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A reference-defining criterion for 
light focusing through scattering 
media based on circular Gaussian 
distribution of speckle background 
intensity
Bin Zhang, Zhenfeng Zhang, Qi Feng, Chengyou Lin    & Yingchun Ding

This paper investigates the reference-defining-criterion problem in the field of light focusing through 
scattering media. In many analogous light focusing experiments, the enhancement values differ 
greatly from each other. By analyzing the focusing picture after optimizations, we concluded that the 
discrepancy in enhancement originates from the unclear definition of reference boundary. By averaging 
multiple speckle backgrounds, we found that the intensity of speckle background obeys circular 
Gaussian distribution. Based on the intensity statistics and Gaussian-function fitting to the speckle 
background, we proposed a clear reference-defining criterion– 1/e2 criterion. With this reference-
defining criterion, we have carried out light focusing experiments with the speckle backgrounds 
possessing different shape and size. The enhancements obtained from the repetitive experiments 
for both weakly scattering medium and strongly scattering medium were all in the reasonable range, 
demonstrating its validity and universality. This criterion will provide a comparison standard for light 
focusing experiments in wavefront-shaping field.

Spatial inhomogeneities in the refractive index of random photonic materials such as paper, paint, and biological 
tissue cause multiply scattering of light. As a result, light propagates diffusively, which makes the control of light 
become impossible with conventional optics. However, it has recently been demonstrated that light can be con-
trolled by shaping the wavefront of incident light1. With this technique, we can achieve light focusing through 
scattering media, which plays an important role in biomedical imaging and therapy2–4. In 2007, Vellekoop et al.3 
firstly realized light focusing through scattering media with the iterative optimization method, which is also the 
first demonstration of wavefront-shaping technique5. Nowadays, the light focusing wavefront-shaping techniques 
can be divided into three categories: iterative optimization method6, transmission matrix method7, and phase 
conjugation method8. The research contents of this paper are based on the iterative optimization method.

The primary elements of the iterative optimization method are the optimization algorithms and light mod-
ulators. In the iterative optimization method, the optimization algorithm controls the modulator to modulate 
the phase or amplitude of the incident light based on a feedback signal to perform iterative optimizations until 
finding the optimal mask for creating a focus5. Currently, the existing optimization algorithms can be divided into 
two categories: general algorithms and intelligent algorithms. Intelligent algorithms show better noise-resistance 
capability than the general algorithms such as stepwise sequential algorithm, continuous sequential algorithm, 
and partitioning algorithm6,9. In 2012, Conkey et al.10 introduced the genetic algorithm (a typical intelligent algo-
rithm) into the wavefront-shaping field and demonstrated its strong noise-resistance capability10. In the aspect of 
light modulator, according to the form of light modulation, the existing light modulators can be divided into two 
categories: phase modulators and amplitude modulators. The representative devices are liquid-crystal-based spa-
tial light modulation (SLM) and digital mircomirror device (DMD) respectively. SLMs show better light focusing 
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performance, while DMDs show faster modulation speed11. The light focusing experiments performed in this 
paper are based on the amplitude-only genetic algorithm with the DMD.

Enhancement is a vital figure of merit describing the effectiveness of a light focusing experiment. It is 
defined as the ratio of focus intensity to reference intensity: η ≡ Iopt/Iref

9. Where Iopt is the average intensity 
in the focus after optimizing the incident wavefront, and Iref is the average intensity of the reference. In a 
strongly scattering medium, the translation paths are statistically independent and follow a circular Gaussian 
distribution. In this case, the maximum enhancement that can be achieved is η = α (N + 1) + 112, where N 
is the number of independently controlled segments of the incident light, and α is the relative enhancement. 
The value of α depends on the type of light modulation that is used13. In the past work, for an amplitude-only 
modulation system, the numbers of the opened and closed segments were thought to be approximate equal 
in the optimal amplitude masks, and the target position intensity (TPI) was used as the discriminant in 
the optimization algorithms.Under this circumstance, the value of α was deduced to be 1/(2π) ≈ 15.9%14. 
In 2017, Feng et al.15 demonstrated a new discriminant–signal to background ratio (SBR) discriminant. 
According to their numerical simulation results, the value of α can be as high as 22.5%15. However, in many 
analogous amplitude-optimization experiments with the TPI discriminant or the SBR discriminant, the prac-
tical enhancements were rarely able to achieve the theoretical maximum or value of simulation. Furthermore, 
the enhancement values differ greatly from each other14,16. Indeed, the noise of different experimental systems 
is one reason for the discrepancy in enhancement14. However, we now encounter another problem that cannot 
be ignored–the ambiguity definition of the reference12,17. Though Vellekoop and Akbulut demonstrated the 
specific determining method of the reference respectively9,14, they did not indicate the boundary of the refer-
ence, which determines directly the value of enhancement.

