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An improved deep learning 
approach for detection of thyroid 
papillary cancer in ultrasound 
images
Hailiang Li  1, Jian Weng2, Yujian Shi3, Wanrong Gu4, Yijun Mao4, Yonghua Wang5, Weiwei Liu6 
& Jiajie Zhang2

Unlike daily routine images, ultrasound images are usually monochrome and low-resolution. In 
ultrasound images, the cancer regions are usually blurred, vague margin and irregular in shape. 
Moreover, the features of cancer region are very similar to normal or benign tissues. Therefore, training 
ultrasound images with original Convolutional Neural Network (CNN) directly is not satisfactory. In our 
study, inspired by state-of-the-art object detection network Faster R-CNN, we develop a detector which 
is more suitable for thyroid papillary carcinoma detection in ultrasound images. In order to improve the 
accuracy of the detection, we add a spatial constrained layer to CNN so that the detector can extract the 
features of surrounding region in which the cancer regions are residing. In addition, by concatenating 
the shallow and deep layers of the CNN, the detector can detect blurrier or smaller cancer regions. 
The experiments demonstrate that the potential of this new methodology can reduce the workload 
for pathologists and increase the objectivity of diagnoses. We find that 93:5% of papillary thyroid 
carcinoma regions could be detected automatically while 81:5% of benign and normal tissue could be 
excluded without the use of any additional immunohistochemical markers or human intervention.

Papillary thyroid carcinoma is most common in thyroid carcinoma, accounting for 85%1. The diagnosis of papil-
lary thyroid carcinoma is a fundamental step in the process of treatment. Commonly, ultrasound images are mon-
ochrome and low-resolution. As shown in Fig. 1, in ultrasound images, cancer regions are usually blurred, vague 
margin and irregular in shape. Moreover, the features of cancer regions are very similar to normal or benign tis-
sues. As a result, it is difficult to distinguish the cancer region from the analogous tissues. The accuracy of thyroid 
ultrasound diagnosis is closely depended on the experience and cognitive ability of diagnosticians. Because of the 
influence of subjective factors, there are usual many differences in judgments of ultrasound images for different 
diagnosticians. Therefore, the precise ultrasound diagnosis of papillary thyroid carcinoma is a challenging task.

Simulating the human visual mechanism, computer vision is with the advantages of high detection speed 
and low cost. Computer vision technology is often used in the area of rapid intelligent image processing, such as 
image classification, object detection and object retrieve2–4. In early stage of the computer vision, researchers had 
focused on designing feature representations for content-based image retrieval (CBIR)5 tens of years. The scope 
included global features6 (color, shape, and texture), local features (SIFT7 and SURF features8) and bag of visual 
words representations (BOW)9. Then, machine learning techniques such as support vector machines (SVM)10, 
k-nearest neighbor (KNN)11 and linear discriminant analysis (LDA)12 were widely used in image classification. 
Y Toki, T Tanaka13 used the SIFT method to extract the image to identify prostate cancer. With incomplete gland 
features, comparing to previous methods, the accuracy was improved to 6.3–13.3%. For the color and texture fea-
tures of biopsy specimens, Niwas, S. I., Palanisamy14 used least squares support vector machine (LS-SVM) for the 
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diagnosis of breast cancer. Basavanhally et al.15 presented a new multiple field of view classifier, with different size 
of multiple field of view to identify the important features of one image. This method was used for classification 
of breast cancer pathological images. However, due to the computational costs, the discriminating power of these 
methods is challenging for identifying definitive features, subset characterization and optimization. In addition, 
these methods rely on limited manual annotations and are only applicable to fixed feature matching. Once the 
characteristics (such as twist, flip, illumination, corruption, and so on) changed, the effects of these algorithms 
will become worse. Therefore, their universality is not strong.

Recently, a promising machine learning approach has made rapid progress in the automatic classification 
and interpretation of medical image data. During the last few years, Convolutional Neural Network (CNN)3,16 
becomes one of the most rapidly developing fields in deep learning. As a kind of artificial neural network, it is 
becoming a research focus in the area of speech analysis17 and image recognition2–4. The shared weights network 
structure makes it more akin to human neural networks. Due to shared weights, CNN can reduce the complex-
ity of the network model and reduce the number of weights. CNN has a more significant advantage when the 
input is a multidimensional image. The whole image is used as the input avoids complex traditional recognition 
algorithms such as feature extraction and data reconstruction process. The multi-layer perception of CNN is 
particularly applicable to identify two-dimensional images. It is highly invariant for translation, scaling, skewing 
and forms of deformation3. Lutjanus et al.18 used CNN to idiomatically identify the features of Sentinel and breast 
cancer metastasis in the MR image. This method can reduce the workload of the pathologist and increase the 
objectivity of the diagnosis. The concluded that deep learning holds great promise to enhance the efficacy of pros-
tate cancer diagnosis and breast cancer staging. Angel Cruz-Roaa, Ajay Basavanhally et al.19 realized automatic 
segmentation of invasive breast cancer MR images and generated cancer distribution maps by CNN. The authors 
compared the performance of CNN, hand-crafted image feature extraction method and random forest method. 
The experiment showed that CNN worked best. Petersen, Kersten and Chernoff et al.20 proposed a combination 
of supervised learning and unsupervised learning approach to segment breast density separation and evaluate 
risk assessment of breast. First, they utilized the deep unsupervised CNN to extract feature of images. Then they 
used classified images to adjust network weights and offset parameters. This strategy called fine-tuning3. The 
model could be easily extended to many areas of image segmentation and classification. Su et al.21 used stacked 
de-noising auto-encoders to detect and segment cell in lung cancer and brain tumors.

