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Development of a 3D seed 
morphological tool for grapevine 
variety identification, and its 
comparison with SSR analysis
Avshalom Karasik1, Oshrit Rahimi2, Michal David3, Ehud Weiss3 & Elyashiv Drori4,2

Grapevine (Vitis vinifera L.) is one of the classical fruits of the Old World. Among the thousands of 
domesticated grapevine varieties and variable wild sylvestris populations, the range of variation in pip 
morphology is very wide. In this study we scanned representative samples of grape pip populations, in 
an attempt to probe the possibility of using the 3D tool for grape variety identification. The scanning 
was followed by mathematical and statistical analysis using innovative algorithms from the field of 
computer sciences. Using selected Fourier coefficients, a very clear separation was obtained between 
most of the varieties, with only very few overlaps. These results show that this method enables the 
separation between different Vitis vinifera varieties. Interestingly, when using the 3D approach to 
analyze couples of varieties, considered synonyms by the standard 22 SSR analysis approach, we 
found that the varieties in two of the considered synonym couples were clearly separated by the 
morphological analysis. This work, therefore, suggests a new systematic tool for high resolution variety 
discrimination.

Grapevine (Vitis vinifera L.) is one of the classical fruits of the Old World; it comprises an important part of the 
oldest group of fruit trees around which horticulture evolved in the Mediterranean basin1. Vitis pips (seeds) are 
rounded or ovoid, mostly gradually tapering into a beak, ending into the micropile. The dorsal side is swollen with 
a deep furrow and enlarged in the center, the chalaza. The ventral side has two fossettes separated by the raphe, a 
prominent ridge2–4. Based on the fact they are highly polymorphic, grape pips have been used as a basis for tax-
onomy within the genus Vitis, specifically for the grapevine4. Wild sylvestris grapes may be recognized by more 
numerous (3–4) pips per berry, and by somewhat more globular pips, generally with beaks constricted at the 
attachment to the main body of the pip. Among the thousands of domesticated grape vine varieties and among 
the variable wild sylvestris populations, the range of variation in pip morphology is very wide. Furthermore, 
the variation in the domesticated assemblage and in the wild forms overlaps considerably. For this reason pip 
morphology was not considered traditionally as a fully safe diagnostic trait for distinguishing between wild and 
domesticated forms1.

However, several attempts were made recently to solve the issue of grapevine pips as a diagnostic tool, using 
present-day image analysis techniques. Spearheaded by Terral5–9, these studies applied geometrical analysis (ellip-
tic Fourier transform method) to analyze the 2D outlines of grapevine pips. The investigation of variation in pip 
morphology aims to provide accurate criteria for the quantification of phenotypic diversity of various grape vari-
eties, wild as well as modern cultivars. In addition, this approach was used to understand changes related to the 
domestication process and to investigate archaeological finds. Of specific importance is Terral et al., (2010) paper, 
which demonstrate the applicability of geometrical analysis approach to grape pips. In this paper, they created 
a morphological key for pips of some fifty French grapevine varieties and demonstrated significant correlation 
between pip morphology and taxonomic relationship. Similar method was recently used by Sabato et al.10 to 
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classify and compare archeological seeds of melon (Cucumis melo L.) against a modern collection of melon seeds. 
They extract 18 morphological parameters from 2D images of the seeds and used them in their classification10.

In the last decade, 3D scanning technology has advanced dramatically. In addition to its significant role in 
industry, modern academic studies harnessed this technology to explore and investigate new questions that were 
never accessible without the 3D information. For instance, in the analysis of flint tools in archaeology, the center 
of gravity, which cannot be measured without accurate 3D models, was used as a parameter for the flint tools 
analysis11. Many researches have shown the potential of the combination of a very accurate measuring technique 
in 3D, together with mathematical and statistical methods as well as innovative algorithms from the field of com-
puter sciences12–14. Generally we can say that the great advantage of using 3D for morphological studies is that 
it brings systematic and objective methods into the field of shape descriptor which very often can be vague and 
subjective. In this paper we describe our efforts at developing a 3D tool for grape variety identification. The work 
was done by 3D scanning of representative samples of fresh grape pip populations, including Israeli indigenous 
sativa and sylvestris populations collected in our previous work15,16, as well as international varieties.

