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Direct Measurement of the 
Topological Charge in Elliptical 
Beams Using Diffraction by a 
Triangular Aperture
Leandro A. Melo1, Alcenísio J. Jesus-Silva1, Sabino Chávez-Cerda2,3, Paulo H. Souto Ribeiro5 & 
Willamys C. Soares  4,5

We introduce a simple method to characterize the topological charge associated with the orbital 
angular momentum of a m-order elliptic light beam. This method consists in the observation of the far 
field pattern of the beam carrying orbital angular momentum, diffracted from a triangular aperture. 
We show numerically and experimentally, for Mathieu, Ince–Gaussian, and vortex Hermite–Gaussian 
beams, that only isosceles triangular apertures allow us to determine in a precise and direct way, the 
magnitude m of the order and the number and sign of unitary topological charges of isolated vortices 
inside the core of these beams.

Light beams possessing orbital angular momentum (OAM) have been extensively studied since its first demon-
stration in 19921,2. Laguerre-Gauss3 and Bessel beams4 are examples of beams carrying OAM. They can be decom-
posed in terms of orthogonal components, and it is possible to construct a geometric representation equivalent 
to the Poincaré sphere for the polarization5. These beams have found applications in optical tweezers6, singular 
optical lattice generation7, atom traps8, transfer of OAM to microparticles9, nanostructures and atoms10, and for 
shaping Bose–Einstein condensates11. Another important application is the preparation of photons entangled 
in their orbital angular momentum (OAM) degree of freedom2,12, which are candidates for implementing high 
performance quantum communication13.

Elliptical vortex beams (EVBs) have also received considerable attention in recent years14–18. This type of beam 
has an elliptical symmetry which is stable on propagation and it is also promising for all previous applications 
of circular OAM beams, for instance, the EVBs have been applied in optical trapping and manipulation of par-
ticles19,20, quantum information21,22, and beam shaping in nonlinear media23,24. Several EVBs were investigated 
earlier, including Mathieu14,15, helical Ince–Gaussian (HIG)16, vortex Hermite–Gaussian (VHG) beams17, and 
elliptic perfect optical vortices18. Other works have investigated simple ways of producing EVBs25,26. However, the 
diffraction of these beams by apertures has not been extensively investigated, except a method for measuring the 
orbital angular momentum of elliptical vortex beams by using a slit hexagon aperture27.

We contribute to this type of study, by showing that the order m of an EVB can be determined by inspection 
of the diffraction pattern from an isosceles triangular aperture. It is known that the topological charge (TC) of 
circular beams can be determined by interferometric28–30 and diffractive31–37 methods. For Laguerre-Gaussian 
and Bessel beams, the sign and magnitude of the topological charge can be determined by diffraction through an 
equilateral triangular aperture38. We extend this method for EVBs by changing from an equilateral to an isosceles 
triangular aperture.

We demonstrate that the order m and the beam wavefront helicity sign can be obtained from the diffraction 
pattern in an unambiguous and direct way up to m = 10. The procedure is only reliable for isosceles triangular 
apertures. We discuss a practical method to design the most appropriated triangular aperture for this task.
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Results
The theoretical approach for this diffraction problem consists in calculating the far field pattern by a triangular 
aperture. In order to do that, we use the Fraunhofer integral given by39
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where E(x, y, z) gives the electric field amplitude at the transverse position with coordinates (x, y) in the plane 
situated at a distance z from the diffraction screen. λ is the wavelength in the vacuum, k is the wavevector and E0 
is a constant.

As we are interested in the transverse intensity distributions at a fixed plane placed at the position z = z0, far 
enough from the aperture, we can use the scale transformations Kx = k.x/z0, Ky = k.y/z0, and omit the term outside 
the integral. Thus, the Fraunhofer integral becomes a Fourier transform,
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where E(x′, y′, 0) is the product between the incident field and the aperture function. Due to the elliptical sym-
metry of the EVBs, the appropriated aperture must have an isosceles triangular shape and it should be placed in 
the beam as described in more detail below. The longer axis of the aperture should lie along the longer axis of the 
beam. For integer and circular OAM beams, the integral in Eq. (2) for the triangular aperture can be analytically 
evaluated40. However, for EVBs, analytical solutions were not yet derived. Therefore, we will solve these integrals 
numerically.

In Fig. 1 we show in red, an isosceles triangle representing the aperture inscribed in an ellipse representing the 
shape of the beam. In order to design the optimal triangle, we need to measure the intensity transverse profile of 
the beam at the position where the aperture will be placed. From the intensity pattern, we obtain the dimensions 
of the semi-minor axis a1 and semi-major axis b1, which are the distances from the center to the intensity global 
maxima in the x and y directions, respectively. This provides us with the equation + =x a y b/ / 12
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1. In order to obtain the coordinates (−x, y) and (x, y) 
for the vertices of the triangle, we apply the transformation = − .′a a e(1 0 3 )1 1  and = + .′b b e(1 0 3 )1 1  to obtain 

= − ′y b /21  and x a 3 /21= ′ . This procedure was developed in order to maximize the visibility of the diffraction 
features that contain the information about the topological charge, as a function of the relative sizes of beam and 
aperture. When the elliptical beam tends to a circular one, the optimal aperture tends to the equilateral triangle.