In this paper, we analyze the shortcomings of the state-of-the-art object detection network Faster R-CNN 
for detecting ultrasound image in detail (See Section 0.7). Different from routine images, the cancer regions in 
ultrasound images are usually blur, vague margin or irregular shape. Facing these problem, we validate the strat-
egies such as layer concatenation and spatial constrained layer. Experimental results show that each strategy can 
improve the functioning of the detection. Combining all of the strategies yields the best results. In the following, 
we name this approach CS Faster R-CNN for short.

Methods
This section presents the mechanism of the CS Faster R-CNN and the pipeline deployed to evaluate the benefits 
of representation in the task of detection. Before we actually start, we will explain the related concepts such as 
CNN and Faster R-CNN.

CNN. Given N training samples x y{( , )}i i i
N

1= , where x represents annotated region, y represents label. Through 
the training, CNN can estimate a model F mapping the relationship between input vectors x and output vectors y. 
In detail, The training process includes two phases, the forward propagation phase and the back propagation 
phase. During the forward propagation phase, when a training sample (xi, yi) is given as input to the network, xi 
is transferred from the input layer to the output layer step by step. Finally, we get the output oi. This process can be 
formulated as,

o F F F x w w w( ) ( ( ) ) ) ) (1)i L i L2 1 1 2= ... ...

where L is the number of layers, wj is the weight vector of the jth layer Fj. Commonly, we define Fj as a series layers 
which perform operations such as convolution with kernel function, max pooling or non-linear activation. After 
a series operations, estimating the weight vectors w1, w2, ..., wL can be solved with the following optimization 
problem,

Figure 1. Some ultrasound images of thyroid papillary carcinoma. The cancer regions are are marked by yellow 
crosses. We can see that cancer regions are blur, vague margin or irregular shape.
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where  is usually defined as cross-entropy cost function. Using back-propagation and stochastic gradient descent 
methods, we can solve the numerical optimization problem (2). In Fig. 2, the CNN model ZF is framed with the 
green dashed rectangle and its detailed architecture is shown in Fig. 3. We can see that ZF has 5 convolution layers 
and 3 full connected layers. Conv5 layer is the top convolution layer, of which is a 3*3 kernel function with a 
stride of 1. It outputs 256 feature maps with the size of 13*13 which is given as an input for RPN to generate object 
proposals.

Faster R-CNN. As the development of R-CNN22, Fast R-CNN23, Faster R-CNN achieves state-of-the-art per-
formance on pattern analysis, statistical modeling and computational learning visual object classes (PASCAL 
VOC) datasets24. However, both R-CNN and Fast R-CNN need the extra step such as selective search (SS)25, Edge 
boxes26 to generate object proposals. Due to just running on CPU, with SS or Edge boxes, extracting all proposals 
from an image with CPU requires approximately 2 s. In the view of end-to-end, the time-consuming is an obvious 
bottleneck for R-CNN and Fast R-CNN. By means of powerful feature extraction capability of a neural network 
(NN), Faster R-CNN integrates Region Proposal Network (RPN) into Fast R-CNN to extract proposals. RPN is 
a fully Convolutional Networks (FCN), of which the function is to generate high quality region proposals, and 
each has an confidence score. It simultaneously predicts object bounds and object scores at each position. To 
generate region proposals, a small network slides over the convolutional feature map output by the top convo-
lutional Layer. Comparing to the extra step SS or Edge boxes, RPN can share full-image convolutional features 
with the Fast R-CNN, enabling nearly cost-free region proposals. It simultaneously predicts object bounds and 

Figure 2. The architecture of proposed CS Faster R-CNN for ultrasound image detection. The simplified CNN 
model is surrounded by green boxes.

Figure 3. Architecture of ZF model. An 3 channels image with 224*224 is as the input. It is convolved with 96 
7*7 filters with a stride of 2 in x and y. Then the process is: (1) processed by rectified linear function (Omit here), 
(2) using stride 2, max pooled with 3*3 regions, (3) processed by contrast normalized, yielding 96 55*55 feature 
maps. The following layers 2, 3, 4, 5 perform the same operation, (4) layer 6 and layer 7 are fully connected. They 
extract features from layer 5 which is as input in the form of vector. The output layer is a softmax function and 
the “1000” in the figure is the number of classes.
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confidence scores at each position. In Faster R-CNN, both Fast R-CNN and RPN are trained together using a 
simple alternating optimization. For the very deep VGG-16 model27, Faster R-CNN has a frame rate of 5fps on a 
GPU, while achieving state-of-the-art object detection accuracy on PASCAL VOC 2007 (73.2% mAP) and 2012 
(70.4% mAP).

Improved Faster R-CNN for ultrasonic image detection. In view of problems referred in 0.7, we 
investigate a series strategies to make Faster R-CNN suitable to detect ultrasound images. As shown in Fig. 2, in 
CNN used in Faster R-CNN, the conv3 layer and conv5 layer of ZF is concatenated and normalized. In addition, 
we add a spatial constrained layer before the output layer. These strategies will be introduced with detail in the 
following. In our research, we mainly aim at improving the CNN used in Faster R-CNN.