Nevertheless, as genetic identification is the main approach used today for variety identification, we used the 
genetic approach to verify our 3D identification results. As the grapevine is a major economic crop, its genome 
was one of the first amongst tree species to be fully sequenced and assembled. Moreover, grapevine genome is one 
of the smallest among crop plants, ca. 500 Mb17, which makes genomic research for this plant more approach-
able. Large sets of grapevine genes were annotated in current databases available to the research community. 
Nevertheless, Simple Sequence Repeat (SSR) analysis is still the main genetic method for the identification of 
grapevine varieties18,19. In this paper, we used this tool as a reference, and compared the results achieved with both 
methods. Recently, Bacilieri et al.20 proved the applicability of such approaches to well-preserved archaeological 
find, and concluded that the combined use of Single Nucleotide Polymorphisms (SNP) markers and morphoge-
ometry is promising for deciphering the intricate history of grapevine domestication.

Results
In order to show the potential of our classification method and its capability to differentiate between various 
grapevine varieties, based only on their seed’s morphology, we have first selected seven types of grape seeds. 
Two varieties, Merlot (N = 13) and Pinot-Noir (N = 12) are well-known international varieties; three varieties, 
Rumi (N = 13), Baluti (N = 10), and Hadari (N = 10) are local traditional Israeli varieties; and two varieties, ‘430’ 
(N = 11) and ‘268’ (N = 14) are Vitis vinifera ssp. sylvestris lines which were found in our survey as was described 
in the introduction. We scanned each seed using a high-resolution 3D scanner. Two examples of scanned seeds 
with five perpendicular views and cross-sections can be seen in Fig. 1. The 3D information was characterized 
using several planar curves which represent key features of the 3D object. Two representative planar curves are 
shown in Fig. 1 views 1-f and 2-f. Another significant planar curve that we used is the silhouette of the seeds 
extracted from their optimal positioning, as can be seen in view b of each example. For further details on the 
scans and shape characteristics please refer to the materials and methods section. Using the selected Fourier 
coefficients, a very clear separation was obtained between most of the varieties, with only very few overlaps. A 
Principal Components Analysis (PCA) plot (Fig. 2) and the cluster tree (Fig. 3) based on this analysis present 
the good separation obtained. At the Supplementary Information we present an analysis with a different set of 
weights in which the separation is less optimal (see Supplementary Fig. S1).

Analysis of the cluster tree produced from the morphological data using the optimal set of Fourier coefficients 
(Fig. 3) shows that the local Israeli varieties Baluti and Rumi are nicely separated and cluster together, ‘430’ sylvestris 

Figure 1.  3D rendered views (a,c,d,e,g) and cross-sections (b,f) of grape pips from two varieties: 1: Hadari 
(indigenous Israeli variety - left), 2: Merlot (international variety - right).
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line stands alone, and most of the seeds of the varieties Pinot-Noir and Merlot are nicely separated and cluster 
together. In another sub cluster the ‘268’ sylvestris line stands alone. A less distinct separation was achieved for the 
Hadari variety, which stands in a mixture with a few Rumi, Merlot and Pinot-Noir seeds, and one ‘268’ seed.

In order to validate our initial separation success between the various varieties by their morphology, we sta-
tistically analyzed the parameters of all groups using Multivariate Analysis of Variance (MANOVA). The results 
show a distinct separation between all seven groups except for the couple Pinot-Noir and Hadari. Table 1 sum-
marizes the corresponding P-values of the significance separation between every pair of grape types. Another 
validation test that we used is to run a blind test using Discriminant Analysis (DA). In this method, the objects 
are randomly divided into two sets each consisting of half of the assemblage. Then, the DA analysis used only 
one half (the training set) to obtain the DA labeling function and used it to label the objects in the other half (the 
sample set) as a blind test. This analysis was run 1000 times and a summarization of the distribution of these blind 
tests classification for each grape seed was calculated. Figure 4 shows the results for the DA test when we used our 
‘optimal’ set of weights (up) and with only the high Fourier parameter (down). The number of times a pip was 

Figure 2.  PCA distribution of the assemblage of seven grape varieties, using the optimal set of weights. It shows 
a very clear separation between six varieties, with very few overlaps, and the variety Hadari is relatively spread 
and overlaps with other groups.

