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Insular threat associations within 
taxa worldwide
Camille Leclerc1, Franck Courchamp  1 & Céline Bellard2,3

The global loss of biodiversity can be attributed to numerous threats. While pioneer studies have 
investigated their relative importance, the majority of those studies are restricted to specific 
geographic regions and/or taxonomic groups and only consider a small subset of threats, generally 
in isolation despite their frequent interaction. Here, we investigated 11 major threats responsible 
for species decline on islands worldwide. We applied an innovative method of network analyses to 
disentangle the associations of multiple threats on vertebrates, invertebrates, and plants in 15 insular 
regions. Biological invasions, wildlife exploitation, and cultivation, either alone or in association, were 
found to be the three most important drivers of species extinction and decline on islands. Specifically, 
wildlife exploitation and cultivation are largely associated with the decline of threatened plants and 
terrestrial vertebrates, whereas biological invasions mostly threaten invertebrates and freshwater 
fish. Furthermore, biodiversity in the Indian Ocean and near the Asian coasts is mostly affected by 
wildlife exploitation and cultivation compared to biological invasions in the Pacific and Atlantic insular 
regions. We highlighted specific associations of threats at different scales, showing that the analysis 
of each threat in isolation might be inadequate for developing effective conservation policies and 
managements.

Global change has become a real concern over the last few decades, leading to a strong decrease in biodiversity 
and associated ecosystem services1,2. Among vertebrates, species populations have shown an average decline of 
25% in abundance3. These trends are associated with exceptionally high rates of extinction, being around 1,000 
times greater than historical rates4,5. In comparison to natural extinctions6, anthropogenic activities have played 
a significant role in recent extinctions on islands7,8. Although the specific mechanisms of extinctions linked to 
human disturbances are still debated, they involve several major threats such as habitat destruction, overexploita-
tion, and introduction of alien species9. According to the International Union for the Conservation of Nature’s 
(IUCN) Red List of Threatened Species, over 80% of species are affected by more than one threat10. It is thus 
essential to consider all threats occurring at a global scale in order to gain a clearer picture of the causes of species 
decline worldwide and thus guide conservation actions, especially since they are likely to act in association11. 
However, investigating several threats covering both geographic and taxonomic scales from a worldwide per-
spective is a notoriously challenging task. Mostly due to data and computing limitations, studies exploring threats 
occurring at a global scale tend to investigate them individually11,12. In parallel, some studies have analyzed the 
effects of multiple threats, but they are restricted to specific geographic regions and delimited taxonomically, with 
a frequent bias for vertebrates13–15. Insular ecosystems, however, provide an excellent model system to tackle such 
an ambitious endeavor. First, islands are exceptionally rich reservoirs of biodiversity, as around one-quarter of all 
known extant vascular plant species are endemic to islands, for example, despite covering only 5% of the global 
land surface16,17. Second, such ecosystems due to their inherent characteristics (e.g., small population sizes, low 
habitat availability, low functional redundancy) are particularly vulnerable to the rapid anthropogenic changes of 
recent years, thus leading to an increased species extinction rate18–20.

Even with a good model system, the complex interplay between threats and species across space and time is 
challenging to investigate, because of limited techniques that simultaneously deal with three dimensions. Here, 
we tackle the complex species–threats–space system using network analyses21,22, considered to be a powerful 
approach for describing and exploring the complex interaction architecture between entities. This approach, 
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recently applied to ecology, has generated numerous novel insights into the understanding of the structure, func-
tion, and dynamics of systems21,22.

Here, we applied network analyses to describe and analyze association patterns between biodiversity threats 
and extinct or threatened insular species. Species and threats are considered to be nodes, and connections 
between these two types of entities are established if a threat is responsible for the population decline of a given 
species. Using a comprehensive dataset of insular biodiversity and threats from the IUCN Red List23, we consid-
ered 11 categories of threat identified for more than 4,350 species of eight higher taxa distributed across 15 insular 
regions of the entire world. Identifying patterns of association between threats and species at macro-ecological 
scales provides unique insights into the layout of global threats across distinct taxa and specific regions, an impor-
tant undertaking if we are to design appropriate actions to limit the current biodiversity crisis.

