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The Correlation Between 
the Immune and Epithelial-
Mesenchymal Transition Signatures 
Suggests Potential Therapeutic 
Targets and Prognosis Prediction 
Approaches in Kidney Cancer
Jiayu Liang1, Zhihong Liu1, Zijun Zou1, Yongquan Tang1, Chuan Zhou1, Jian Yang2, Xin Wei1 & 
Yiping Lu1

Both epithelial-mesenchymal transition (EMT) and immune regulation are important biological process 
in malignant tumours. The current research aims to comprehensively explore the potential association 
between the epithelial-mesenchymal transition (EMT) signature and immune checkpoint signature and 
its role in predicting the prognosis of clear-cell renal cell carcinoma (ccRCC) patients. EMT-related genes 
were collected from an experiment-based study and then were investigated using data from the Cancer 
Genome Atlas. A total of 357 genes were included, and 23 of them that were upregulated and correlated 
with prognosis were analysed further as core EMT genes in ccRCC. Interestingly, the emerging immune 
checkpoints CD276, OX40 and TGFB1 were found to be significantly co-expressed with core EMT 
genes, and TGFB1, CXCR4, IL10, and IL6 were the most important molecules potentially interacting 
with EMT molecules in our model, as determined from mRNA co-expression and protein-protein 
interaction network analysis. Additionally, an integrated scoring model based on FOXM1, TIMP1 and 
IL6 was successfully established to distinguish ccRCC patients with different clinical risks. Our results 
identified core genes in the EMT-immunophenotyping correlation and evaluated their risk assessment 
capabilities, providing more potential therapeutic targets and prediction approaches regarding the 
translational research of treatment and prognosis in ccRCC.

A total of 14400 kidney cancer-related deaths were estimated to occur in the United States in 20171. In China, the 
figure was estimated to be 23400 in 20152. Clear-cell renal cell carcinoma (ccRCC) is the most common subtype 
of kidney cancer in adults, accounting for approximately 70% of all cases. Despite advances in diagnosis and 
treatments, approximately 20–30% of RCC is diagnosed in the metastasis stage, and another 20–30% of patient 
undergoing curative surgery for a primary tumour develop metastasis with poor prognosis during follow-up3–5. 
After the development of cytokine-based therapies and targeted therapies, the emerging immune checkpoint 
inhibitors (ICIs) are now becoming representative novel therapies for non-surgical treatment of RCC.

In the tumour microenvironment, immune checkpoint receptors negatively regulate the proliferation and 
activity of T cells and other immune cells and may induce immunosuppression and immunity escape. As reported 
by Liu XD et al., immune cell infiltration, especially increased T-lymphocyte infiltrates, is associated with poor 
survival of RCC patients6. However, although the advent of ICIs has revealed novel therapies for ccRCC, only a 
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subset of individuals would benefit from the current PD-1, PD-L1, and CTLA-4 inhibitors due to no-response 
and resistance in RCC patients7.

Epithelial-mesenchymal transition (EMT) is a critical process in the progression, invasion and metastasis of a 
wide range of carcinomas. The expression of EMT-associated signatures is significantly correlated with metastasis 
and the prognosis of RCC patients8,9. In cancer cells, an abnormal EMT signature is linked not only to migration 
and invasion but also to various acquired capabilities, such as resistance to chemotherapy and immunotherapy 
alterations in DNA repair10. Recently, a new pan-cancer EMT signature was found to correlate with immune 
cell signalling according to Mak MP et al., offering new insights into the potential significance of the correla-
tion between EMT and immune checkpoints11. Given that ccRCC is a predominantly mesenchymal tumour, the 
selection of its candidate EMT genes and the exploration of its correlation with the immune signature would be 
different from other tumour types. Thus, the present research aims to specifically explore the relationship between 
core molecules in EMT and immune targets in ccRCC, as well as the clinical significance of this correlation.

Here, we collected data from an experiment-based EMT gene set (dbEMT)12. A total of 23 core 
EMT-associated genes (CEGs) were found to be over-expressed and associated with prognosis in ccRCC using 
publicly available genomics resources. A subset of the signalling pathways involved in the EMT network were fur-
ther identified to be linked to immune activities. Based on the potential EMT-immunophenotyping correlation 
mechanism, we comprehensively explored the association and interaction between CEG and selected targetable 
immune checkpoint molecules from different aspects, including the mRNA co-expression and protein-protein 
interaction (PPI) network. Subsequently, the two signatures were successfully integrated, and a clinical risk scor-
ing system was established.

Results
Screening Core EMT-associated Genes (CEG) in ccRCC. A total of 357 EMT-associated genes were 
analysed (for further details of the ccRCC cohort, see Supplementary Table S1), and according to the criteria, 100 
of the 357 (28.01%) genes were found to be differentially expressed. Among these, the expression of 46 (12.89%) 
genes were upregulated, and that of 54 (15.13%) was down-regulated (Supplementary Table S2).