Layer concatenation. In CNN, with the deeper layers, the reception fields become bigger. Therefore, deeper 
layer has smaller-scale values while shallower layer has bigger-scale values. Due to the large scale difference, it is 
difficult for the following layers to adjust and tune the weights. If we directly concatenate the tensors of the conv3 
layer and the conv5 layer of ZF model, the “big” feature in the conv5 layer will override the “small” feature in the 
conv3 layer. As a result, the output of the results is likely to express “big” feature and ignore a “small” feature.

According to28, these two tensors need the normalized operation. In the process of Faster R-CNN training, the 
system can automatically learn the scaling factor of each layer. Therefore, the normalization operation can keep 
the stability and precision of the system28. As shown in Fig. 2, we apply L2 normalization to tensors in the conv3 
layer and the conv5 layer. We make the normalization within each pixel in the pooled feature map tensor. After 
the normalization, scaling is applied on each tensor independently as:

X X
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where X is the original pixel vector, X̂  is the normalized pixel vector and d stands for the number of channels in 
each RoI pooling tensor.

The scaling factor iϒ  is then applied to each channel for every ROI pooling tensor:

y x (5)i i i= ϒ ˆ

During training, the update for the scaling factor iϒ  and input X is calculated with back-propagation and chain 
rule:
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where Y = [y1, y2, ..., yd]T.

Spatial constrained layer. During the training phase, CNN only extracts features from the annotated regions. 
However, because of the pathologists’ experience and cognitive level, the annotated regions are often subjective or 
even inaccurate. In addition, the cancer regions depend on their residing regions which are hard to define. That is 
to say, the output y may not only depend on the input x alone, but also on the topological domain region on which 
it is residing. In order to extract features from the unknown residing regions, as shown in Fig. 2, we add a Spatial 
constrained layer before the output layer. We define Ω as the residing region which the output y depends on. The 
Spatial constrained regression model m can be expressed as,

y m x( ; ( )) (9)θ= Ω

where θ (x) is an unknown parameter vector which can be estimated. Here we suppose that m is known a priori. 
As in Fig. 2, we can estimate θ (x) by

θ = − − −x F x w( ) ( ; ) (10)L L L1 2 1

where xL−2 is an output of the (L − 2) th layer of the network. When a image including a annotated region with 
height H, width W is given as an input into network, y ∈ [0, 1]H′×W′ can be denoted as a probability map between 
y ∈ [0, 1] and the spatial domain Ω = [1, ..., H′]×[1, ..., W′], H′ > H, W′ > W. The i th element of yi, i = 1, ..., |Ω| 
is defined as,
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where ci represents the coordinates of yi, co represents the the center of the cancer region within Ω. We define d as 
constant radius of cancer region which can be estimated with experiments.

As shown in Fig. 2, the predicted output ŷ is the output of the Spatial constrained layer. Through training, we 
can get the probability map (11). Following (11), the i th element of the predicted output yî can be expressed as
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where ˆ ∈ Ωco  is an estimated center of the probability mask. In our experiments, we set d in (11) and (12) to 150 
pixels. ĉ r q( ; )o =  can be estimated in the (L − 1) th layer using (10). r, q can be defined as

= ′ − ⋅ ⋅ + +
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where wL-1, r,wL-1,q denote the weight vectors and br, bq denote the bias variables, and sigm(⋅) denotes the sigmoid 
function. To learn all the variables (i.e., weight vectors and bias values) in the network, we solve (2) using the 
following cross-entropy loss function:

ˆ ˆ ˆ
 ∑= − − − −y y y y y y( , ) [ log( ) (1 )(1 log( ))]

(14)j
i i i i

Experiments
Collecting Data. We collect the ultrasound images of 300 cases from the Department of head and neck of 
Sun Yat-sen University Cancer Center. All experimental protocols were approved by the Ethics Committee of 
the Sun Yat-sen University Cancer Center, and were conducted in accordance with the Good Clinical Practice 
guideline. Informed consent was obtained from each patient for their consent to have their information used in 
research without affecting their treatment option or violating their privacy. These ultrasound images are taken 
among 2012–2014, from 53 males and 247 females at the age of 10–85 years. 250 cases were diagnosed with pap-
illary thyroid cancer and underwent surgery. The other 50 cases were diagnosed with thyroid normal. In order 
to ensure the accurate of the data, all cases have complete diagnostic records, ultrasound reports and treatment 
schemes. In addition, all the training samples are images mentioned in ultrasound reports which contain annota-
tions and their description of representations. That is to say, these images have ready-made annotations. Each case 
has 5–25 ultrasound images and the sum is 4670. The each ultrasound image of the diagnosed case has 1–3 cancer 
regions. We select the ultrasound images of 200 diagnosed cases as training samples. The remaining 100 cases (50 
diagnosed cases and 50 normal cases) are used for test samples. This 50 diagnosed cases include 1027 ultrasound 
images. Keeping the original aspect ratio, we set all the width of training samples to 1000 px.

To ensure objectivity, we only provide the annotator with original ultrasound images without any annota-
tions. With the help of a tagging software, two experienced physicians annotate the training samples with the 
red rectangular box. Testing samples with cancer regions are also annotated to generate the ground truths. The 
screenshot of the software interface in the annotation process is shown in Fig. 4. The rectangular box will be 
dropped if the shortest side is less than 2 mm. In addition, the rectangle box must completely surround the cancer 
region and as small as possible. As referred in Section 0.3, all the images used for annotation are selected from 
ultrasound reports containing ready-made annotation and their description of representations generated by the 
previous physicians. In addition, following the corresponding ultrasound reports, another two physicians reviews 
the annotated images. With the help of the original annotations in ultrasonic reports, the experienced physicians’ 
annotation and the inspectors’ verification, we can ensure the accuracy of the annotation. In this way, we annotate 
6727, 1881 regions in training samples and testing samples respectively. Finally, we make XML files for all labeled 
training samples according to the requirement of Faster R-CNN.