Results
Global scale. For extinct species, the species–threats network is formed by 260 nodes (i.e., 249 species and 
11 threats) linked by 382 connections. Regarding the currently threatened species, the species–threats network 
links the 11 threats to 4,127 species through 10,530 connections (Fig. 1a,b). Biological invasions accounted for 
50.2% of the total links in the extinct species network followed by wildlife exploitation (24.1%) and cultivation 

Figure 1. Graphical representation of species–threats interactions for (a) extinct species (n = 249) and (b) 
currently threatened species (n = 4,127) linked to the 11 threats. Colorful nodes reflect threats and gray nodes 
represent (a) extinct species or (b) species that are currently vulnerable (light gray), endangered (gray), and 
critically endangered (dark gray). Threat descriptions are given in Supplementary Table S4. The node size is 
proportional to their degree (i.e., number of interactions), and the percentage of the strongest interactions is 
indicated in the figure (see Supplementary Table S1 for further information). Top ten threats either acting alone 
or in association among (c) extinct (with 11 single threats and 23 threat associations) and (d) threatened species 
(with 11 single threats and 437 threat associations). Colorful bars reflect single threats, and white bars represent 
threat associations. Figures were created using Gephi 0.9.1 (https://gephi.org), R 3.3.1 (https://r-project.org), 
and Inkscape 0.91 (https://inkscape.org).
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(12.6%) (Fig. 1a). These threats were also important for currently threatened species, but in a slightly differ-
ent order: 22.4% for wildlife exploitation, 22.3% for cultivation, and 16.0% for biological invasions (Fig. 1b and 
Supplementary Table S1). Regarding the pattern of extinctions, these threats mostly acted alone (alone: 57.4% 
of total threats; in association: 40.1%), while they acted much more in association for threatened species (alone: 
15.2%; in association: 75.4%) (Fig. 1c–d). Moreover, threats that are minor drivers of extinction and endanger-
ment such as habitat modifications, urbanization, and climate change are often associated with one of the three 
major threats or with a set of these threats. For example, urbanization or habitat modifications associated with 
cultivation and wildlife exploitation accounted for 4.0% and 2.7% of the total current threats, respectively, while 
when acting alone, each accounted for around 1% (Fig. 1d). Compared to extinct species, threatened species 
faced more numerous threats, and the relative importance of these threats was more homogeneous. We observed 
a lower number of threats per extinct species (mean ± s.d.: 1.5 ± 0.6) than per threatened species (2.6 ± 1.0) 
(Supplementary Table S2). Also, threats such as pollution and urbanization, which are minor drivers of extinc-
tion, have gained in importance for threatened species. While pollution was a driver of extinction of two species 
(0.5% of total species), it was associated with 372 threatened species (3.5%) (Supplementary Table S1). Species at a 
higher risk of extinction (critically endangered > endangered > vulnerable) were not more associated with a given 
threat or with a higher number of threats (Fig. 1b and Supplementary Figure S1).

Taxonomic scale. Extinct species mostly included terrestrial vertebrates (58.6% including 46.6% birds, 9.2% 
mammals, 2.0% reptiles, and 0.8% amphibians) followed by invertebrates (29.7% including 23.7% gastropods and 
6.0% arthropods), plants (10.5%), and freshwater fish (1.2%) (Supplementary Table S3). We found that biological 
invasions were the primary threat for extinct taxa, except for amphibians for which cultivation was the first and 
only threat (Fig. 2a, Supplementary Table S1). Biological invasions accounted for 79.3% of the total links in extinct 
invertebrates (comprising 15.0% arthropods and 64.3% gastropods), 50% for freshwater fish, 43.6% for terrestrial 
vertebrates (comprising 32.8% birds, 9.1% mammals, and 1.7% reptiles), and 32% for plants. Wildlife exploitation 
(terrestrial vertebrates: 34.5% comprising 31.9% birds, 1.3% mammals, 1.3% reptiles; plants: 14.0%) and cultiva-
tion (terrestrial vertebrates: 11.6% comprising 0.8% amphibians, 7.9% birds, 2.5% mammals, 0.4% reptiles; plants: 
24.0%) were also highly connected to extinct terrestrial vertebrates and plants.

