where parameter β determines the intensity of selection, and P P,i
k

j
k are the total payoffs within the layer k, of the 

focal individual i and the neighbour j respectively.

Neighbour Imitation.  If spillover occurs under NIS, we choose the top layer to be the focal layer with prob-
ability α. Otherwise, with probability 1 − α, we choose the bottom layer. A neighbour on the layer opposite to the 
focal layer is chosen randomly. Then, the focal individual does payoff comparison and strategy updating on the 
non-focal layer. However, if she decides to copy this neighbour’s strategy, the strategy is instead applied to focal 
layer, as illustrated by Fig. 1B.

Self Comparison.  If spillover occurs under SCS, we choose the top layer to be the focal layer with proba-
bility α. Otherwise, with probability 1 − α, we choose the bottom layer. The focal individual then does payoff 
comparison and strategy updating with herself on the layer opposite to the focal layer, as shown in Fig. 1C. This 
means that there is a chance for the individual’s strategy on the focal layer to be replaced with her strategy on the 
non-focal layer. However, during SCS, her payoff on the bottom IPD layer is normalized by dividing the payoff 
matrix throughout by the number of game iterations. The payoff matrix used for SCS is,







− − 





C D

C

D

b c c
m

b
m

0
(5)

Context Interference.  Under CIS, individuals always update their strategy. However, the procedure for 
doing so is modified. During strategy updating, both the focal individual and the randomly chosen neighbour 
independently has a probability p of experiencing context interference. If one of them does, she has an independ-
ent probability α of using her bottom layer strategy for all parts of the strategy updating procedure. Otherwise, 
with probability 1 − α, she uses her top layer strategy. These definitions are made so that parameter α consistently 
refers to how strong an influence the bottom IPD layer has when spillover occurs. This modified strategy updating 
procedure is shown in Fig. 1D.

Coevolution and mutation.  Figure 5 was generated by subjecting the three spillover modes to co-evolution 
and mutation. Individuals initially are assigned a spillover mode at random. We then proceed with two distinct 
phases: the regular phase and subsequently the coevolution phase. During the regular phase, at each discrete time 
step, a focal individual is chosen at random, then according to her spillover mode, strategy updating or spillover is 
carried out as described above. During the coevolution phase, a focal individual and a focal layer are chosen uni-
formly at random. The focal individual then picks a neighbour on the focal layer at random. Their total payoffs on 
the multiplex network is then calculated by summing up their total payoffs across both layers. Payoff comparison 
is then done using the Fermi equation, which gives the probability of the focal individual copying the neighbour’s 
spillover mode. These two phases are run for 104 time steps each, and then repeated in the same order (regular 
then coevolution phase) until the desired total number of time steps is achieved when summed across all phases.

In both the regular and coevolution phases, whenever strategy update is successful, there is a probability μ of 
mutation. When mutation occurs, strategy or spillover mode is selected at random, instead of copied.

Analytical solutions.  We derived analytical solutions for each of the spillover mode, taking into account 
population structure, using extended pair approximation. We refer readers to the SI for the pair approximation 
equations and their details.
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Data availability.  The datasets and code supporting this article have been uploaded as part of the supple-
mentary material.
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