Annotation. Training. Our experiments are done on Ubutun 14.04 64 bit installed with Python version 
of Faster R-CNN (The Matlab and Python version of Faster R-CNN can be downloaded at: https://github.com/
rbgirshick/), using 32 G Nvidia TITAN X (Pascal) acceleration. Because of the lack of training samples, we 
fine-tune Faster R-CNN using an image dataset VOC2007 database. Specially, we utilize CNN model ZF which is 
pre-trained with the VOC2007 database. Theoretically, fine-tuning all convolutional layers will result in the best 
performance. To balance time consumption and efficiency, we fine-tune the weights of all the layers, except the 
first two convolutional layers. During fine-tuning, we take the approximate joint training scheme in29 to train the 
RPN and detector simultaneously using multitask loss.

As referred in Section 0.2.1, we modify the source code of Faster R-CNN to normalize the conv3 and conv5 
layers and concatenate the features pooled from them. As illustrated in28, the scale used after the features being 
concatenated could be either refined or fixed. Here we use a fixed scale of 4700 for the entire blob, both in the 
training and test phases.

https://github.com/rbgirshick/
https://github.com/rbgirshick/
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In the training phase, we set iteration numbers [50000, 25000, 50000, 25000], using a fixed learning rate of 
0.0001. With the above parameters and data, training a CS Faster R-CNN model tkkes about 12 hours. Then we 
use the model to test training samples. The output regions whose confidence scores are above 0.8 while their IoU 
values with any ground-truth annotation are less than 0.3, are considered as the hard negatives. A selected region 
proposal would be regarded as a cancer if the confidence score is higher than 0.8. Results showed that CS Faster 
R-CNN is a real-time system, detecting an image takes an average of 0.15 s.

Results
In the following, true positive, false positive, true negative, false negative, true positive rate, false positive rate, true 
negative rate and false negative rate, are called TP, FP, TN, FN, TPR, FPR, TNR and FNR respectively for short. To 
further gain deep insights of the improvements obtained by our proposed method, we conduct more additional 
experiments for ablation studies as listed in Table 1, where we aim to examine the effectiveness and contributions 
of different strategies used in the proposed method. The 10-fold cross validation is used to estimate the perfor-
mance of all the strategies. We present results for splits on per image (i.e., the training set and the validation set 
do not share the same image). Table 2 presents the results that pool each of the ten folds together. In Table 2, using 
ID3, that is CS Faster R-CNN, 93.5% of papillary thyroid carcinoma regions can be detected automatically while 
81.5% of benign and normal tissue can be excluded without using any additional immunohistochemical markers 
or human intervention. Therefore, the potential of this new methodology could reduce the workload for pathol-
ogists and increase the objectivity of diagnoses.

To better validate the effectiveness of each strategy, we compare the performance of strategies one by one. As 
shown in Table 1, ID1 does not use any strategy. ID2 uses the strategy of layer concatenation. ID3 uses the strategy 
of layer concatenation and spatial constrained layer. Following we will discuss the performance of each strategy 
in detail.

Results of the ablation experiments. Layer concatenation. As in Fig. 5, the receiver operating charac-
teristic curve (ROC) of ID2 using spatial constrained layer is closer to the top left corner than ID1. From Table 2, 
comparing to ID1, the TPR and TNR of ID2 increase by 3.2%, 7.1% respectively. Intuitively, as shown in first 

Figure 4. The screenshot of the software interface in the annotation process.

Layer concatenation Spatial constrained layer

ID1 No No

ID2 Yes No

ID3 Yes Yes

Table 1. Combination of strategies one by one.

TP TPR FP FPR TN TNR FN FNR

Ground truth 1881 1 — — 359 1 — —

ID1 1633 0.868 104 0.289 255 0.711 248 0.132

ID2 1694 0.900 79 0.218 280 0.782 187 0.100

ID3 1759 0.935 67 0.185 292 0.815 122 0.065

Table 2. Performance of strategies.
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two columns of Fig. 6, for the same ultrasound image, both ID1 and ID2 can identify the correct cancer regions. 
However, comparing to ID1, the detection result of ID2 is more close to ground truth. Fig. 7a and Fig. 7b are 
detection results of ID1 and ID2 respectively, we find that ID1 can not identify the cancer regions while ID2 can. 
However, both ID1 and ID2 can not identify the cancer regions in Fig. 7d and Fig. 7e. It shows that ID2 still needs 
to be further improved. In addition, we find that both Fig. 8a and Fig. 8b generate FP in the same image. However, 
the classification score of ID2 is smaller that ID1. In Fig. 8d and Fig. 8e, we find that ID2 can eliminate FP while 
ID1 can not. In summary, comparing to ID1, ID2 can eliminate more FN and FP results effectively. These results 
confirm the statements mentioned in the first paragraph of Section 0.7. Due to the RoI pooling mechanism, the 
original Faster R-CNN cannot capture more local texture of cancer regions, especially for the monochromatic and 
low-resolution ultrasound images. Using the strategy of layer concatenation, our approach can extract both local 
and whole texture features of the cancer regions and get a better performance.