In this work, we approach three types of elliptical beams. The helical Mathieu beams are solutions of the 
Helmholtz equation in the elliptic cylindrical coordinates and can be constructed from a linear combination of 
even and odd Mathieu functions as14

ξ η ξ η ξ η= ±E C e q ce q iS o q se q( , , 0) J ( , ) ( , ) J ( , ) ( , ), (3)m m m m m m

where ξ and η are the radial and angular variables in the elliptical coordinates, Jem(·) and Jom(·) represent the 
mth-order even and odd radial Mathieu functions and cem(·), sem(·) correspond to the mth-order even and odd 
angular Mathieu functions. Cm and Sm are the normalization coefficients and q is a parameter that characterizes 
the ellipticity of the beam. The sign in Eq. (3) defines the rotating direction of the wavefront.

Figure 1. Geometry of the edges of an isosceles triangular aperture inscribed in an ellipse matching the global 
maxima of the intensity pattern of a Mathieu beam with m = 5 and q = 6.
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The HIG modes are solutions of the paraxial wave equation (PWE), also in the elliptic cylindrical coordinates, 
and can be expressed as a superposition of even and odd Ince–Gaussian modes (IGMs)16,
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where ξ and η are the radial and the angular elliptic variables, respectively, and ε is the ellipticity parameter. The 
parameter p is related to the number of rings which is given by the relation p m1 ( )/2+ − , and m gives the overall 
topological charge. ⋅IG ( )p m

e
,  and ⋅.IG ( )p m

o  are even and odd IGMs, respectively.
The VHG beams are formed from a superposition of n + 1 generalized Hermite–Gaussian beams41, which are 

solutions of the PWE in Cartesian coordinates, and their complex amplitudes are given by17,

E x y i x
w

y
w

a
a

H
iaw x w y

w w a
( , ) exp 1

1
2

1
,

(5)

m

x y

m

m
y x

x y

2

2

2

2

2

2

/2

2
=






− −












−
+














+

−









where x and y are the Cartesian coordinates, m is the order of the beam, a is a real constant that controls the beam 
ellipticity, Hn(·) is the Hermite polynomial, and wx and wy are the Gaussian beam waist radii.

Figure 2. Calculated intensities (left column), phase (center column), and Fraunhofer diffraction patterns 
(right column) for EVBs. From the top to the bottom, the first row: Mathieu beam with m = 3 and q = 2; second 
row: HIG beam with m = 3, p = 3 and ε = 1; third row: HIG beam with m = 3, p = 5 and ε = 1; fourth row: VHG 
beam with m = 3 and a = 0.80. From second to third rows we see the effect of changing the sign in Eq. (4).
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Figure 3. Fraunhofer patterns of Mathieu beams diffracted by a triangular aperture. (a) m = 3, q = 2, (b) m = 4, 
q = 3, (c) m = 5, q = 4, and (d) m = 7, q = 7. Notice that each side has m + 1 bright spots.

Figure 4. Effect of changing the sign in Eq. 3 in the Fraunhofer diffraction patterns. (a) and (c) m = 6, q = 6 
for plus sign (clockwise increasing phase); (b) and (d) m = 6, q = 6 for minus sign (counterclockwise increasing 
phase).
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Figure 5. Experimental Setup: L1, L2, L3 and L4 are lenses, BS is a 50/50 beam splitter, SLM is a spatial light 
modulator, SF is a spatial filter, AP is the triangular aperture and CCD is a camera.

Figure 6. Experimental results for the intensity distribution of the diffraction patterns for EVBs: (a) Mathieu 
beam with m = 3 and q = 2, (b) HIG beam with m = 3, p = 3 and ε = 1, (c) HIG beam with m = 3, p = 5 and 
ε = 1, (d) VHG beam with m = 3 and a = 0.80, (e) Mathieu beam with m = 6 and q = 6, and (f) HIG beam with 
m = 5, p = 9 and ε = 1.
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Figure 2 shows the theoretical transverse intensity (left column), phase (center column), and Fraunhofer diffraction 
patterns (right column) for EVBs. Figure 2(a)–(c) correspond to a Mathieu beam with m = 3 and q = 2, Fig. 2(d)–(f)  
correspond to a HIG beam with m = 3, p = 3 and ε = 1, Fig. 2(g)–(i) correspond to a HIG beam with m = 3, p = 5 
and ε = 1, and Fig. 2(j)–(l) correspond to a VHG beam with m = 3 and a = 0.80. For all of these modes, the sign of m 
does not determine the helicity, or the sense of rotation of the wavefront. For Mathieu and HIG beams the helicity 
depends on the sign of the imaginary term in Eqs (3) and (4), while for VHG beams it depends if the parameter a in 
Eq. (5) is bigger or smaller than 1. In Fig. 2(e) and (h), the effect of changing the sign in Eq. (4) is illustrated. In Fig. 2(e) 
the sense of increasing phase is clockwise, while in Fig. 2(h) it is counterclockwise. The phase distribution maps in 
Fig. 2(b),(e),(h) and (k), also illustrate the fact that the mth-order EVB with nonzero eccentricity contains m in-line 
vortices, each one with unitary topological charge of the same sign such that the modulus of the total charge is m.