Threatened species mostly included terrestrial vertebrates (41.9% including 13.1% birds, 10.3% mammals, 
9.7% amphibians, and 8.8% reptiles), followed by plants (39.7%), invertebrates (16.2% including 10.5% arthro-
pods and 5.7% gastropods), and freshwater fish (2.2%). Biological invasions remained the main threat for inverte-
brates (24.9% of the total links, comprising 15.2% arthropods and 9.7% gastropods), and freshwater fish (27.1%), 

Figure 2. Graphical representation of networks connecting the proportion of threats (colored bars) to (a) 
extinct and (b) threatened species for eight taxa: birds, mammals, amphibians, reptiles, freshwater fish, plants, 
arthropods, and gastropods (top bars in gray). The width of links between taxa and threats is proportional to the 
sum of species–threat connections (see Supplementary Table S1 for further information). Figures were created 
using R 3.3.1 (https://r-project.org) and Inkscape 0.91 (https://inkscape.org). Icons made by Freepik from www.
flaticon.com under a Flaticon Basic License.

https://r-project.org
https://inkscape.org
http://www.flaticon.com
http://www.flaticon.com


www.nature.com/scientificreports/

4SCiEntiFiC RepoRTS |  (2018) 8:6393  | DOI:10.1038/s41598-018-24733-0

while cultivation and wildlife exploitation are mostly associated with plants and terrestrial vertebrates (Fig. 2b, 
Supplementary Table S1). Specifically, cultivation accounted for 24.6% of the total links in terrestrial vertebrates 
(comprising 6.3% amphibians, 7.4% birds, 6.0% mammals, and 4.9% reptiles) and 21.6% for plants. Finally, wild-
life exploitation accounted for 25.4% of the total links in terrestrial vertebrates (comprising 6.1% amphibians, 
8.1% birds, 6.7% mammals, and 4.5% reptiles) and 21.4% for plants. The major threats are identical for threatened 
amphibians, birds, mammals, and reptiles, while differences appear regarding the minor threats (Supplementary 
Table S1). Overall, all threatened taxa faced more threats than extinct taxa. For example, five threats impacted 
extinct mammals, while all threats are associated with threatened mammals. In addition, extinct mammals were 
connected to fewer threats per species (mean ± s.d.: 1.4 ± 0.5) compared to threatened mammals (2.4 ± 1.1) 
(Supplementary Table S2).

Spatial scale. Hotspots of extinction were located in Polynesia and Micronesia (43.4% of extinct species), 
Madagascar (22.1%), and West Indies (10.0%). The threat of biological invasions was a predominant driver of 
extinctions in Polynesia and Micronesia, West Indies, New Zealand, and Madagascar (Fig. 3a and Supplementary 
Figure S2). Also, wildlife exploitation was the second most important driver of extinctions across Polynesia and 
Micronesia and Madagascar.

Hotspots of current threats are also located in Madagascar (28.9% of threatened species), West Indies (13.3%), 
and Polynesia and Micronesia (11.2%) (Fig. 3b). The geographic distribution of threat importance highlighted a 
spatial pattern of threats. Indeed, biological invasions mainly threaten the Pacific and Atlantic insular regions (i.e., 
Africa Atlantic, Mediterranean Basin, North America Pacific, Polynesia and Micronesia, South America Pacific, 
except for the West Indies). The remaining insular regions, mostly located in the Indian Ocean and near the Asian 
coasts, are predominantly threatened by wildlife exploitation and cultivation. Threatened species within insular 
regions faced a higher number of threats, being on average 10.4 ± 0.88 compared to 4.0 ± 2.1 threats regarding 
the extinction pattern. For example, in New Zealand, six threats are associated with species extinction (threats per 
species: 2.0 ± 0.5), while all 11 threats currently impact threatened species (2.7 ± 1.0, Supplementary Table S2).