We next investigated the correlation between the expression of the EMT signature and clinical outcomes, 
including the overall survival or disease-free survival status (The Cox proportional hazard ratio and 95% confi-
dence interval were also included in the survival plot; see Supplementary Fig. S1). We observed that 126 (35.29%) 
EMT-associated genes were significantly associated with better patient outcomes. By contrast, the mRNA levels 
of 43 (12.04%) genes were negatively correlated with a favourable prognosis (Supplementary Fig. S2). The large 
number of genes influencing the prognosis indicated non-negligible functions of the EMT signature in ccRCC.

Considering that the biological influence of upregulated protein-coding genes was more directly observed, 
we merged the expression data and survival data in the following research, and 23 genes that were over-expressed 
and related to prognosis were defined as core EMT genes (CEGs) in our study (Supplementary Table S2). Among 
them, 14 genes were associated with the poor survival of ccRCC patients (Supplementary Fig. S1a), namely, 
TGFB1, LAMA5, PTHLH, FOXM1, TIMP1, CAV1, CDKN2A, ITGA5, CTSZ, LOX, PLAUR, MMP9, LOXL2 and 
FSCN1; the other 9 genes were related to a better prognosis (Supplementary Fig. S1c). In addition, the differentially 
expressed levels of CEGs were extracted and validated from GEO datasets (GSE53757), among which the remarka-
bly higher expression of the entire 23 genes could be observed in tumour tissue (P < 0.05, Supplementary Table S3).

Testing the clinical significance of CEG alteration. Next, CEGs were validated as altered in 285 (64%) 
of 446 patients in cBioPortal (Fig. 1a). In addition, to test whether the genetic alteration, including amplification, 
deep deletion, mRNA upregulation and truncating mutation (putative driver), could serve as outcome predictors, 
the altered signature and clinical data were analysed using the overall survival Kaplan-Meier estimate. As shown 
in Fig. 1b, cases with alterations in CEGs were correlated with decreased survival (median month survival: 74.11 
vs. NA; P = 0.00715). When comparing the separated 14-gene signature and 9-gene signature, only the former 
showed a significant correlation with prognosis (Supplementary Fig. S1b and S1d). Taken together, these results 
suggested that the alteration of the 14-gene signature significantly affected the outcome of patients, while changes 
in the 9-gene signature did not influence the prognosis.

We further explored whether the dysregulation of the 14-gene signature was involved in the development and 
progression of renal clear cell carcinoma. The clinical data were divided into several subgroups according to the 
tumour grade, pathologic stage and metastasis. Fourteen mRNAs were demonstrated to be differentially expressed 
in the histopathologic grade, tumour stage and metastasis subgroups (Supplementary Table S4). Additionally, the 
distribution of three representative genes, PLAUR, PTHLH and FOXM1, is shown in Supplemental Figs S2 and 
S3, and their expression was upregulated in the higher grade (P < 0.01), higher clinical stage (P < 0.01), and 
higher metastasis stage (P < 0.01) merged subgroups, respectively.

Pathway enrichment analyses in differently expressed genes. To identify the biological functions 
of the EMT signature in ccRCC, we performed KEGG analysis to identify the enriched pathways. Given that pre-
vious research had reported 62 pathways and 28 diseases associated with the entire gene list in dbEMT, our goal 
was to better understand the extra roles of enriched pathways in 100 dysregulated genes in ccRCC. Interestingly, 
in addition to cancer-related pathways (e.g., Pathways in cancer, Bladder cancer, Pancreatic cancer) and EMT reg-
ulation (e.g., Proteoglycans in cancer, Focal adhesion, ECM-receptor interaction), top several pathways enriched 
may also be related to immune escape and immune response regulation. Among the top 10 enriched pathways, 
Proteoglycans in cancer, HIF-1 signalling pathway, and PI3K-Akt signalling pathway were all reported to par-
ticipate in immune cell signalling in recently reports13–15, suggesting a potential relationship between EMT and 
immunity (Fig. 2a).
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Correlation analysis of selected immune therapeutic targets and CEG. To identify the potential 
therapeutic targets of EMT and immune escape, 15 representative emerging immune checkpoint genes were 
selected according to a previous report11 and the correlation coefficient in this ccRCC model: IL10, CD4, TNFSF4, 
PDL2, IL6, PDL1, LAG3, CTLA4, ICOS, TIM3, ICOSLG, OX40, CXCR4, TGFB1, and B7H3 (CD276). The correla-
tion of the expression level between CEG and these genes was analysed, and most of the genes from the two groups 
were observed to be positively co-expressed. Interestingly, the remarkably correlated immune targets were found 
to be CD276, OX40, and TGFB1 (median r = 0.35, 0.33, 0.29, median P < 0.001) instead of the well-known PDL1, 
CTLA4 and TIM3, which had little relationship with the EMT signatures in our model (Fig. 2b, Supplementary 
Fig. S4a). Additionally, it should be noted that the biological correlation could be direct or indirect. An example 
of an indirect correlation is that CD276 was reported to promote tumour cell migration and invasion through the 
Jak2/Stat3/MMP9 signalling pathway16, while the r value between CD276 and MMP9 was 0.4 in this analysis.