Spatial constrained layer. As in Fig. 5, the ROC of ID3 using layer concatenation and spatial constrained layer 
is obviously closer to the top left corner than ID1 and ID2. From Table 2, comparing to ID2, the TPR and TNR 
of ID2 increase by 3.50%, 3.30% respectively. Intuitively, as shown in Fig. 7b and Fig. 7c, comparing to ID2, ID3 
gets a more accurate rectangular results which is closer to ground truth. In Fig. 7d–Fig. 7f, only ID3 can identify 
the cancer region correctly. In Fig. 8a–Fig. 8c, both ID1 and ID2 generate the FP results while ID3 can get the 
TN result correctly. As referred in Section 0.2.2, by using the strategy of spatial constrained layer, our approach 
can fully utilize the features of the residing environment around the annotated cancer regions during training. 
Therefore, ID3 yields the better performance than ID2.

Results of comparison with approaches based on SVM. For image classification, SVM has the best 
performance among machine learning approaches10. In our study, we compare CS Faster R-CNN with some 
state-of-the-art ultrasound image classifier base on SVM. For an unbiased comparison, we only compare their 
classification performance rather than regional detection performance. Both CS Faster R-CNN and existing 
methods are trained and validated with the same samples. For SVM approaches, it is worth noting that the train-
ing samples are no longer annotated the cancer regions, but just are annotated by classification label, e.g., 1 rep-
resents positive sample, −1 represents negative sample. For test results of CS Faster R-CNN, we decide it is tested 
positive if at least one positive region is contained, or it is negative. Note that all experiments were carried out 
using 10 fold cross-validation, i.e., one tenth of the cases were used for testing and the rest for training.

We compare our results with several approaches based on SVM such as Moradi, M et al.30, Virmani et al.31, 
Acharya et al.32, Acharya et al.33, Tsiaparas et al.34 and Güler et al.35. Table 3 shows the results of the comparison. 
We used the publicly available Matlab implementation of the SVM algorithms named LIBSVM36 as the basic 
platform because the source codes of these studies are not public. We used the optimal implementation as pro-
posed by the authors respectively. As shown in Table 3, for both TPR and TNR, CS Faster R-CNN has the best 
performance. Acharya et al.33 has the highest TPR and TNR among the approaches based on SVM. Comparing 
to Acharya et al.33 CS Faster R-CNN has increases of 2.7%, 4.7% to TPR and TNR respectively. Obviously, CS 
Faster R-CNN can identify more correct samples, especially the negative samples. For SVM, it is difficult to judge 
whether a region is positive or negative because the features of cancer region are very similar to normal or benign 
tissues in ultrasound images. However, through a series of strategies, CS Faster R-CNN can get better perfor-
mance than state-of-the-art approach based on SVM.

Discussion
Many studies have begun to use the state-of-the-art object detection network Faster R-CNN for image classifica-
tion and detection. However, it is rarely used in ultrasonic image detection. Unlike daily life photos, ultrasound 
images have some shortcomings which result that using CNN directly for detection of ultrasound images is not 
feasible. First, we known that deep learning needs a large amount of labeled training data. Ultrasound images 
are limited and difficult to obtain. Second, as shown in Fig. 1, ultrasound images are usually blur, vague margin 

Figure 5. The comparison of the ROCs and areas under the curves (AUCs).
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Figure 6. Some correct detection results. The same row is the detection results of the same image. The first, 
second and third column are the detection results of ID1, ID2 and ID3 respectively. The ground truth of cancer 
regions are marked with yellow stars. The detection results are framed by the red rectangular boxes.

Figure 7. Some FN (a,d,e) and TP (b,c,f) detection results. The same row is the detection results of the same 
image. The first, second and third column are the detection results of ID1, ID2 and ID3 respectively. The ground 
truth of cancer regions are marked with yellow stars. The detection results are framed by the red rectangular 
boxes.
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or irregular shape. In particular, it is a considerable challenge to distinguish malignant tumor tissue and benign 
tumor tissue. Finally, cancer tissues lodge in the surrounding environment, and it is difficult for us to identify 
their boundaries. For the first question, as referred in37, though there are substantial differences between natural 
and medical images which may advise against knowledge transfer, fine-tuning a CNN that has been pre-trained 
with a large set of labeled natural images still outperforms or, in the worst case, performs as well as a CNN trained 
from scratch. Therefore, we fine-tune the CNN used in Faster R-CNN with public image dataset VOC2007. For 
the second question, in order to detect the detail of the cancer regions, we must thoroughly identify their local 
texture features. However, Faster R-CNN can not extract local texture features well due to the following reasons. 
The Regions of Interesting (RoI) pooling layer of Faster R-CNN only uses feature maps of the deepest convolution 
layer. As reported in38, as the layer becomes deeper, the reception fields become larger. Therefore, deeper layers 
have larger-scale values while shallower layers have smaller-scale values. For instance, given that the overall stride 
of the conv5 layer in the ZF model is 16, once the object size is less than 16 pixels, Faster R-CNN can no longer 
project the RoI pooling region proposal. From the viewpoint of the feature visualization, as the author pointed 
out in39, conv5 layer (the deepest layer) captures entire features of object. Therefore, Faster R-CNN cannot capture 
more local texture of object due to the RoI pooling mechanism, and it is difficult for the Faster R-CNN to extract 
local texture features from low-resolution images. Inspired from39, we concatenate conv3 layer and conv5 layer to 
enable the RoI to pool both local and global features. For the last question, in order to extract features from the 
unknown residing regions, we add a spatial constrained layer before the output layer.