Discussion
Our analysis is a first attempt to explore the relative importance of threats and their associations for species on 
islands. We showed that threatened species typically face numerous threats simultaneously (almost twice as many 
as extinct species). Clearly, biological invasions, wildlife exploitation, and cultivation have been responsible for the 
majority of insular extinctions (85%) and remain the main threats for insular biodiversity, impacting more than 

Figure 3. Graphical representation of networks illustrating species–threats interactions according to regions for 
(a) extinct and (b) threatened species. Colorful nodes reflect threats, and gray nodes represent insular regions. 
The node size is proportional to their degree (i.e., number of interactions), and the width of their respective 
links is proportional to the sum of species–threats connections. For the sake of clarity, threat nodes were placed 
outside the world map. Figures were created using Gephi 0.9.1 (https://gephi.org), QGIS 2.18.2 (https://qgis.
org), and Inkscape 0.91 (https://inkscape.org).
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60% of threatened species. Although the above three threats mostly acted alone regarding the pattern of extinc-
tions, they tended more often to be combined, whether together or with other minor threats regarding the threat-
ened species pattern. Such threat associations have already been observed as in the co-occurrence of invasions 
with harvesting or habitat loss (due to agriculture or aquaculture)24. Further, threats that were minor drivers of 
extinction risks such as pollution and urbanization have gained in importance by affecting a larger number of spe-
cies, mainly in association with the three major threats. Thus, our results reaffirm the role of biological invasions, 
wildlife exploitation, and cultivation as major drivers of insular ecosystems losses25,26, analogous to those on the 
mainland10,15, but they also suggest the potential synergistic, antagonistic, or additive effects of threat interactions 
that may lead species to extinctions27.

Second, species at risk of extinction are mostly located in Madagascar, West Indies, and Polynesia and 
Micronesia, highlighting the impact even in less populated and accessible areas. Nevertheless, this result is 
dependent on sampling. Indeed, a region with a high sampling effort is more likely to present a greater number of 
identified species and so be a hotspot of endangered species. All insular regions were shown to suffer from a high 
number of threats, but the relative importance of threats across regions shows a strong East-West pattern. Indeed, 
threatened species on the Pacific and Atlantic islands suffer primarily from biological invasions, while species in 
the Indian Ocean and near the Asian coasts are predominantly threatened by wildlife exploitation and cultivation. 
The Pacific and Atlantic regions have suffered from different waves of colonization (i.e., Polynesian discovery 
followed by European colonization), which have strongly contributed to the introduction of invasive species20,28 
and are likely to explain the predominance of the biological invasions threat for extinct and threatened species 
throughout these regions. Nevertheless, most studies on invasive species impacts have focused on the Pacific 
region29, while invasions in Asia (mainland and insular) are understudied30. At the same time, a large proportion 
of tropical forests are located in Southeast Asia31,32. These forests are highly threatened by rapid deforestation due 
to, for example, agricultural expansion or commercial logging caused by the exploding human demography33,34. 
It has also been shown that overexploitation is the most prominent threat within Asia, where harvesting for food 
and use in traditional Chinese medicine are the two main forms of overexploitation15. The relative importance of 
threats among and between insular regions could also be partly explained by island biogeography. Indeed, some 
insular parameters (e.g., area, isolation) have been linked to species vulnerability to threats19.