Figure 3.  Cluster tree for the assemblage of seed morphology resemblance of the seven grape types, when the 
optimal set of weights of the Fourier parameters were used.

Rumi ‘430’ Merlot Hadari Pinot-Noir ‘268’ Baluti

Rumi — 3.4 × 10−14 2.7 × 10−12 4.4 × 10−7 8.6 × 10−10 6 × 10−8 9.7 × 10−5

‘430’ 3.4 × 10−14 — 2.3 × 10−11 3.7 × 10−11 5.3 × 10−12 3.4 × 10−14 5.1 × 10−13

Merlot 2.7 × 10−12 2.3 × 10−11 — 0.0016 6.4 × 10−4 1.6 × 10−11 8.4 × 10−11

Hadari 4.4 × 10−7 3.7 × 10−11 0.0016 — 0.0593 4.1 × 10−7 1.2 × 10−6

Pinot-Noir 8.6 × 10−10 5.3 × 10−12 6.4 × 10−4 0.0593 — 9.9 × 10−10 7 × 10−7

‘268’ 6 × 10−8 3.4 × 10−14 1.6 × 10−11 4.1 × 10−7 9.9 × 10−10 — 1.4 × 10−10

Baluti 9.7 × 10−5 5.1 × 10−13 8.4 × 10−11 1.2 × 10−6 7 × 10−7 1.4 × 10−10 —

Table 1.  P-values for the statistical significance of the 3D morphological imaging data used for the separation 
between the varieties, using MANOVA.
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classified at any group is displayed as a black-bar. If a pip was always classified to the same group, then a single 
bar is plotted and it covers the full height of the corresponding group. However, when it was classified to several 
groups in different trials of the DA, then a corresponding number of bars are displayed, and their heights are pro-
portional to the classifications percentages. The pattern of the black bars demonstrates that most of the pips were 
recognized properly. Using the ‘optimal’ weights there were only four pips which were not identified correctly 
in more than 60% of the runs. On the other hand, at the lower figure it is demonstrated that using only the high 
Fourier coefficients, many pips were mistakenly identified. Nevertheless, both analysis showed very significant 
separation between the groups, which means that the Fourier coefficients are highly suitable for morphological 
classification of grape seeds.

In continuation to the success in separating the varieties by their morphological traits, we compared these 
results with those of SSR analysis of genetic relatedness between varieties. A Neighbor-joining dendrogram based 
on simple matching dissimilarity matrix (Fig. 5) was calculated from the dataset of 22 SSR across the seven 
genotypes, which were reported previously16. This dendrogram shows a slightly different picture: The Merlot, 
Pinot-Noir and Rumi varieties cluster together. A second cluster contained Baluti and Hadari varieties, while the 
sylvestris accessions ‘430’ and ‘268’ cluster separately.

Following the initial success in separation of varieties by their 3D structure, we wished to use this tool to 
analyze the morphological resemblance between couples of varieties, which are named differently by tradi-
tional farmers, but are assumed by us to be synonyms. These couples were marked as synonyms in our collection 
due to the fact that their 22 SSR profiles are identical16. The SSR identities are presented in matching colors in 
Supplementary Information Table S1. Nevertheless, these varieties were preserved for centuries by local farm-
ers, maintaining their names, and we cannot discard the possibility that indeed they are different. This could be 
explained due to single mutations or other genetic phenomena, which can confer phenotypic differences between 
those varieties, even though their SSR profiles are identical. We hypothesized that such morphological differences 
could become apparent in the seed structure amongst other morphological criteria.