By using layer concatenation, we concatenated the features pooled from conv3 and conv5 layer of ZF39 used 
in Faster R-CNN. This strategy could enhance the ability of detector to capture more detail features of the RoI, 
especially for low-resolution images. Experiments showed that this strategy could increase the TPR by 3.3%. 
By using spatial constrained layer, the detection could extract the features of surrounding host environment in 
which the cancer regions are residing, increasing the TPR and the TNR by 6.3%, 7.5% respectively. As seen in 
Fig. 5 and Table 2, combining the strategies of layer concatenation and spatial constrained layer, ID3, that is CS 
Faster R-CNN, can dramatically improve the detection performance, exceeding any single strategy. Fig. 9 presents 

Figure 8. Some FP (a,b,d) and TN (c,e,f) detection results. The same row is the detection results of the same 
image. The first, second and third column are the detection results of ID1, ID2 and ID3 respectively. The ground 
truth of cancer regions are marked with yellow stars. The detection results are framed by the red rectangular 
boxes.

TPR FPR TNR FNR

CS Faster R-CNN 0.935 0.185 0.815 0.065

Moradi M et al.30 0.889 0.306 0.694 0.111

Virmani et al.31 0.901 0.285 0.715 0.099

charya et al.32 0.866 0.329 0.671 0.134

Acharya et al.33 0.904 0.234 0.766 0.086

Tsiaparas et al.34 0.847 0.361 0.639 0.153

Güler et al.35 0.799 0.378 0.622 0.201

Table 3. Performance comparison with state-of-the-art approaches based on SVM.
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that ID3 has good recognition results for blur, low-resolution, vague margin and irregular shape caner regions. 
In terms of efficiency, as shown in Table 4, using the same training sample referred in Section 0.3, ID1, ID2 and 
ID3 take about 8.5 hours, 11 hours and 12 hours respectively. This is because ID2 takes extra about 2.5 hours to 
compute the layer connection and normalization. In the same way, ID3 takes extra about 1 hour to compute the 
spatial constrained layer. For testing a ultrasound image, ID1, ID2 and ID3 take about 0.10 s, 0.13 s and 0.15 s 
respectively. That is, all of them are real-time detection system.

Experiments show that we have achieved good results by adopting these strategies. We will further investigate 
why not concatenate conv4 and conv5 layer or other two layers. As mentioned in39, The conv1 layer just responds 
to some blocks or lines which have no semantic features. The conv2 Layer responds to some corners and other 
edge/color conjunctions which still have no semantic features. The conv3 Layer has more complex invariances, 
capturing similar textures (e.g. mesh patterns) which have semantic features. The conv4 Layer shows significant 
variation, and is more class-specific: dog faces or bird legs. The conv5 Layer shows entire objects with significant 
pose variation, e.g. keyboards or dogs. Therefore, the conv1 and conv2 layers can not represent the local texture 
features. Under the same experimental conditions, we have compared the performances of the using single layers 
and the using different layer concatenations. The results are as shown in Table 5. In Table 5, we can see that in all 
the individual layers, the conv5 layer has the best effect, the TPR reaches 0.897, 0.238 (23.8%) higher than the 
conv4 layer alone with the second-best TPR 0.659. In all the layer concatenations, we can see that the concatena-
tion of the conv3 and conv5 layers has the best effect, the TPR reaches 0.935, 0.025 (2.5%) higher than the concat-
enation of the conv4 and conv5 layers with the second-best TPR 0.910. However, in all the layer concatenations, if 
the conv5 layer is not involved, the best effect is generated by the concatenation of the conv3 and conv4 layers, the 
TPR is only 0.691. Therefore, we can conclude that the conv5 layer works best when we use an individual layer. If 
we use the layer concatenations, the concatenation of the conv3 and conv5 layers works best. The reason is that the 
conv5 layer is necessary for extracting the whole texture features of cancer regions. The detector can not identify 
the cancer regions if there is no whole texture features. The conv3 layer extract the local texture features of the 
cancer regions, and the concatenation of the whole texture features and the local texture features can achieve the 
best effect.

Figure 9. Some detection result of our approach, we can find that CS Faster R-CNN can identify images which 
contains blur (a), low-resolution (b), vague margin (c) and irregular shape (d) caner regions.

Training time (hour) Detecting time (s)

ID1 8.5 0.10

ID2 11 0.13

ID3 12 0.15

Table 4. Performance of efficiencies.
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Conclusion
This study investigates the strategies to improve the ability of Faster R-CNN to detect cancer regions in thyroid 
papillary carcinoma images. Facing fewer training samples and blurry cancer regions, we validate the strate-
gies such as layer concatenation and Spatial constrained layer. Experimental results show that each strategy can 
improve the functioning of the detection. Combining all of the strategies yields the best results. In future, we will 
investigate new strategies to detect more kind of cancer region considering the context. In addition, we will fur-
ther study how to generate a exhaustive and practical diagnostic report.