Figure 1. Overview of the main EMT signatures. (a) Compact visualization of 23 genomic alterations. The gene 
set was altered in 285 (63.9%) of 446 complete samples. Genetic alteration included amplification, deep deletion, 
mRNA upregulation, mRNA downregulation, truncating mutation, and missense mutation. (b) Overall survival 
Kaplan-Meier estimate: Cases with alterations (red): total cases: n = 285, cases deceased: n = 107, median 
survival in months, 74.11; cases without alterations (blue): total cases: n = 161, cases deceased: n = 43, median 
survival in months: NA (not available).

Figure 2. EMT signature-correlated pathways and immune checkpoint molecules. (a) Top 10 pathways 
enriched in the differentially expressed EMT genes. The adjusted P value is shown as dots with different colours. 
The enrichment count is shown as dots with different sizes. The number of candidate genes in each pathway was 
calculated as the GeneRatio. (b) Correlation of the expression between EMT genes and immune checkpoint 
genes, based on Pearson correlation coefficients.
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Construction and functional analysis of a CEG-immune checkpoint integrated network. To 
better understand the functional relationships between EMT and immune checkpoints, we integrated data from 
two different platforms (protein and mRNA). By combining the PPI network and gene co-expression data using a 
subnetwork extraction algorithm, a common biological network containing both protein and mRNA information 
was generated. The number of nodes and edges in the PPI network, co-expression network and their common 
network are shown in Supplementary Table S5 and Fig. 3a, respectively. The network illustrated a significant 
interaction between two sets of signatures. Among them, TGFB1, CXCR4, IL10, and IL6 represented the most 
important immune checkpoint molecules interacting with CEG in the integrated network (Fig. 3b).

Finally, we performed gene ontology analysis to determine the functions of the constructed signature. Not 
surprisingly, the main functions were found to be related to the tumour microenvironment and tumour immune 
status, such as the negative regulation of cell activation, negative regulation of leukocyte activation, positive reg-
ulation of leukocyte activation, entry into other organisms involved in symbiotic interaction, negative regulation 
of transmembrane transport, positive regulation of response to DNA damage stimulus, and the interleukin-2 
biosynthetic process (Fig. 3c,d).

Evaluation of the clinical significance of CEGs and immune therapeutic target-based approach 
in patient risk assessment. The expression of 15 immune checkpoint genes was then evaluated in the 
ccRCC data set using a log2KFPM value. Notably, the majority of the targets were expressed more highly in 
tumours than in normal tissue (Fig. 4). Additionally, the altered immune checkpoint signature was correlated 
with a poor outcome (P = 0.00536, Supplementary Fig. S4b).

Figure 3. Integrated network and functional annotation. (a) EMT-related genes are indicated as cyan circles, 
immune checkpoint targets are indicated as red circles. The thickness of the lines depends on the combined 
score in the PPI network. (b) A combined network contains both a protein-protein interaction network (PPI) 
and gene co-expression information. The thickness of the lines depends on the combination coefficient (|co-
expression correlation coefficients of mRNAs* combined score in the PPI network|). (c) Functional annotation 
of two correlated signatures. (d) Proportion of different functional groups.



www.nature.com/scientificreports/

5SCiEntifiC REPoRTS |  (2018) 8:6570  | DOI:10.1038/s41598-018-25002-w

We then established a scoring system to validate the risk assessment abilities of the two associated signa-
tures. First, univariate Cox proportional hazards regression was used, and 15 of 37 genes (including CEG and 
immune checkpoint genes) were identified to significantly influence the prognosis. Second, the 15 genes were 
included in a multivariate Cox proportional hazards regression analysis (Supplementary Table S6). Next, three 
independent risk factors were extracted and exhibited a prognostic signature for ccRCC—FOXM1, TIMP1 and 
IL6 (Supplementary Table S7).

The risk score was validated to successfully predict the 5-year survival of ccRCC patients, and the survival 
time of patients in the high-risk group was predominantly shorter than that in the low-risk group (1252.6 ± 939.6 
days vs. 1435.9 ± 1017.3 days, p = 1.4403e-06, Fig. 5a). We further compared the scoring model with other clin-
ical parameters. Age, grade, laterality, pathologic stage, T stage, M stage, N stage and risk score were found to be 
associated with OS in univariate Cox regression (P < 0.05). Age (>60 years), grade (G3 + G4), M stage (M1) and 
high-risk score were negatively correlated with OS (P < 0.05) in multivariate Cox regression. The results indicated 
that a high-risk score was an independent risk factor in ccRCC patients (Table 1).

Furthermore, the prognostic assessment ability of the risk score was further validated using data from the 
GEO dataset (GSE29609, P = 0.00375) (see Fig. 5b). We also assessed the correlation between the risk score and 
various clinical parameters, and the risk score showed significant ability to distinguish between the different 
statuses of the pathological stage (stages I + II vs. Stages III + IV), T stage (T1 + T2 vs. T3 + T4), M stage (M0 vs. 
M1), N stage (N0 vs. N1) and neoplasm histologic grade (G1 + G2 vs. G3 + G4) in ccRCC (Fig. 6).