Third, all taxa suffer from several simultaneous threats, which may vary in importance within taxa. For exam-
ple, wildlife exploitation and cultivation were mostly associated with threatened plants and terrestrial vertebrates, 
while biological invasions were mainly responsible for threatened invertebrates and freshwater fish. Several stud-
ies have already documented the impact of overexploitation, agriculture/aquaculture, and invasive species on 
terrestrial vertebrates and plants35–37, and our results confirm their major role as a driver of species extinction 
and decline. The role of these threats as drivers of invertebrate and freshwater fish losses is less documented38. 
Our results provide a first global insight into these taxonomic groups and their associated threats at different 
macro-ecological scales, but further research is clearly necessary. The relative importance of threats among and 
between taxa could be due not only to differences in species’ exposure to threats but also to species’ sensitivity. 
Some species can be more vulnerable to a specific threat than others due to biotic (e.g., species’ traits) and abiotic 
factors (e.g., species’ environment)39,40. For example, mammal families composed of small-size habitat specialists 
are more likely to be threatened by habitat-modifying processes39. The interaction between species’ traits and 
threat vulnerability can be synergistic. For example, such an interaction was observed between body mass and 
hunting vulnerability in Chinese birds41. Also, to explain the differences in threats to extinct versus threatened 
species, two explanations can be proposed. First, it could be due to differences in information, with historical 
knowledge lacking for some extinct species (see below). Second, it could also be associated with the vulnerability 
of species, whereby the species most vulnerable to certain threats would be first to become extinct, thus leaving a 
greater number of less vulnerable species, as has been shown for birds and biological invasions19,20.

Although the IUCN Red List is the most comprehensive assessment of species that are at risk of extinction 
worldwide42,43, this dataset has several shortcomings. Firstly, small species with narrow distribution ranges and 
low dispersal abilities, which are mostly local endemics, are underassessed44. IUCN has successfully completed 
an assessment of the threat status of birds, mammals, and the vast majority of described amphibians, while global 
assessments for other taxa are yet to be properly documented44,45. Taxonomic gaps imply that our results relating 
to plants, invertebrates, and freshwater fish should be taken with more caution than those of terrestrial verte-
brates. Second, recent studies have pointed out that the application of Red List criteria generally tends to overes-
timate extinction risks for most island endemics, which naturally have very small areas of occupancy and extents 
of occurrence, even if they are common within their range46,47. However, when we restricted our analyses to the 
777 threatened species significantly and harshly impacted by threats, a similar pattern was observed, and impor-
tantly, it did not alter our conclusions (Supplementary Figure S3). Third, despite showing an apparent difference 
in threats between extinct and threatened species, this result could be due to the fact that attributing a cause to 
species extinction and endangerment is difficult. Indeed, the attribution of extinction causes is based on historical 
knowledge, for which little written information is available, especially for species that disappeared more than a 
century ago7. Further, only the most likely causes for extinction are sometimes assigned. Last we only assessed 
species richness on species–threats associations, and despite being the most commonly used measure of diversity 
in macro-ecology, this metric does not consider the evolutionary and functional differences among species48.

In spite of these limitations, our study is a first step to investigate mechanisms, processes, and drivers affecting 
species–threats associations or threat interactions in the future. Our findings reveal that investigating threats 
in isolation is insufficient when exploring patterns and so defining effective conservation policies and manage-
ments, as specific associations of threats affect the different levels of species, taxa, and region. Today, large-scale 
conservation planning such as the protection of biodiversity hotspots49 has been widely recognized as crucial 
for guiding global conservation investments, but this conservation strategy only relies on high rate of endemism 
and high rates of habitat loss. Our study considers 11 different threats to identify where insular biodiversity is the 
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most endangered worldwide and which specific threats are responsible for such a pattern. Specifically, we argue 
that Madagascar, West Indies, and Polynesia and Micronesia should be considered to be the top priorities to pre-
serve insular taxonomic diversity worldwide by undertaking specific actions associated with biological invasions, 
wildlife exploitation, and cultivation. In fact, our approach allows us to identify broad guidelines such as extending 
the protected areas already set up in the West Indies, which are mostly impacted by habitat loss and degradation. 
However, more case-oriented studies at local scales of species–threats associations should be undertaken in order 
to set effective conservation guidelines.