References
 1. Randle, R. W. et al. Trends in the presentation, treatment, and survival of patients with medullary thyroid cancer over the past 

30years. Surg. 161, 137–146 (2017).
 2. Yu, F. et al. Lsun: Construction of a large-scale image dataset using deep learning with humans in the loop. Comput. Sci. (2015).
 3. Razavian, A. S., Azizpour, H., Sullivan, J. & Carlsson, S. Cnn features off-the-shelf: An astounding baseline for recognition. In IEEE 

Conference on Computer Vision and Pattern Recognition Workshops, 512–519 (2014).
 4. Li, H., Huang, Y. & Zhang, Z. An improved faster r-cnn for same object retrieval. IEEE Access PP, 1–1 (2017).
 5. Rahmani, R., Goldman, S. A., Zhang, H., Cholleti, S. R. & Fritts, J. E. Localized content-based image retrieval. IEEE Transactions on 

Pattern Analysis & Mach. Intell. 30, 1902–12 (2008).
 6. Manjunath, B. S. & Ma, W. Y. Texture features for browsing and retrieval of image data. IEEE Transactions on Pattern Analysis & 

Mach. Intell. 18, 837–842 (1996).
 7. Lowe, D. G. Distinctive image features from scale-invariant keypoints. Int. J. of Comput. Vis. 60, 91–110 (2004).
 8. Li, J. & Zhang, Y. Learning surf cascade for fast and accurate object detection. In IEEE Conference on Computer Vision and Pattern 

Recognition, 3468–3475 (2013).
 9. Uijlings, J. R. R., Smeulders, A. W. M. & Scha, R. J. H. Real-time bag of words, approximately. In ACM International Conference on 

Image and Video Retrieval, Civr 2009, Santorini Island, Greece, July, 6 (2009).
 10. Lin, Y. et al. Large-scale image classification: Fast feature extraction and svm training. In Computer Vision and Pattern Recognition, 

1689–1696 (2011).
 11. Ahan, S., Polat, K., Kodaz, H. & Salih A new hybrid method based on fuzzy-artificial immune system and k k mathcontainer loading 

mathjax -nn algorithm for breast cancer diagnosis. Comput. in Biol. & Medicine 37, 415 (2007).
 12. Perez, N., Guevara, M. A., Silva, A. & Ramos, I. Improving the performance of machine learning classifiers for breast cancer 

diagnosis based on feature selection. In Computer Science and Information Systems, 209–217 (2014).
 13. Toki, Y. & Tanaka, T. Image feature extraction method with sift to diagnose prostate cancer. In Sice Conference, 2185–2188 (2012).
 14. Issac Niwas, S., Palanisamy, P., Zhang, W. J. & Isa, N. A. M. Log-gabor wavelets based breast carcinoma classification using least 

square support vector machine. In IEEE International Conference on Imaging Systems and Techniques, 219–223 (2011).
 15. Basavanhally, A. et al. Multi-field-of-view framework for distinguishing tumor grade in er+ breast cancer from entire histopathology 

slides. IEEE Trans Biomed Eng 60, 2089–2099 (2013).
 16. LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nat. 521, 436–444 (2015).
 17. Hinton, G. et al. Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups. IEEE 

Signal Process. Mag. 29, 82–97 (2012).
 18. Litjens, G. et al. Deep learning as a tool for increased accuracy and efficiency of histopathological diagnosis. Sci. Reports 6, 26286 

(2016).
 19. Cruzroa, A. et al. Automatic detection of invasive ductal carcinoma in whole slide images with convolutional neural networks. Proc. 

of SPIE - The Int. Soc. for Opt. Eng. 9041, 139–144 (2014).
 20. Petersen, K., Chernoff, K., Nielsen, M. & Ng, A. Y. Breast density scoring with multiscale denoising autoencoders. Univ. of 

Copenhagen (2012).
 21. Su, H. et al. Robust cell detection and segmentation in histopathological images using sparse reconstruction and stacked denoising 

autoencoders. In Lecture Notes in Computer Science, 383–390 (Springer International Publishing 2015).
 22. Girshick, R., Donahue, J., Darrell, T. & Malik, J. Rich feature hierarchies for accurate object detection and semantic segmentation. In 

The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2014).
 23. Girshick, R. Fast r-cnn. In IEEE International Conference on Computer Vision, 1440–1448 (2015).
 24. Everingham, M., Gool, L., Williams, C. K., Winn, J. & Zisserman, A. The pascal visual object classes (voc) challenge. Int. J. of 

Comput. Vis. 88, 303–338 (2010).

TPR FPR TNR FNR

1 0.416 0.612 0.388 0.584

2 0.479 0.596 0.404 0.521

3 0.514 0.504 0.496 0.486

4 0.659 0.365 0.635 0.341

5 0.897 0.276 0.724 0.103

3 & 5 0.935 0.185 0.815 0.065

4 & 5 0.910 0.205 0.795 0.090

2 & 5 0.901 0.265 0.735 0.099

1 & 5 0.872 0.277 0.723 0.128

3 & 4 0.691 0.329 0.671 0.309

2 & 4 0.641 0.410 0.590 0.359

2 & 3 0.512 0.509 0.491 0.488

1 & 3 0.462 0.558 0.442 0.538

1 & 2 0.407 0.619 0.381 0.593

Table 5. Performances of the using single layers and the using different layer concatenations. The numbers in 
first column represent the convolutional layers. ‘&’ represents concatenation.



www.nature.com/scientificreports/

1 2ScienTific REPORTS |  (2018) 8:6600  | DOI:10.1038/s41598-018-25005-7

 25. Uijlings, J. R. R., Sande, K. E. A. V. D., Gevers, T. & Smeulders, A. W. M. Selective search for object recognition. Int. J. of Comput. Vis. 
104, 154–171 (2013).