We applied the above-mentioned method to compare the assemblage of each of these couples. Two couples, 
Karkashani/Zituni and Shami/Tufachi (Fig. 6A and B, respectively), showed a clear separation of the seed groups 
with P < 0.000 using MANOVA test, while the couple Bituni/Baluti is less distinctive with P = 0.02 for the signif-
icance of their separation (Fig. 6C).

Figure 4.  Accumulative distribution of Discriminant Analysis classification after running 1000 blind-tests. At 
each run, half of the assemblage was randomly selected as the training group and the other half was classified. 
Top – the results using our optimal set of weights, Bottom – the results using only the high Fourier parameters.



www.nature.com/scientificreports/

5SCIENTIfIC Reports |  (2018) 8:6545  | DOI:10.1038/s41598-018-24738-9

Discussion
We show here for the first time the development of an innovative method aimed for the morphological discrim-
ination between grape varieties, using high resolution 3D data. We show that this method enables us to separate 
with high statistical certainty between different Vitis vinifera varieties. Although the amounts of scanned seeds 

Figure 5.  Neighbor-joining dendrogram based on simple matching dissimilarity matrix calculated from the 
genetic analysis dataset of 22 SSR across 7 genotypes. Red line - Vitis vinifera ssp. sylvestris. Black lines - Vitis 
vinifera ssp. sativa.

Figure 6.  PCA distribution of the 3D morphological values assemblage for 3 couples of varieties, found to have 
identical 22 SSR genetic fingerprint, as shown in Supplementary Information Table S1. a - Shami/Tufahi. b - 
Karkashani/Zituni. c - Bituni/Baluti.
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per each type are not large (e.g. 10–16) the groups are very well separated. The Vitis vinifera ssp. sylvestris acces-
sions ‘430’ and ‘268’ are well segregated from the rest, both on the PCA plot and on the cluster tree. Four of the 
sativa varieties, namely Rumi, Baluti, Merlot and Pinot-Noir are relatively well separated, with minor overlaps. 
For instance, two seeds of the Baluti variety are clustered together with Rumi. Still, the clouds of points at the PCA 
plot and the branches in the cluster tree correspond very nicely to the bulk of six out of seven groups. MANOVA 
test that was conducted on their PCA distribution proved that these six groups are significantly different from 
each other. On the other hand, the variety Hadari was not well separated from other varieties in the cluster tree. 
This is possibly due to the fact that this variety tends to have extremely non-unite berry sizes, possibly making 
their seeds more polymorphic (see Supplementary Fig. S2). Nevertheless, when using the DA blind test analysis, 
good identification results were achieved for all varieties, including Hadari.

The morphological analysis was based on Fourier coefficients of several cross-sections that were treated as 
planar curves. These coefficients were integrated in our analysis together with a set of weights that determines 
the influence of each parameter. We have tested many sets of weights and selected the one which shows the best 
separation between the varieties. It is important to note that small changes of the weights didn’t change much the 
results. Moreover, changing the weights as we wish, does not affect the objectivity of the analysis. This is because 
every set of weights is based only on intrinsic parameters of the morphology of the seeds, and the classification is 
repeatable by anyone that will use the same weights. One can think of it as measuring different features like width, 
height, thickness etc. and then realizing that some of these features are similar over the complete assemblage with 
no significant variability between groups. In that case, it is completely objective to ignore the irrelevant parame-
ters and base the classification only on the relevant ones.

Indeed, there are less optimal sets of weights for which the separation between the types would not be so 
clear, due to smaller variability of those weight between varieties. As an example, we show in Supplementary 
Information Fig. S1 the results with less optimal set of weights. The larger overlap between the types is evident 
and it means that there are some shape parameters which cannot be used to distinct between varieties of pips. 
Correlatedly, we show in Supplementary Information Table S2 the corresponding P-values of the MANOVA 
analysis. Many of the results here show considerable overlap between varieties. In our future research, we plan to 
apply algorithms from the field of machine-learning and artificial intelligence to reveal the optimal set of weights 
for optimal variety separation. This field of study was developed dramatically during the last two decades and we 
believe that it has an exciting potential for the question of morphological classification, especially if it is based on 
significant parameters such as the Fourier coefficients, as we have shown in the current paper.