Discussion
Increasing evidence suggests that both the EMT signature and immune checkpoint signature could contribute 
to tumour progression and metastasis potential. Some EMT-related mRNAs/miRNAs have demonstrated the 
strength to predict prognosis and other clinical features9. However, the complicated functions of the EMT signal-
ling network and its correlation with immune checkpoints in ccRCC remain unclear. Here, we chose a summa-
rized cohort of experimental validated EMT genes to explore the two-signature relationship in ccRCC. We found 
that in ccRCC patients, 28.01% of EMT genes were dysregulated and 47.34% of EMT genes were significantly 
correlated with prognosis. In addition, the alteration of CEG was validated to be associated with worse outcomes, 
and the expression of 14 genes was verified to be positively associated with high histopathologic grade, high 
tumour stage and metastasis. Notably, the main interactive molecules were discussed in this relationship. Finally, 
we successfully integrated a risk assessment model based on the EMT signature and immune checkpoint targets.

A major finding in this research is that several targets, such as CD276 and OX40, were shown as key genes 
co-expressed with the EMT signature. Among these, CD276 is one of the representative novel targets in 
tumour immunotherapy. In tumour cells, CD276 could reprogram glucose metabolism to benefit growth by 
ROS-mediated stabilization of HIF-1α17. Importantly, Seaman S et al. reported that a CD276-targeting ADC 
could simultaneously target both cancer cells and the tumour vasculature, and the m276-PBD has shown broad 
tumouricidal and anti-metastatic activity in vivo18. The underlying strategies include CD276 with blocking mon-
oclonal antibodies (mAbs), CD276-specific antibody-dependent cell-mediated cytotoxicity (ADCC), antibody 
drug conjugates (ADCs), CD276/CD3 bispecific antibody, CD276-specific small-molecule inhibitor, and CAR 
T-cell therapy19. Furthermore, the latest encouraging results for anti-OX40 therapies in multiple cancer studies 
indicate the potential great importance of these key genes in kidney cancer20,21.

Moreover, HIF-1α is now recognized as a key intermediate between EMT and immune evasion in tumour 
cells, as summarized in a report from Qiu GZ, et al.22. HIF-1α-dependent immune evasion through the PI3K/
AKT pathway is also important to tumour cells15. However, the entire mechanism of tumour immune evasion and 
immune suppression is far more complicated than we know. The present results indicate the possibility that the 
EMT signature could participate in this process and be correlated with the tumour immune status in the kidney 
cancer microenvironment.

The risk scoring model consists of several core genes in cancer-related pathways, EMT-related pathways and 
immune-related pathways and is verified to be an independent risk factor similar to age, tumour pathologi-
cal grade and metastasis stage. Based on the current recognition of its complicated biological background, the 

Figure 4. Expression of 15 immune checkpoint genes in 534 tumour samples and 72 adjacent normal samples. 
“*” indicates a log2FC value >1 and P value < 0.01.
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integrated score provides extra evidence that the two correlated signatures may participate in more malignant 
biological behaviours and would not be limited to the progression of tumour proliferation and metastasis. These 
results confirmed that the identification of core molecules in the EMT-immunophenotyping correlation not only 
provided potential therapeutic targets but also contributed to the prediction of prognosis in ccRCC. At the same 
time, to further evaluate their efficacy in predicting prognosis and response to immune checkpoint inhibitors, 
additional prospective clinical follow-up studies would be needed in the future.

In summary, by deeply exploring the correlation between EMT and the immune signature, several emerging 
targets were found to link or interact with core EMT molecules, and the risk assessment model was verified to 
successfully predict survival, degree of malignancy and metastasis tendency in ccRCC. The correlated EMT signa-
ture provides additional evidence for an optimistic outlook of emerging immune checkpoint blockades and builds 
confidence for related translational research.

Methods
Gene datasets and patient information. We used renal clear cell carcinoma (KIRC) data from the 
TCGA Data Portal (https://gdc-portal.nci.nih.gov/) and UCSC Xena project (http://xena.ucsc.edu), including 
RNAseqV2 and clinical data (n = 537). This study meets the publication guidelines provided by TCGA (http://
cancergenome.nih.gov/publications/publicationguidelines). The level 3 RNAseq data were derived from 534 
ccRCC samples and 72 normal samples. The EMT-associated protein-coding gene list was download from a 
literature-based resource, dbEMT12.

Public analysis tools. The EMT-related seed genes were analysed by GEPIA, a web server for cancer and nor-
mal gene expression profiling and interactive analyses23. For the differential expression analysis, one-way ANOVA 
was used. The genes were first log2(TPM + 1) scaled, and the log2FC was defined as median(Tumour) - medi-
an(Normal). The Benjamini and Hochberg false discovery rate (FDR) method was then used to adjust the p-value 
in each factor to obtain the multiple testing adjusted q-value. Those with |log2FC| > 1 and q value < 0.01 were then 
considered differentially expressed genes. For the survival analysis, the group cut-off value was the quartile and a 
logrank P value < 0.01. Furthermore, the candidate genes were verified using cBioPortal for Cancer Genomics24,25.