 26. Zitnick, C. L. & Dollár, P. Edge Boxes: Locating Object Proposals from Edges (Springer International Publishing 2014).
 27. Noh, H., Hong, S. & Han, B. Learning deconvolution network for semantic segmentation. In The IEEE International Conference on 

Computer Vision (ICCV) (2015).
 28. Liu, W., Rabinovich, A. & Berg, A. C. Parsenet: Looking wider to see better. Comput. Sci. (2015).
 29. Ren, S., He, K., Girshick, R. & Sun, J. Faster r-cnn: Towards real-time object detection with region proposal networks. IEEE 

Transactions on Pattern Analysis & Mach. Intell. 1–1 (2016).
 30. Moradi, M. et al. Augmenting detection of prostate cancer in transrectal ultrasound images using svm and rf time series. IEEE 

transactions on bio-medical engineering 56, 2214–24 (2009).
 31. Virmani et al. Svm-based characterization of liver ultrasound images using wavelet;packet texture descriptors. J. of Digit. Imaging 26, 

530–43 (2013).
 32. Acharya, U. R. et al. An accurate and generalized approach to plaque characterization in 346 carotid ultrasound scans. IEEE 

Transactions on Instrumentation & Meas. 61, 1045–1053 (2012).
 33. Acharya, U. R. et al. Plaque tissue characterization and classification in ultrasound carotid scans: A paradigm for vascular feature 

amalgamation. IEEE Transactions on Instrumentation & Meas. 62, 392–400 (2013).
 34. Tsiaparas, N. N. et al. Comparison of multiresolution features for texture classification of carotid atherosclerosis from b-mode 

ultrasound. IEEE Transactions on Information Technology in Biomedicine A Publication of the IEEE Engineering in Medicine & Biol. 
Soc. 15, 130 (2011).

 35. Güler, I. & Ubeyli, E. D. Automated diagnostic systems with diverse and composite features for doppler ultrasound signals. IEEE 
transactions on bio-medical engineering 53, 1934–42 (2006).

 36. Fan, R. E., Chen, P. H., Lin, C. J. & Joachims, T. Working set selection using second order information for training support vector 
machines. J. of Mach. Learn. Res. 6, 1889–1918 (2005).

 37. Tajbakhsh, N. et al. Convolutional neural networks for medical image analysis: Full training or fine tuning? IEEE Transactions on 
Med. Imaging 35, 1299–1312 (2016).

 38. Erhan, D., Bengio, Y., Courville, A. & Vincent, P. Visualizing higher-layer features of a deep network. Univ. of Montr. 1341, 3 (2009).
 39. Zeiler, M. D. & Fergus, R. Visualizing and Understanding Convolutional Networks (Springer International Publishing 2014).

Acknowledgements
This work was supported by National Science Foundation of China (Grant Nos 61732021, 61472165 and 
61373158), Guangdong Provincial Engineering Technology Research Center on Network Security Detection 
and Defence (Grant No. 2014B090904067), Guangdong Provincial Special Funds for Applied Technology 
Research and development and Transformation of Important Scientific and Technological Achieve (Grant No. 
2016B010124009), the Zhuhai Top Discipline Information Security, Guangzhou Key Laboratory of Data Security 
and Privacy Preserving, Guangdong Key Laboratory of Data Security and Privacy Preserving, the Key projects of 
public welfare research and capacity building in Guangdong Province in 2015 (Grant No. 2015B010103003) and 
Collaborative innovation and platform environment construction project in Guangdong Province in 2016 (Grant 
No. 2016A040403048).

Author Contributions
Hailiang Li, Jian Weng and Wanrong Gu conceived the experiments, Hailiang Li, Yijun Mao, Yonghua Wang and 
Jiajie Zhang conducted the experiments, Weiwei Liu and Yujian Shi analysed the results. All authors reviewed the 
manuscript.

Additional Information
Competing Interests: The authors declare no competing interests.
Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2018

http://creativecommons.org/licenses/by/4.0/

	An improved deep learning approach for detection of thyroid papillary cancer in ultrasound images
	Methods
	CNN. 
	Faster R-CNN. 
	Improved Faster R-CNN for ultrasonic image detection. 
	Layer concatenation. 
	Spatial constrained layer. 


	Experiments
	Collecting Data. 
	Annotation. 
	Training. 


	Results
	Results of the ablation experiments. 
	Layer concatenation. 
	Spatial constrained layer. 

	Results of comparison with approaches based on SVM. 

	Discussion
	Conclusion
	Acknowledgements
	Figure 1 Some ultrasound images of thyroid papillary carcinoma.
	Figure 2 The architecture of proposed CS Faster R-CNN for ultrasound image detection.
	Figure 3 Architecture of ZF model.
	Figure 4 The screenshot of the software interface in the annotation process.
	Figure 5 The comparison of the ROCs and areas under the curves (AUCs).
	Figure 6 Some correct detection results.
	Figure 7 Some FN (a,d,e) and TP (b,c,f) detection results.
	Figure 8 Some FP (a,b,d) and TN (c,e,f) detection results.
	Figure 9 Some detection result of our approach, we can find that CS Faster R-CNN can identify images which contains blur (a), low-resolution (b), vague margin (c) and irregular shape (d) caner regions.
	Table 1 Combination of strategies one by one.
	Table 2 Performance of strategies.
	Table 3 Performance comparison with state-of-the-art approaches based on SVM.
	Table 4 Performance of efficiencies.
	Table 5 Performances of the using single layers and the using different layer concatenations.