In this paper, we have demonstrated the discovery of the reference-defining problem in the experiment of 
focusing light through scattering media using a DMD. After sound analysis to the speckle background, we con-
cluded that the selected radius of the speckle background had a direct influence on the value of enhancement. 
Based on the study of the intensity distribution of speckle background, we proposed a clear reference-defining cri-
terion– 1/e2 criterion. With this criterion, we have carried out repetitive light focusing experiments with speckle 
backgrounds possessing different shape and size. The enhancements obtained were all slightly below the value of 
simulation or theoretical maximum, demonstrating its validity and universality. This 1/e2 criterion is applicable 
and valid in defining the reference in the whole field of light focusing through scattering media. Therefore, it will 
provide a comparison standard for light focusing experiments in wavefront-shaping field.

Experiment
The schematic layout of the experimental setup is shown in Fig. 1. A 532-nm semiconductor laser with output 
power of 10 mW is used as the light source. The polarizer changes the polarization state of the incident light from 
elliptic polarization to linear polarization. Then the output beam from P1 is expanded by an expending lens to 
illuminate the entire area of the DMD (Texas Instruments DLP 6500, 1920 × 1080 pixels). The λ/2 wave plate and 
P2 are used to change the light intensity that illuminates on the DMD without changing the polarization state of 
the incident light. The wavefront of the reflected beam is shaped by selectively turning the mircomirrrors on and 
off. The modulated beam is focused on the sample by a 40 × objective. Then the transmitted light is collected by 
a 10 × objective and monitored by a CCD camera (AVT Manta G-031B, 656 × 492 pixels, pixel size 5.6 μm × 
5.6 μm). The scattering sample used in the experiment is the ground glass diffuser (Edmund # 45–653).

The iterative algorithm we used to focus light through scattering media was genetic algorithm. We divided the 
selected 160,000 DMD pixels into 400 controllable segments. Every segment can be controlled independently by 
the DMD. The amplitude masks generated by the genetic algorithm were projected on the DMD. The CCD cam-
era captured the corresponding speckle patterns and sent them back to the algorithm. The running environment 
of the genetic algorithm was Matlab 2014b. Besides, the fitness function of the genetic algorithm we used was the 
SBR discriminant, which reveals better focusing performance than the traditional TPI discriminant15.

Figure 1.  Experimental setup. P1, P2, polarizers; EL, expending lens; λ/2, half wave plate; DMD, digital 
micromirror device; L1, L2, lenses with focal length of 150 and 50 mm respectively; O1, 40× objective with 0.65 
numerical aperture; S, sample; O2, 10× objective with 0.25 numerical aperture.
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In this experiment, we chose 3 × 3 pixels as the target area and set the background radius as 190 pixels. After 
6300 iterations, the genetic algorithm arrived at an optimal amplitude mask, which is shown in the lower left cor-
ner of Fig. 2(a). Loading this optimal amplitude mask on the DMD, we got a bright focus with an enhancement 
of 90 in the middle of the speckle pattern, shown in Fig. 2(a). The inserts present the magnification for different 
areas in the focusing picture. The diameter of the focus is about 15 μm (see the nethermost insert).

Having a close-up view of the focusing picture (see the two upper inserts), one can find that the area that is just 
out of the 190-pixels radius still possesses nonzero light intensity. According to the focusing picture in Fig. 2(a), we 
made a drawing of the enhancement curve with variable reference radius, shown in Fig. 2(b). One can see that the 
enhancement increases with the increscent reference radius. Furthermore, when the radius is larger than 192 pixels, 
the enhancement exceeds the value of 90.8, which is the value of simulation for the SBR discriminant with 400 light 
segments14. Thus, we have got an “unreasonable” experimental result. Figure 2(b) is obtained from Fig. 2(a), where 
the intensity in the focus is a constant. Therefore, the varying value of enhancement is due to the varying reference.