The SSR analysis of the seven morphologically analyzed varieties showed a clustering profile different from 
the one obtained by our 3D analysis. In the neighbor joining analysis the European Vitis vinifera ssp. sativa 
varieties Pinot-Noir and Merlot were clustered together with the Israeli local variety Rumi, the other two Israeli 
local varieties Baluti and Hadari clustered together, and the two sylvestris accessions clustered separately. This 
separation is in accordance with our previous results16 showing that some Israeli local varieties are genetically 
closer to European varieties, due to possible late introduction of European plant material to Israel. In addition, the 
sylvestris accessions are generally genetically separated from the sativa groups. Nevertheless, this clustering profile 
is not identical to the morphological one, which means that the two methods are independent and that morpho-
logical characterization doesn’t necessarily correspond to the results of SSR relatedness analysis of varieties.

Finally, we morphologically analyzed synonym couples, shown previously to be identical by 22 SSR profile. 
The SSR analysis by 22 markers is considered today the gold standard method of separating between non-identical 
varieties of grapevines19. Our morphological analysis of grape seeds from these varieties showed that for two 
couples: Karkashani/Zituni and Shami/Tufachi, a clear separation into two distinct groups was observed, while 
we found no clear separation of the Bituni/Baluti couple. We propose here that though the couples Karkashani/
Zituni and Shami/Tufachi are considered to be synonyms by SSR genetic analysis, they are actually very closely 
related but not identical, while the assumption of the Bituni/Baluti couple being synonyms was strengthened 
by the analysis. These results reopen the discussion of the definition of varieties, and the ability to genetically 
separate between them by SSR analysis. It is well known and was previously demonstrated that SNPs and indels 
can dramatically change important traits such as berry color21,22 and disease resistance23,24, and it is indeed logic 
that other morphological or physiological traits could be altered by specific changes undetected by SSR analysis, 
thus making two varieties which have identical SSR profiles and are considered synonyms, in fact different in 
appearance or performance. We believe that future development and increased availability of Next Generation 
Sequencing tools would enable in the near future the adoption of more accurate tool for genetic analysis, setting 
a new standard for the genetic characterization of varieties. In the meantime, to our opinion, an effort should be 
made to preserve national germplasm, including synonyms, which could prove a genetic treasure in the future.

Conclusions
In this paper, it was clearly demonstrated that the 3D method described is a promising tool for grape variety identifi-
cation as a case study. It enables us to separate between different Vitis vinifera varieties with high statistical certainty. 
Its novelty lies in the combination of state of the art 3D scanning methods, and the right selection of Fourier coef-
ficients and their weights. In comparing our newly developed method to that of the gold standard SSR analysis, we 
show that our method can detect morphological differences between previously considered “synonym” couples. This 
demonstrates the importance of the morphological tool, and presents us with the future prospect of the combination 
of both methods for higher resolution of variety identification, in V. vinifera and other species.

Material and Methods
Plant material.  Grapes were collected from international varieties growing in commercial vineyards at 
the region of Shilo, or from the endogenous varieties vineyard collections in Ariel, Sataf and Neve-Yaar, Israel. 
Mature seeds were extracted from ripened grapes, collected from at least three different grapevines. The seeds 
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were washed by water to discard any residual pulp tissue and air dried for two days, then stored in a closed vial 
until used. Before 3D scan, each seed was carefully cleaned by brushes and needles from any external tissues 
which were coating the crevices in the seed in order to enable the effective scan of the seeds’ topography. 10–16 
seeds were prepared from each variety for the scans.

