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Bulk RKKY signatures of 
topological phase transition in 
silicene
Hou-Jian Duan1, Chen Wang2, Shi-Han Zheng1, Rui-Qiang Wang1, Da-Ru Pan1 & Mou Yang1

Silicene offers an ideal platform for exploring the phase transition due to strong spin-orbit interaction 
and its unique structure with strong tunability. With applied electric field and circularly polarized 
light, silicone is predicted to exhibit rich phases. We propose that these intricate phase transitions 
can be detected by measuring the bulk Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction. We have 
in detail analyzed the dependence of RKKY interaction on phase parameters for different impurity 
configurations along zigzag direction. Importantly, we present an interesting comparison between 
different terms of RKKY interaction with phase diagram. It is found that the in-plane and out-of-plane 
terms can exhibit the local extreme value or change of sign at the phase critical point and remarkable 
difference in magnitude for different phase regions. Consequently, the magnetic measurement provides 
unambiguous signatures to identify various types of phase transition simultaneously, which can be 
carried out with present technique.

Topological quantum phase transition has received great interest in condensed matter of states for searching 
for new matter states1, such as very recently emerging topological insulators (TIs), Weyl or Dirac semimetals. 
Topological quantum state possesses many exotic and robust properties with potential application in quantum 
calculations2,3. Topological phases are usually classified with topological indices. In 2D quantum system, the 
topological indices are reduced to the charge- and spin-Chern numbers2, obtained by summation over the Berry 
curvature. Nevertheless, how to identify these different topological states experimentally is a challenging prob-
lem. The most instinctive method to detect a topological phase is to measure the spin-resolved quantum Hall 
conductivity or to directly probe topological states. However, these electric measurements are difficult to perform 
in quantum Hall systems and moreover topological edge states are easy to suffer from the disturbance from bulk 
states which are unavoidable due to the existence of imperfections in the composition.

Much effort is made to find other new tools for probing the topological phase transition. The phase-dependent 
heat currents provide a robust tool to distinguish the existence of topological Andreev bound states from trivial 
Andreev bound states in superconductor/TI Josephson junction4. To explore the existence of fractional quantum 
Hall states in TIs, authors5 presented thermoelectric measurements on the Bi2Te3 crystal. The magnetic suscepti-
bility of electrons was studied in topological nodal semimetals, in which a giant anomaly is regarded to be useful 
in experimental identification of the Weyl, Dirac and line node semimetals6. The spin response in HgTe quantum 
wells7 reveals that unconventional spin-related properties can distinguish the paradigmatic TI material from the 
other 2D electronic systems.

Silicene, a single layer of silicon atoms with a planar honeycomb lattice structure8–10, offers an ideal platform 
for exploring the phase transition. Besides large spin-orbit interaction up to 3.9 meV11, silicene possesses a buck-
led hexagonal structure, in which two atoms in the translational unit cell reside on different planes, making its 
bandgap tunable easily by applying an electric field perpendicular to the silicene sheet12. The electric field breaks 
inversion symmetry while the circularly polarized light breaks time-reversal symmetry, both of which modify the 
Berry curvatures in the momentum space so that the occupied electronic states change the topological proper-
ties. When both of fields are applied, the silicene is predicted to exhibit rich phases: quantum spin Hall insulator 
(QSHI), conventional bulk insulator (CBI), photoinduced quantum Hall insulator (P-QHI), and photoinduced 
spin-polarized quantum Hall insulator (PS-QHI)13. It is an intriguing problem how to detect experimentally 
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which phase the system stays in just by the bulk property. To probe these intricate phase transitions, Jin et al.14 
have suggested to measure the Nernst conductivity, from which phase boundaries can be determined by compar-
ison the charge- with spin-Nernst conductivities.

The Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction, which describes the indirect exchange coupling 
between magnetic impurities mediated by the itinerant electrons, greatly depends on the spin-orbit interaction of 
host materials15. Meanwhile, the spin-orbit interaction plays a vital role in topological phase transitions. Thus, it 
is natural to expect that there is a close relation between the RKKY interaction and phase transition. For the phase 
transition from QSHI to CBI induced by electric field, Zare et al.16 found that the RKKY interaction can be used 
to identify the topological phase since its RKKY interaction is about 20 times greater than in the band insulator 
region when impurities are located on the edge. However, no difference in the order of magnitude appears in the 
case where the magnetic impurities are in the bulk. In this paper, we extend this study to more intricate phase 
transitions when silicene is subjected to both a circularly polarized light and a perpendicular electric field, where 
four types of phase are involved: QSHI, CBI, P-QHI, and PS-QHI. We have in detail analyzed dependence on 
phase parameters of RKKY interaction and present a RKKY phase diagram. It is interesting to find that the RKKY 
measurement provides unambiguous signatures to identify different phases and phase boundaries simultane-
ously. Moreover, all signatures originate from the bulk band and thus one can probe the topological phases only 
by measuring the bulk states, not caring for the formation of topological states.