1/e2 criterion
The intensity distribution of the reference in the focusing picture is similar to the intensity distribution of the speckle 
background before optimization. So we can analyze the distribution of reference from the angle of speckle back-
ground. Figure 3(a) shows a typical picture of speckle background with a random amplitude mask. Note that the 
gray values reflect the intensity of the light detected by the CCD camera. From Fig. 3(a), we can not find an explicit 
distribution. In consideration of that speckles originate from the light-interference process possessing randomness 
characteristics, we have tried to study the statistical distribution of speckle background intensity. We first loaded 
multiple amplitude masks on the DMD and captured the corresponding speckle patterns. Then, we superposed the 
multiple speckle patterns and took the average. Figure 3(b) and (c) are two averaged speckle patterns for 100 and 
200 measurements respectively. We can find that, with 200 measurements, the intensity distribution of the speckle 
background approaches Gaussian distribution. Because the speckle background is circular, the intensity distribution 
along an arbitrary line passing through the centre of the speckle background follows Gaussian distribution as well. 
Thus, we can conclude that the intensity of speckle background follows circular Gaussian distribution.

Inspired by the definition of Gaussian beam radius, we have tried to take a radius where the intensity is 1/e2 
the maximum of the Gaussian function. In consideration of the circular-Gaussian-distribution characteristic, to 
obtain an accurate statistical distribution of the speckle background intensity, we have designed the following 
steps. First, we loaded 200 random masks on the DMD and recorded the corresponding speckle patterns on 
the CCD camera. Then we superposed the 200 speckle patterns and took the average. Thus, an averaged speckle 
background was obtained. Second, with the averaged speckle background, we drew a series of circles about the 
background centre. Then the mean gray value of the pixels on each circle was calculated. In this way, we got a 
homogeneous gray value for every circle. Third, we plotted the mean gray values for different radiuses and made 
a Gaussian-function fitting on them with the Gaussian-curve-fitting tool in the Matlab software.

The data processing result is shown in Fig. 4. Figure 4(a) is the averaged speckle background for the exper-
iment demonstrated in Section 2. The mean gray values of the pixels for different radiuses are presented as the 
black triangles, and the corresponding Gaussian-function-fitting curve is shown as the red line in Fig. 4(b). One 
can see that the mean gray values fit quite well with the fitting curve. Note that, in view of the circle-drawing oper-
ation in step 2, we only got “half ” of the intensity distribution curve. The Gaussian function obtained here was 
I(r) = 46.54 exp (−r2/130.72), whose maximum value was 46.54. Then, we chose a radius where the mean gray 
value is 46.54/e2. In this way, this radius was calculated to be approximately equal to 185 pixels. The radius used 
to demarcate the reference in Fig. 2 was 190 pixels, which leaded to an enhancement value of 90. According to the 

Figure 2.  Experimental results of single-spot focusing through the ground glass diffuser. (a) Focusing picture 
captured by the CCD. r = 190 pixels is the background radius selected in the experiment. The related parameters 
of the genetic algorithm: population 50, generation 250, segments number 400, crossover probability 0.9, 
mutation probability 0.002. It takes 945 s to complete the 6300 iterations, which is limited by the picture 
acquisition time of the CCD camera. (b) The variation of enhancement with different reference radiuses. This 
enhancement curve derives from the focusing picture in (a). Strictly speaking, this is an approximate solution 
of the actual experiments with different radiuses, since the focus intensities for the experiments with different 
radiuses are slightly different.
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enhancement curve demonstrated in Fig. 2(b), we calculated that, with the 185-pixels radius, the enhancement 
should be 89.3. The enhancement value of 89.3 is in the reasonable range (below the value of simulation). So we 
made an assumption of the 1/e2 reference-defining criterion.

To further verify the validity of this 1/e2 reference-defining criterion, we have carried out the light focusing 
experiments with speckle backgrounds possessing different shape and size. The different speckle backgrounds 
were obtained by moving the ground glass diffuser slightly. In the iterative optimizations with the TPI discri-
minant, though Iref is not calculated in each iteration, it is used to calculate the enhancement after optimization. 
Therefore, to test the universality of the 1/e2 criterion, except for the SBR discriminant, we have also used the TPI 
discriminant to perform the light focusing experiments.

Figure 5(a),(c) and (e) are the averaged speckle backgrounds with different shape and size. With the 1/e2 
reference-defining criterion, we confirmed that the radiuses of the speckle backgrounds were 205, 185, and 150 
pixels respectively. For each speckle background, we performed 10 iterative optimizations–5 optimizations for the 
SBR discriminant and 5 optimizations for the TPI discriminant. Figure 5(b),(d) and (f) are the typical iterative 
optimization results for the different speckle backgrounds presented in Fig. 5(a),(c) and (e) respectively. With the 
SBR discriminant, the enhancements for the different speckle backgrounds are 88.4 ± 2.1 (sd), 86.6 ± 1.8 (sd), 
and 86.9 ± 2.3 (sd) respectively. And with the TPI discriminant, the enhancements are 52.3 ± 0.6 (sd), 54.1 ± 1.2 
(sd), and 54.8 ± 2.2 (sd) respectively.