Figure 5. Distinguishing ability of the risk score for the clinical status. (a) The Kaplan-Meier test of the risk 
score for overall survival. P = 8.932e-08. Prognostic performance of the risk score as shown by the time-
dependent receiver operating characteristic (ROC) curve for predicting the 5-year survival. The area under the 
curve (AUC) = 0.701. Patients were divided into high- and low-risk groups using the risk score. The relationship 
between survival and the risk score is shown at the top; the risk score curve is presented in the middle; heatmap 
of patients with 3 signatures is on the bottom. (b) Validation of the risk score in the GEO dataset (GSE29609). 
The Kaplan-Meier test of the risk score for overall survival (n = 39, p value = 0.00375). Prognostic performance 
of the risk score as shown by the time-dependent receiver operating characteristic (ROC) curve for predicting 
the 5-year survival. Area under the curve (AUC) = 0.807.

https://gdc-portal.nci.nih.gov/
http://xena.ucsc.edu
http://cancergenome.nih.gov/publications/publicationguidelines
http://cancergenome.nih.gov/publications/publicationguidelines
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Functional and signalling pathway analyses. The functional annotation and pathway enrichment 
analyses for differentially expressed EMT genes and interactive immune checkpoint targets were executed by 
online analysis tools and ClueGO in cytoscape (version 3.5.1). The KEGG pathway with a p value < 0.05 and 
a fold enrichment >2.0, and GO terms with a p value < 0.05 and an enrichment score >1.0 were considered 
significant26–30.

Association between the EMT signature and other covariates. We first applied chi-squared test to 
assess the association between the candidate EMT signatures and tumour grade, pathologic stage, and metastasis. 
Next, we used the Wilcoxon test for two groups and the Kolmogorov-Smirnov test for more than two groups to 
verify the association. In addition, the co-expression relationships between the selected EMT-related genes and 
immune checkpoints were computed using Pearson’s correlation. The targets without a clear relationship were 
excluded. All data in tests with P < 0.01 were considered statistically significant.

Integrated functional network construction. To identify the interaction among the 37 selected genes, 
we used gene co-expression profiles and the protein-protein interaction network with subnetwork extraction 
algorithms. The method was reported by Yue et al.31 and included three steps: (1) First, we built the 
protein-to-protein network using STRING analysis, and all the interactions with a combined score >0.4 were 
included32; (2) the Pearson co-expression coefficient of 37 genes was computed using R software, and a P 
value < 0.01 was considered significant. (3) Using the subnetwork extraction algorithm (   absolute combined value
=  ×  combined score coexpression coefficient), an integrated network containing both protein and mRNA infor-
mation was generated by Cytoscape.

Construction of the EMT and immune checkpoint target-based prognostic signature. The 
methods for the prognostic model construction were based on previous reports33,34. Univariate Cox proportional 

Variables, 
n (%)

patient 
(n = 537)

Univariate analysis 
HR (95%CI) Pa

Multivariate analysis 
HR (95%CI) Pb

Gender

Female 191(35.6) ref ref

Male 346(64.4) 0.949(0.692, 1.302) 0.746 0.893(0.638, 1.251) 0.512

Age

≤60 266(49.5) ref ref

>60 271(50.5) 1.812(1.322, 2.483) <0.001 1.603(1.157, 2.22) 0.005

Grade

G1 + G2 244(45.4) ref ref

G3 + G4 285(53.1) 2.824(1.977, 4.033) <0.001 1.618(1.092, 2.395) 0.016

Laterality

left 253(47.1) ref ref

right 283(52.7) 0.682(0.501, 0.927) 0.015 0.843(0.607, 1.17) 0.307

Pathologic stage

I + II 326(60.7) ref ref

III + IV 208(38.7) 4.196(3.014, 5.843) <0.001 1.678(0.786, 3.579) 0.181

T stage

T1 + T2 344(64.1) ref ref

T3 + T4 193(35.9) 3.533(2.577, 4.843) <0.001 1.166(0.605, 2.248) 0.647

M stage

M0 426(79.3) ref ref

M1 79(14.7) 4.482(3.265, 6.153) <0.001 2.395(1.599, 3.587) <0.001

MX 30(5.6) 0.352(0.049, 2.526) 0.299 0.415(0.058, 2.988) 0.382

N stage

N0 240(44.7) ref ref

N1 17(3.2) 3.286(1.747, 6.182) <0.001 1.239(0.604, 2.542) 0.559

NX 280(52.1) 0.746(0.543, 1.024) 0.070 0.746(0.532, 1.044) 0.088

Race

white 466(86.8) ref — —

others 64(11.9) 0.675(0.344, 1.325) 0.253 — —

Risk score

Low risk 370(68.9) ref ref

High risk 156(29.1) 2.711(1.987, 3.697) <0.001 1.606(1.139, 2.265) 0.007

Table 1. Univariate analysis and Multivariate analysis of the risk score. aUnivariate Cox regression; 
bMultivariate Cox regression.
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hazards regression of core EMT and immune checkpoint genes was first performed with a significance level set 
at 0.05. Based on current recognition of the negative effects of EMT and immune checkpoints in the process of 
anti-cancer, we excluded genes with a hazard ratio <1, and 15 genes that were negatively correlated with OS (haz-
ard ratio >1; P value < 0.05) were included in the multivariate Cox regression to optimize the prognostic model. 
Next, the risk score was calculated according to the linear combination of the expression level and regression 
coefficient using the following formula:

exp exp exprisk score GENE GENE GENE GENE GENEn GENEn1 1 2 2β β β= × + × + + × .