Materials and Methods
IUCN Red List Database. The IUCN Red List of Threatened Species is widely regarded as the world’s most 
comprehensive information source on the global extinction risk of species42,43. It is used in a varied way: setting 
priorities in the compilation of species action plans, reserve selection, and management, or defining indicators for 
the state of the environment50–52. The IUCN Red List23 and BirdLife International53 have assessed the conservation 
status of more than 12,680 insular terrestrial and freshwater species. In this study, we focused our analyses on the 
15 most documented insular regions worldwide (i.e., containing >50 assessed species) (Supplementary Figure S2; 
Africa Atlantic, Asian Coast, East Indies, Indo-Burma, Japan, Madagascar, Mediterranean Basin, New Caledonia, 
New Zealand, North America Pacific, Papua New Guinea, Philippines, Polynesia and Micronesia, South America 
Pacific, and West Indies), which together encompass 12,533 insular species. We restricted our analyses to species 
that have been classified as extinct (i.e., extinct and extinct in the wild; n = 450) and at risk of extinction (i.e., vul-
nerable, endangered, and critically endangered; n = 6,026). In addition, the IUCN Red List has assessed and clas-
sified threats impacting these species through the IUCN threat classification scheme (version 3.2)54. In our study, 
we considered 11 classes of major threats (Supplementary Table S4). Based on the threat categories, the causes of 
species decline were identified for 249 extinct and 4,127 threatened species. These insular species belong to eight 
higher taxa (hereafter, taxa): 402 amphibians, 451 arthropods, 655 birds (resident breeding), 93 freshwater fish, 
293 gastropods, 449 mammals, 1,665 plants, and 368 reptiles (Supplementary Table S3). Furthermore, additional 
threat information was recorded such as the timing of the threat (past, ongoing, future, or unknown), its scope 
(i.e., proportion of the total population affected), and its severity (i.e., overall declines caused by the threat). Using 
this supplementary information, we identified 777 threatened insular species as being significantly and harshly 
impacted by threats (i.e., scope: whole (>90%) and majority (50–90%) of the population impacted; severity: very 
rapid, rapid, and slow significant population declines).

Bipartite networks. At the most basic level, a network is a set of entities called nodes connected by edges. 
Specifically, bipartite networks are a type of network where nodes are partitioned into two distinct types (here, 
insular species and threats) and interactions occur exclusively between types. Because the relationships between 
insular species and threats are complex (i.e., species are associated with multiple threats, while each of the 11 
threats impacts several species), we used three separate networks to analyze species–threats associations at the 
species, taxa, and then geographic levels. We also investigated each of the three network scales separately for 
extinct and threatened species.

Networks between insular species and threats. First, we built unweighted bipartite networks to analyze the 
threats associated with species’ extinctions and risks of extinction. Networks were created with R software (ver-
sion 3.3.1)55 using igraph and rgexf packages56,57. Then, network structures were explored and visualized with 
the interactive platform Gephi58 using a ForceAtlas 2 layout. A layout is an algorithm that positions nodes in a 
2-D or 3-D space. ForceAtlas 2 layout59 allows the network to be visualized based on the forces of attraction and 
repulsion, where the nodes repulse each other based on their degree (i.e., the number of incoming and outgoing 
edges), while the edges attract the connected nodes. As a result, high-degree nodes tend to separate from other 
high-degree nodes and attract low-degree nodes to which they are connected. In our case, species that tend to 
be associated with the same threat or group of threats will be clustered and repulsed from other threats and/or 
species that are associated with different threats.

Networks between taxa and threats. Second, we built weighted bipartite networks to analyze the associations to 
threats at the taxa level. Each taxa was connected to threats with an associated weight depending on the number 
of their species threatened by each threat. Networks were created and visualized using the plotweb function imple-
mented in the R package bipartite60.

Networks between insular regions and threats. Third, we built weighted bipartite networks to analyze insular 
regions–threats associations. Each of the 15 insular regions was connected to threats with an associated weight 
depending on the number of insular species threatened by each threat in that region. As above, networks were 
created using the R packages igraph and rgexf, and network structures were explored and visualized with Gephi 
software using a Geo Layout, which uses latitude and longitude coordinates to set the node position in the graphic 
space.

For each of the three network types, we estimated the number of species associated with each threat as well as 
the number of threats per species. Analyses were performed using Gephi software as well as with some packages 
of R software (version 3.3.1): bipartite, igraph, rgexf, ggplot261, dplyr62 and plyr63.
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