The patterns 2(c), 2(f), 2(i), and 2(l), resulting from diffraction through an isosceles triangular aperture allow 
us to determine m and the sign of the unitary vortices at the beam core. The number of bright spots is directly 
related to m, and the sign is given by the orientation of the pattern. According to the simulations, a safe region for 
the method to work is in the range of 0 < e ≤ 0.8 and m ≤ 10. Out of these limits the patterns are not truncated 
and we cannot properly count the number of spots anymore.

In Fig. 3 we show the numerically computed diffraction patterns for the mth-order input Mathieu beams. 
Comparing the diffraction patterns for different values of m, it is possible to establish a rule to determine the 
order of the beams, in the same way as for the HIG and VHG beams. We can observe that the value of m is directly 
related to the first order external diffraction lobes (maxima) formed on the sides of the triangle. The total charge 
is given by m = N - 1, where N is the number of lobes on anyone of the sides of the triangle. This is valid for all 
EVBs studied here.

Figure 4 illustrates the effect of changing the sign of the imaginary part in Eq. (3) for a Mathieu beam, with 
clockwise rotation (plus sign in Eq. (3)), in Fig. 4(a) and (c), and counterclockwise rotation (minus sign in Eq. (3)),  
in Fig. 4(b) and (d).

So far, we have shown numerically that the diffraction pattern through an isosceles triangular aperture deter-
mines the total topological charge m, and the helicity of Mathieu, HIG and VHG beams in a clear and unam-
biguous way. In order to obtain this result, we have analyzed other geometries for the diffraction aperture like a 
lozenge for instance, but our studies demonstrated that the isosceles triangle is the most appropriated geometry. 
This is similar to what happens for circular beams, for which other geometries like a square aperture, for instance, 
can determine the modulus of the topological charge but not the sign25. In this last case, only the equilateral tri-
angle can provide the complete information about m and its sign38.

We have performed an experiment, in order to confirm our numerical results. Figure 5 shows the sketch of 
the experimental setup, which is described in detail in section “Methods”. We have diffracted Mathieu, HIG and 
VHG beams through an isosceles triangular aperture, and demonstrated the validity of our method to determine 
the order m of EVB beams.

In Fig. 6, we show the experimental results. The triangular structures are the diffraction patterns and each side 
of the triangles has m + 1 bright spots as theoretically predicted. These results confirm our numerical results and 
demonstrate the use of diffraction patterns by triangular aperture to determine the order of EVBs. They also confirm 
that the information about the helicity of the wavefront is given by the orientation of the triangular pattern. Different 
from the traditional circular modes, e.g. Laguerre Gauss and Bessel beams38, the sense of wavefront rotation is not 
determined by the sign of m. We have found a very good agreement between theory and experiment.

Conclusion
In summary, we have numerically and experimentally demonstrated a technique that allows us to determine the 
order of an EVB in an unambiguous way. We have also presented a recipe to design the optimal triangular aper-
ture for this measurement. This non–interferometric technique requires only simple measurements of intensity 
patterns. The value of m is determined by counting the number of lobes in anyone of the sides of the triangular 
diffraction pattern. The sense of wavefront rotation can also be determined by the orientation of the diffraction 
pattern.

Methods
The experimental setup is shown in Fig. 5. Different orders and types of EVBs are generated from an initial 
Gaussian mode of an Argon Laser operating at 514 nm. The beam is expanded by a factor of about 17, using 
lenses L1, with focal length f1 = 30 mm, and L2, with focal length f2 = 500 mm. The expanded beam illuminates a 
computer-generated hologram42 displayed in a spatial light modulator (SLM) (Hamamatsu Model X10468-01). 
The 50/50 beam splitter (BS) in between L1 and L2 is used to allow normal incidence in the SLM. For each type of 
EVB there is a corresponding type of hologram in the SLM. The reflected beam from the SLM is focused by lens 
L2 in the plane of the spatial filter (SF) after reflection by the BS. The spatial filtering selects the desired diffraction 
order from the SLM. Lens L3, with focal length f3 = 300 mm, collimates the beam again, which is incident on the 
isosceles triangular aperture (AP). It is mounted in a xyz translation stage for precise alignment with respect to 
the light beam. Finally, lens L4, with focal length f4 = 200 mm, is used to implement the optical Fourier Transform 
of the field in the aperture plane onto the CCD detection plane. This is the physical realization of the integration 
in Eq. (2). The transverse intensity patterns corresponding to the Fraunhofer diffraction are registered.
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