(exp represents the expression quantity of the gene, and β represents the regression coefficient derived from 
the multivariate cox regression model).

Kaplan-Meier survival curves and time-dependent receiver operating characteristic (ROC) curves analysed 
using R package “survivalROC” were constructed. The survival differences were assessed using the two-sided 
log-rank test. Patients were divided into high- and low-risk score subgroups according to cut-off values from 
the ROC method. To evaluate the correlation of the risk score and OS, gender, age, risk score, grade, laterality, 
pathologic stage, T stage, N stage, M stage and race were included in the univariate Cox proportional hazards 
regression. Next, variables with a P value < 0.1 (to exclude more influencing factors) and gender were included 
in the multivariate cox regression. ROC curves were drawn to assess the predictive significance of the prognostic 
model with clinical features, and the correlation was evaluated using Chi-squared test. Statistical significance was 
defined as a two-sided P-value less than 0.05.

Validation of the aberrant expression of candidate genes and clinical value of the risk score in 
ccRCC based on GEO datasets. Data from the Gene Expression Omnibus database (GEO, http://www.
ncbi.nlm.nih.gov/geo) were analysed. One original study that contained gene expression profiling data was col-
lected (GSE53757). The SAM method was used to evaluate the levels of differentially expressed genes between 
human ccRCC tissues and normal tissues, with a cut-off fold change >1.5, p-value < 0.05 and false discovery rate 
q-value < 0.05. The Kaplan-Meier survival curves and ROC curve analysis were used to validate the predictive 
value of the risk score for ccRCC patients based on the GEO dataset (GSE29609).

Data Availability. The datasets analysed during the current study are available in the TCGA Data Portal 
(https://gdc-portal.nci.nih.gov/), GEO datasets (https://www.ncbi.nlm.nih.gov/gds/) and dbEMT repository 
(http://dbemt.bioinfo-minzhao.org/).

References
 1. Siegel, R. L., Miller, K. D. & Jemal, A. Cancer Statistics, 2017. CA Cancer J Clin. 67, 7–30, https://doi.org/10.3322/caac.21387 (2017).
 2. Chen, W. et al. Cancer statistics in China, 2015. CA Cancer J Clin. 66, 115–32, https://doi.org/10.3322/caac.21338 (2016).
 3. Ljungberg, B. et al. EAU guidelines on renal cell carcinoma: 2014 update. Eur Urol. 67, 913–24, https://doi.org/10.1016/j.

eururo.2015.01.005 (2015).
 4. Williamson, T. J., Pearson, J. R., Ischia, J., Bolton, D. M. & Lawrentschuk, N. Guideline of Guidelines: follow-up after nephrectomy 

for renal cell carcinoma. BJU Int. 117, 555–62, https://doi.org/10.1111/bju.13384 (2016).
 5. Li, H., Samawi, H. & Heng, D. Y. The use of prognostic factors in metastatic renal cell carcinoma. Urol Oncol. 33, 509–16, https://doi.

org/10.1016/j.urolonc.2015.08.003 (2015).
 6. Liu, X. D. et al. Resistance to antiangiogenic therapy is associated with an immunosuppressive tumor microenvironment in 

metastatic renal cell carcinoma. Cancer Immunol Res. 3, 1017–29, https://doi.org/10.1158/2326-6066.CIR-14-0244 (2015).
 7. Ghatalia, P., Zibelman, M., Geynisman, D. M. & Plimack, E. R. Checkpoint Inhibitors for the Treatment of Renal Cell Carcinoma. 

Curr Treat Options Oncol. 18, 7 (2017).
 8. Chen, D. et al. Expression and prognostic significance of a comprehensive epithelial-mesenchymal transition gene set in renal cell 

carcinoma. J Urol. 191, 479–86, https://doi.org/10.1016/j.juro.2013.08.052 (2014).
 9. Mlcochova, H. et al. Epithelial-mesenchymal transition-associated microRNA/mRNA signature is linked to metastasis and 

prognosis in clear-cell renal cell carcinoma. Sci Rep. 6, 31852 (2016).
 10. De Craene, B. & Berx, G. Regulatory networks defining EMT during cancer initiation and progression. Nat Rev Cancer. 13, 97–110 

(2013).
 11. Mak, M. P. et al. A patient-derived, pan-cancer EMT signature identifies global molecular alterations and immune target enrichment 

following epithelial to mesenchymal transition. Clin Cancer Res. 22, 609–20, https://doi.org/10.1158/1078-0432.CCR-15-0876 
(2016).