Except for the ground glass diffuser (weakly scattering medium), we have also carried out light focusing 
experiments with a 37 μm-thick deposit of 200 nm ZnO nanoparticles (strongly scattering medium). The mean 
free path of this deposit was determined by measuring the total transmission and equals 0.96 ± 0.15 μm at a wave-
length of 532 nm12. By suitably adjusting the positon of the ZnO sample, we have obtained the averaged speckle 
patterns with the radiuses of 203, 185, and 167 pixels respectively. Also, 5 optimizations for the SBR discriminant 

Figure 3.  The intensity distribution characteristic of the speckle background. (a) A speckle background and 
its intensity distribution for a random amplitude mask. (b,c) are the averaged speckle patterns for 100 and 200 
measurements respectively. The black spots shows the gray values of the pixels along the white lines.

Figure 4.  The averaged speckle background and the corresponding Gaussian-function-fitting result for 
the light focusing experiment demonstrated in Section 2. (a) The averaged speckle background for 200 
measurements. (b) The intensity distribution for the averaged speckle background and the fitting result. The 
black triangles are the mean gray values for different radiuses, and the red line is the Gaussian-function-fitting 
curve on them.
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and 5 optimizations for the TPI discriminant were performed for each speckle background. To avoid repetition, 
we did not show the averaged speckle patterns and the evolutions of enhancement as shown in Fig. 5, but we give 
the values of enhancement. With the SBR discriminant, the enhancements for the different speckle backgrounds 
are 85.5 ± 1.1 (sd), 84.1 ± 2.2 (sd), and 86.3 ± 1.7 (sd) respectively. And with the TPI discriminant, the enhance-
ments are 54.7 ± 1.2 (sd), 53.8 ± 2.0 (sd), and 53.7 ± 1.5 (sd) respectively.

In the amplitude-only optimization, the value of simulation of relative enhancement for the SBR discrimi-
nant is 22.5%15, and the theoretical maximum of the relative enhancement for the TPI discriminant is 15.9%14. 
Therefore, according to the maximum enhancement formula η = α (N − 1) + 1, for 400 light segments, the 
maximum enhancements for the SBR discriminant and the TPI discriminant are 90.8 and 64.5 respectively. The 
enhancements obtained from the testing experiments for both weakly scattering medium and strongly scattering 
medium were all in the reasonable range (below the value of simulation or theoretical maximum). Meanwhile the 

Figure 5.  The iterative optimization results for different speckle patterns with the 1/e2 reference-defining 
criterion. (a,c and e) are the averaged speckle backgrounds with different shape and size. With our 1/e2 
reference-defining criterion, the radiuses were confirmed to be 205, 185, and 150 pixels respectively. (b,d 
and f) are the typical optimization results for the speckle backgrounds in (a,c and e) respectively. The related 
parameters of the genetic algorithm: population 50, generation 250, segments number 400, crossover 
probability 0.9, mutation probability 0.002. The running time of this genetic algorithm is 945 s.
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1/e2 criterion is suitable for both SBR discriminant and TPI discriminant. In this way, the validity and universality 
of the 1/e2 reference-defining criterion have been verified.

Conclusion
In this paper, we have carried out the experiments of focusing light through scattering media with genetic algo-
rithm. By analyzing the focusing picture, we found that the enhancement obtained from the experiment was 
variable for different reference boundaries. Then we analyzed the speckle background and concluded that the 
unreasonable enhancements originates from the loophole in defining the reference. Inspired by the definition 
of Gaussian beam radius, we came up with a clear reference-defining criterion– 1/e2 criterion. With this 1/e2 
criterion, we have carried out the light focusing experiments with the speckle backgrounds possessing different 
shape and size. Both the SBR discriminant and the TPI discriminant were used respectively in the experiments. 
The enhancements obtained from the experiments for both weakly scattering medium and strongly scattering 
medium were all in the reasonable range. Thus, the validity and universality of the 1/e2 criterion were verified. 
Besides, in phase-only modulation systems, the definition of enhancement involves the reference-defining prob-
lem as well. So the 1/e2 criterion can also be used as a criterion in phase-only modulation systems. In summary, 
the 1/e2 criterion is applicable and valid in both amplitude-only modulation and phase-only modulation systems. 
It will provide a comparison standard for light focusing experiments in wavefront-shaping field.