3D data acquisition.  We scanned each seed using a high resolution 3D scanner - ‘PT-M’ (produced by 
Polymetric GmbH, Darmstadt, Germany), which is based on structured-light technology. The scanner is 
equipped with two cameras and a projector, which project a unique light pattern on the object. The differences 
of the returned light between the cameras are the basis for the measurement of the surface. We used the scanner 
with 75 mm lenses from a distance of 43 cm. The resulted RMS accuracy of the depth measurement was 10 micron 
and the averaged density of points on the surface is about 25 microns. Two examples of scanned seeds with five 
perpendicular views and cross-sections can be seen in Fig. 1. Those views were rendered after an automatic posi-
tioning procedure as will be explained below.

Automatic positioning.  A crucial step before any comparison of shapes is to have a robust and system-
atic method of positioning the object that enables precise and repeatable measurements. Only such positioning 
enables comparing one scan to the other. We used the eigenvectors of the inertia tensor, which is a well-known 
concept in classical mechanics. It determines the way by which an asymmetric body responds to an applied 
torque. The eigenvectors of the inertia tensor ordered by the magnitude of the corresponding eigenvalues, set 
three orthogonal principal axes such that torques around these axes act independently of each other25. The first 
axis is the one around which the body can rotate with minimal force. The second axis is, again, the one around 
which the body can rotate with minimal force but is perpendicular to the first axis. Similarly, the third axis is 
defined in the same way and must be perpendicular to the first two axes. This method was used to position flint 
objects in several studies and proved to be relevant and coherent11. Its main advantages are that it is objective, 
repeatable, based on intrinsic parameters and takes into account the entire shape. The views in Fig. 1 correspond 
to the directions of the three principal axes of the inertia tensor. The origin of the coordinate system is set to be at 
the center of gravity of the object. The first axis cuts through the tip of the seeds which is demonstrated in views 
c,d and e by the fact that the tip is straight upwards. The second and third axes follow the main features of the 
seeds and its symmetry between right and left, as can be seen in views a,f and g.

Shape characteristics.  Having an automatic and objective method that positions all seeds in the exact same 
way enabled us to extract a concise, though significant, shape characteristics for the comparisons of the seeds. We 
have decided to characterize the 3D information using several planar curves which represent, in a very summa-
rizing way, key features of the 3D object. Two representative planar curves are shown in Fig. 1 views 1-f and 2-f. 
Another significant planar curve that we used is the silhouette of the seeds extracted from their optimal position-
ing, as can be seen in view b of each example.

By representing these sections as planar curves given with the radius as a function of the arc-length, it is customary 
to use the Fourier coefficients to define a set of deformation levels which will be used for their descriptions and compar-
isons. The deformation parameters …r r r r, , , , n0 1 2  represent assorted levels of shape magnitude. The parameter r0 is the 
mean radius, and it serves to set the scale of the section. r1 represents the distance of the curve from the origin of the 
coordinates system, and therefore the section is determined in an unambiguous way when we choose the origin of the 
curve such that the coefficient r1 vanishes. For simple shapes, this choice is equivalent to setting the origin at the center 
of gravity of the curve at the point (0,0). The first non-trivial coefficient is r2. It determines the parameters of the ellipse 
which fits the curve best. r r/2 0 is proportional to the eccentricity of that ellipse. The higher order parameters provide 
information on deformations on smaller scales. However, at some level these parameters represent minute deforma-
tions in pips structure that are irrelevant for the identification of the average shape of each variety.

Since deformations, even very small ones, may add noise to the analysis, we used only the size of the section as 
represented by r0 together with the first six non-trivial parameters −r r2 7, in the analysis. Figure 7 shows how the 
sections would look like if we ignore the rest of the Fourier parameters …r r, ,8 9  , and up. The Red lines represent 
the original curves and the blue lines are the same curves after the high Fourier coefficients were ignored. The two 
lines are very similar but there are some differences that were smoothed to avoid the noisy data.

We summarize this section by noting that for each 3D model we have computed five horizontal sections in 
equidistant steps and one silhouette. We represent each of these curves using seven parameters, meaning that the 
complete 3D morphological data is represented now with a row vector of 42 values …v v v[ , , , ]1 2 42 . The first 35 
parameters correspond to the five horizontal sections (seven values per one section), and the last seven parame-
ters correspond to the Fourier coefficients of the vertical silhouette.