 12. Zhao, M., Kong, L., Liu, Y. & Qu, H. dbEMT: a literature-based resource for Epithelial-Mesenchymal Transition genes. Sci Rep. 5, 
11459 (2015).

Figure 6. Characteristic (ROC) curve distinguishing the different clinical parameters: grade, clinical stage, 
clinical M stage, clinical N stage, clinical T stage (P < 0.01).

http://www.ncbi.nlm.nih.gov/geo
http://www.ncbi.nlm.nih.gov/geo
https://gdc-portal.nci.nih.gov/
https://www.ncbi.nlm.nih.gov/gds/
http://dbemt.bioinfo-minzhao.org/
http://dx.doi.org/10.3322/caac.21387
http://dx.doi.org/10.3322/caac.21338
http://dx.doi.org/10.1016/j.eururo.2015.01.005
http://dx.doi.org/10.1016/j.eururo.2015.01.005
http://dx.doi.org/10.1111/bju.13384
http://dx.doi.org/10.1016/j.urolonc.2015.08.003
http://dx.doi.org/10.1016/j.urolonc.2015.08.003
http://dx.doi.org/10.1158/2326-6066.CIR-14-0244
http://dx.doi.org/10.1016/j.juro.2013.08.052
http://dx.doi.org/10.1158/1078-0432.CCR-15-0876


www.nature.com/scientificreports/

9SCiEntifiC REPoRTS |  (2018) 8:6570  | DOI:10.1038/s41598-018-25002-w

 13. Hellwig-Bürgel, T., Stiehl, D. P., Wagner, A. E., Metzen, E. & Jelkmann, W. Hypoxia-Inducible Factor-1 (HIF-1): A Novel 
Transcription Factor in Immune Reactions. J Interferon Cytokine Res. 25, 297–310 (2005).

 14. Frey, H., Schroeder, N., Manon-Jensen, T. & Iozzo, R. V. Schaefer Biological interplay between proteoglycans and their innate 
immune receptors in inflammation. FEBS J. 280, 2165–79, https://doi.org/10.1111/febs.12145 (2013).

 15. Wan, J., Wu, W., Che, Y., Kang, N. & Zhang, R. Low dose photodynamic-therapy induce immune escape of tumor cells in a HIF-1α 
dependent manner through PI3K/Akt pathway. Int Immunopharmacol. 28, 44–51, https://doi.org/10.1016/j.intimp.2015.05.025 
(2015).

 16. Liu, F., Zhang, T., Zou, S., Jiang, B. & Hua, D. B7-H3 promotes cell migration and invasion through the Jak2/Stat3/MMP9 signaling 
pathway in colorectal cancer. Mol Med Rep. 12, 5455–60, https://doi.org/10.3892/mmr.2015.4050 (2015).

 17. Lim, S. et al. Immunoregulatory protein CD276 reprograms glucose metabolism in cancer cells by ROS-mediated stabilization of 
HIF-1α. Cancer Res. 76, 2231–42, https://doi.org/10.1158/0008-5472.CAN-15-1538 (2016).

 18. Seaman, S. et al. Eradication of Tumors through Simultaneous Ablation of CD276/CD276-Positive Tumor Cells and Tumor 
Vasculature. Cancer Cell. 31, 501–515.e8 (2017).

 19. Picarda E, Ohaegbulam KC, Zang X. Molecular Pathways: Targeting CD276 (CD276) for Human Cancer Immunotherapy. Clin 
Cancer Res.15, 22(14), 3425–3431, https://doi.org/10.1158/1078-0432.CCR-15-2428 (2016).

 20. Buchan, S. L., Rogel, A. & Al-Shamkhani, A. The immunobiology of CD27 and OX40 and their potential as targets for cancer 
immunotherapy. Blood. 4, 131(1), 39–48, https://doi.org/10.1182/blood-2017-07-741025 (2018).

 21. Sagiv-Barfi, I. et al. Eradication of spontaneous malignancy by local immunotherapy. Sci Transl Med. 31, 10(426), https://doi.
org/10.1126/scitranslmed.aan4488 (2018).

 22. Qiu, G. Z. et al. Reprogramming of the Tumor in the Hypoxic Niche: The Emerging Concept and Associated Therapeutic Strategies. 
Trends Pharmacol Sci. 38, 669–686, https://doi.org/10.1016/j.tips.2017.05.002 (2017).

 23. Tang, Z. et al. GEPIA: a web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Res. 
10.1093/nar/gkx247 (2017).

 24. Gao, J. et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci Signal. 6(269), pl1 (2013).
 25. Cerami, E. et al. The cBio Cancer Genomics Portal: An Open Platform for Exploring Multidimensional Cancer Genomics Data. 