References
	 1.	 Horstmeyer, R., Ruan, H. & Yang, C. Guidestar-assisted wavefront-shaping methods for focusing light into biological tissue. Nat. 

Photonics 9, 563–571 (2015).
	 2.	 Dougherty, T. J. et al. Photodynamic therapy. J. Natl. Cancer I. 90, 889–905 (1998).
	 3.	 Vellekoop, I. M. & Aegerter, C. M. Scattered light fluorescence microscopy: imaging through turbid layers. Opt. Lett. 35, 1245–1247 

(2010).
	 4.	 Cizmar, T., Mazilu, M. & Dholakia, K. In situ wavefront correction and its application to micromanipulation. Nat. Photonics 4, 

388–394 (2010).
	 5.	 Vellekoop, I. M. & Mosk, A. P. Focusing coherent light through opaque strongly scattering media. Opt. Lett. 32, 2309–2311 (2007).
	 6.	 Vellekoop, I. M. & Mosk, A. P. Phase control algorithms for focusing light through turbid media. Opt. Commun. 281, 3071–3080 

(2008).
	 7.	 Popoff, S. M. et al. Measuring the transmission matrix in optics: an approach to the study and control of light propagation in 

disordered media. Phys. Rev. Lett. 104, 100601 (2010).
	 8.	 Cui, M. & Yang, C. Implementation of a digital optical phase conjugation system and its application to study the robustness of 

turbidity suppression by phase conjugation. Opt. Express 18, 3444–3455 (2010).
	 9.	 Vellekoop, I. M. Feedback-based wavefront shaping. Opt. Express 23, 12189–12206 (2015).
	10.	 Conkey, D. B., Brown, A. N., Caravaca-Aguirre, A. M. & Piestun, R. Genetic algorithm optimization for focusing through turbid 

media in noisy environments. Opt. Express 20, 4840–4849 (2012).
	11.	 Yu, H. et al. Recent advances in wavefront shaping techniques for biomedical applications. Curr. Appl. Phys. 15, 632–641 (2015).
	12.	 Vellekoop, I. M. & Mosk, A. P. Universal optimal transmission of light through disordered materials. Phys. Rev. Lett. 101, 120601 

(2008).
	13.	 Chandrasekaran, S. N., Ligtenberg, H., Steenbergen, W. & Vellekoop, I. M. Using digital micromirror devices for focusing light 

through turbid media. Proc. SPIE 8979, 897905 (2014).
	14.	 Akbulut, D., Huisman, T. J., Putten, E. G., Vos, W. L. & Mosk, A. P. Focusing light through random photonic media by binary 

amplitude modulation. Opt. Express 19, 4017–4029 (2011).
	15.	 Feng, Q., Zhang, B., Liu, Z., Lin, C. & Ding, Y. Research on intelligent algorithms for amplitude optimization of wavefront shaping. 

Appl. Optics 56, 3240–3244 (2017).
	16.	 Zhang, X. & Kner, P. Binary wavefront optimization using a genetic algorithm. J. Opt. 16, 125704 (2014).
	17.	 Ohayon, S., Caravaca-Aguirre, A. M., Piestun, R. & DiCarlo, J. J. Deep brain fluorescence imaging with minimally invasive ultra-thin 

optical fibers. https://www.arxiv.org/abs/1703.07633.

Acknowledgements
This work was supported by the National Natural Science Foundation of China (NSFC) under Grant No. 
21627813 and Natural Science Foundation of Beijing Municipality under Grant No. 7182091.

Author Contributions
Study conceived and designed: B.Z. and Y.D. Performed the experiments: Z.Z. and B.Z. Algorithm developed 
and Code generated: Q.F. and Z.Z. Analyzed the data: Z.Z. and B.Z. Wrote the manuscript: B.Z. All authors 
contributed in revision.

Additional Information
Competing Interests: The authors declare no competing interests.
Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2018

https://www.arxiv.org/abs/1703.07633
http://creativecommons.org/licenses/by/4.0/

	A reference-defining criterion for light focusing through scattering media based on circular Gaussian distribution of speck ...
	Experiment

	1/e2 criterion

	Conclusion

	Acknowledgements

	Figure 1 Experimental setup.
	Figure 2 Experimental results of single-spot focusing through the ground glass diffuser.
	Figure 3 The intensity distribution characteristic of the speckle background.
	Figure 4 The averaged speckle background and the corresponding Gaussian-function-fitting result for the light focusing experiment demonstrated in Section 2.
	Figure 5 The iterative optimization results for different speckle patterns with the 1/e2 reference-defining criterion.