Distance function.  The final automatic classification of the seeds is based on well-known statistical methods 
such as Cluster Analysis (CA) and PCA. These methods make use of a distance matrix from which the grouping 
can be observed.

We have defined the distance between any pair of seeds α β( , ) in terms of a weighted Euclidian distance 
between their corresponding vectors of Fourier parameters:

∑α β ω= ⋅ − .α β=d v v( , ) ( ) (1)i i1
42 2

i i

While the weights ωi are set to satisfy ω ω ω+ + … + = 11 2 42 , and they give us the freedom to emphasize some 
of the parameters more than others. For instance, to give more weight to the size r( )0  of the seed or to highlight the 
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elliptic coefficient r( )2 instead of higher order coefficients −r r( )3 7 . The exact set of weights that we used are spec-
ified below.

Automatic Classification.  As was mentioned above, once the distance matrices are given there are many 
combinations and classification methods that can be used. Here, we chose an iterative procedure that is based on 
CA and PCA, as it was proved successful for automatic classification of ceramic shapes26. There are several steps 
in the procedure and in each of them the subgroups which were defined in the former phase are reclassified based 
on a new set of weights. For instance, CA with high weights to the size of the seeds would split the assemblage into 
several subgroups on the main branches of the cluster tree (three in our case, see Fig. 3). But, in the next step, 
when on every branch there are already seeds of similar sizes, it is more reasonable to further classify them based 
on different parameters, such as the eccentricity of the sections r( )2  or higher Fourier coefficients. At the final 
results we did three iterations and we used the following set of weights: for the initial classification we gave total 
of 25% weight to the size of the sections parameters −v v v v v v r[ , , , , , ]1 8 15 22 29 36 0 . Another 25% were given to the 
elliptic coefficient (parameters −v v v v v v r[ , , , , , ]2 9 16 23 30 37 2 ), and 50% of the weight was given to the rest of the 
parameters equally. At the second and third iterations, we reduced the weight of r0 to only 15% and added it to the 
higher Fourier coefficients with a total of 60%, leaving the r2 parameters with 25%.

Obviously, there is unlimited number of options to run the analysis, where in every step one can change the 
weights. However, many of them are redundant and reveal very similar results. Our conclusions and results are 
based on the global picture which came out of many of the weighted combinations, which showed very similar 
classifications and separated between the different types. We refer to this set of weights as ‘optimal’ and use them 
in the presented analysis. Moreover, to assert the statistical significance of the classification offered by the PCA 
and the CA, we used Discriminant Analysis (DA). In this method, the objects are randomly divided into two 
sets each consisting of half of the assemblage. Then, the DA analysis is using only one half (the training set) to 
obtain the DA labeling function, and use it to label the objects in the other half (the sample set) as a blind test. 
Thus, every object in the sample set is classified into one of the groups based on the DA function of the training 
set. Repeating this process many times each object appears approximately half of the times in the sample set, and 
acquires a corresponding number of labels. If the resulting labels distribute narrowly at a distinct group, it means 
that the original grouping are well separated, and the classification considered significant.

Genetic analysis by SSR.  In order to determine the genetic relations between the various varieties pre-
sented in this work, we used the standard 22 SSR analysis approach19, of which data we collected previously from 
a large set of local varieties16. SSRs were analyzed by the same methods for the international varieties presented in 
this work. An unweighted neighbor-joining tree was constructed using the sizes of the 22 SSRs for each variety, 
based on the simple-matching dissimilarity matrix with 10,000 bootstrap replicates. This analysis was performed 
using the Darwin software package v627. Following the analysis, the neighbor joining tree demonstrates the relat-
edness or distance between varieties, which are presented close or far from each other on the tree, relatively.

Data availability statement.  The datasets analyzed during the current study were previously published by 
Drori et al. (2017), and are available online.
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