Cancer Discov. 2, 401–4 (2012).
 26. Kanehisa, M., Furumichi, M., Tanabe, M., Sato, Y. & Morishima, K. KEGG: new perspectives on genomes, pathways, diseases and 

drugs. Nucleic Acids Res. 45, D353–D361, https://doi.org/10.1093/nar/gkw1092 (2017).
 27. Huang da, W., Sherman, B. T. & Lempicki, R. A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics 

resources. Nat Protoc 4, 44–57 (2009).
 28. Huang da, W., Sherman, B. T. & Lempicki, R. A. Bioinformatics enrichment tools: paths toward the comprehensive functional 

analysis of large gene lists. Nucleic Acids Res 37, 1–13, https://doi.org/10.1093/nar/gkn923 (2009).
 29. Merico, D., Isserlin, R., Stueker, O., Emili, A. & Bader, G. D. Enrichment map: a network-based method for gene-set enrichment 

visualization and interpretation. PLoS One. 5(11), e13984 (2010).
 30. Shannon, P. et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 

13(11), 2498–504 (2003).
 31. Yue, Z. et al. Identification of breast cancer candidate genes using gene co-expression and protein-protein interaction information. 

Oncotarget 7(24), 36092–36100 (2016).
 32. Franceschini, A et al. STRINGv9.1: protein-protein interaction networks, with increased coverage and integration. Nucleic Acids 

Res. 41(Database issue), D808–15, https://doi.org/10.1093/nar/gks1094 (2013).
 33. Heagerty, P. J. & Zheng, Y. Survival model predictive accuracy and ROC curves. Biometrics 61(1), 92–105 (2005).
 34. Zeng, J. H. et al. Comprehensive investigation of a novel differentially expressed lncRNA expression profile signature to assess the 

survival of patients with colorectal adenocarcinoma. Oncotarget. 8(10), 16811–16828 (2017).

Acknowledgements
This work was supported by the Science and Technology Foundation of the Sichuan Province (2014JY0183 to Yi-
ping Lu, 2016FZ0099 to Xin Wei and 2017SZ0123 to Zhi-hong Liu), the Science and Technology Foundation of 
the Chengdu City (2014-HM01-00301-SF to Yi-ping Lu) and the 1.3.5 project for disciplines of excellence. West 
China Hospital, Sichuan University. We also would like to thank TCGA project organizers as well as all study 
participants.

Author Contributions
J.L., Z.L. and Y.L. designed the study. X.W. and J.Y. performed the bioinformatics analysis. J.L., Z.Z., Y.T., and C.Z. 
collected the data and contributed to the analysis. J.L. and Z.L. wrote the manuscript. X.W. edited the manuscript. 
Y.L. supervised the project.

Additional Information
Supplementary information accompanies this paper at https://doi.org/10.1038/s41598-018-25002-w.
Competing Interests: The authors declare no competing interests.
Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2018

http://dx.doi.org/10.1111/febs.12145
http://dx.doi.org/10.1016/j.intimp.2015.05.025
http://dx.doi.org/10.3892/mmr.2015.4050
http://dx.doi.org/10.1158/0008-5472.CAN-15-1538
http://dx.doi.org/10.1158/1078-0432.CCR-15-2428
http://dx.doi.org/10.1182/blood-2017-07-741025
http://dx.doi.org/10.1126/scitranslmed.aan4488
http://dx.doi.org/10.1126/scitranslmed.aan4488
http://dx.doi.org/10.1016/j.tips.2017.05.002
http://dx.doi.org/10.1093/nar/gkw1092
http://dx.doi.org/10.1093/nar/gkn923
http://dx.doi.org/10.1093/nar/gks1094
http://dx.doi.org/10.1038/s41598-018-25002-w
http://creativecommons.org/licenses/by/4.0/

	The Correlation Between the Immune and Epithelial-Mesenchymal Transition Signatures Suggests Potential Therapeutic Targets  ...
	Results
	Screening Core EMT-associated Genes (CEG) in ccRCC. 
	Testing the clinical significance of CEG alteration. 
	Pathway enrichment analyses in differently expressed genes. 
	Correlation analysis of selected immune therapeutic targets and CEG. 
	Construction and functional analysis of a CEG-immune checkpoint integrated network. 
	Evaluation of the clinical significance of CEGs and immune therapeutic target-based approach in patient risk assessment. 

	Discussion
	Methods
	Gene datasets and patient information. 
	Public analysis tools. 
	Functional and signalling pathway analyses. 
	Association between the EMT signature and other covariates. 
	Integrated functional network construction. 
	Construction of the EMT and immune checkpoint target-based prognostic signature. 
	Validation of the aberrant expression of candidate genes and clinical value of the risk score in ccRCC based on GEO dataset ...
	Data Availability. 

	Acknowledgements
	Figure 1 Overview of the main EMT signatures.
	Figure 2 EMT signature-correlated pathways and immune checkpoint molecules.
	Figure 3 Integrated network and functional annotation.
	Figure 4 Expression of 15 immune checkpoint genes in 534 tumour samples and 72 adjacent normal samples.
	Figure 5 Distinguishing ability of the risk score for the clinical status.
	Figure 6 Characteristic (ROC) curve distinguishing the different clinical parameters: grade, clinical stage, clinical M stage, clinical N stage, clinical T stage (P < 0.
	Table 1 Univariate analysis and Multivariate analysis of the risk score.