Model and Method
Silicene has a honeycomb lattice with two different atoms in the translational unit cell. Employing the 
tight-binding model for the four bands13, the Hamiltonian is given by16
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where 〈i, j〉 (〈〈i, j〉〉) runs over the nearest-neighbor (next-nearest-neighbor) hopping sites, +cis  creates an electron 
with spin s at site i, σ is the Pauli matrix of spin, di and dj are the in-plane unit vectors along which the electron 
traverses from site j to i. The first two terms describe the silicene with hopping energy t = 1.6 eV and the intrinsic 
spin-orbit coupling λso ≈ 3.9 meV11,17,18, while the weak Rashba spin-orbital interaction is neglected13. The third 
term stands for the staggered potential with μi = ±1 for A (B) site and U = Ezd/2, caused by an electric filed Ez 
exerting on the buckled lattice structure19–21, where two sublattice planes are separated by a distance of d = 0.46Å. 
By transforming Eq. (1) into the momentum space and then expanding it at the two Dirac points Kη (η = ±) in the 
Brillouin zone (BZ), we in the pseudospin space {A, B} obtain the low-energy Dirac Hamiltonian16
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with the polar angle θ = arctan (ky/kx) and an extra phase factor22 stemming from the specific Kη.

In order to present rich phases, we assume the silicene sheet is in addition irradiated by a beam of circularly 
polarized light. The photoinduced effect is considered by the Peierls substitution ħk → ħk + eA(t), where vector 
potential A(t) = A(sin ωt, cos ωt) is a periodic function of time T = 2π/ω with ω being the light frequency. By 
using the Floquet theory13,23–27, the time dependence can be mapped to a Hilbert space of time-independent 
multi-photon Hamiltonian. For the off-resonant light with the high-frequency limit ω A / 12 , one can decouple 
the zero-photon state from the other states and only consider its dressed effect through second-order virtual 
photon absorption and emission processes13,25,28,29. As a consequence, the modified part of Hamiltonian by light 
reads Vn = [V−1, V+1]/ħω + O(A4) with ∫= ω−V H t e dt( )n T

T in t1
0

 and the effective Hamiltonian is approximately 
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where the energy gap λ η= Ω − −ηU s U2 2 ( )s so  can be opened or closed, controlled by both the light and 
electric fields. Consequently, the topological phase transition occurs among four categories13: P-QHI, QSHI, 
PS-QHI, and CBI.

We assume two magnetic impurities Si placed on the lattice sheet interacting with conducting electrons via 
λ= ∑ ⋅H S r s r( ) ( )int i i i , where S(ri) [s(ri)] is the spin of impurities (itinerant electrons) and λ is the spin-exchange 

coupling strength. For weak coupling, we can replace Hint with the RKKY interaction, which in the second-order 
perturbation theory15,30–33 is given by
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Here, α, β = {A, B}, R is spatial distance between two impurities, EF is Fermi level, and the trace is over the spin 
degree of freedom. The retarded Green’s function ∫ε ε= ∑ 

 + − ′ 
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k K R( ) 2  is a 2 × 2 
matrix in spin space. In next discussions, we focus on the impurities placed on the same sublattice (e.g., α = β = A) 
and drop the subscript for briefness. Consequently, the matrix element of Green’s function is diagonal in spin 
space and reads
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where K0(x) is the modified Bessel function of the second kind, ς is the area of BZ, and ε= −R x v/x F
2 2R �  with 

R = |R|. By inserting the above Green’s functions in Eq. (5), the RKKY interaction can be rewritten as16

∑= + + ×
=

H J S S J S S J S S( ) ,
(7)

RKKY
i x y

i i z z z DM z
,

1 2 1 2 1 2

which is divided into three terms according to the polarizations of the impurities.

Numerical Results and Discussion
RKKY under light field.  To detect the topological phases, we expect to search for signatures of the RKKY 
interaction characterizing the phase-transition point and various phase regions. Firstly, we consider the case of 
silicene sheet irradiated by a beam of off-resonant light but in the absence of electric field. The light field breaks 
the time-reversal symmetry and so causes spin splitting |Ω ± λso| in the energy spectrum from the original 
spin-degenerate bands s = ±1. With the increase of light strength, the bandgap is closed first at the critical point 
Ω = ±λso and then enters a new topological phase of P-QHI from QSHI state. Different topological phases can be 
classified by topological quantum numbers (C, Cs), corresponding to charge- and spin-Chern numbers, respec-
tively. They are usually defined as = ∑ +η

η η
↑ ↓C C C( ) and = ∑ −η

η η
↑ ↓C C C( )/2s , and are calculated with the 

integral of a closed path ∫= ∑ Ω
π
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2
 over the Berry curvature Ωn(k) of the n-th band34. Proceeding 

the calculation in silicene, we find that the topological index with different spins and valleys is 
η ηλ= − Ω +η ηC U ssgn( )s so2

. Thus, according to the relative value of external fields, we can differentiate phase 
regions with (C, Cs). For example, in the PS-QHI state, which is located in the area of |Ω − U| < λso and 
|Ω + U| > λso, the topological index is found to be = −↑ ↓

−C 1/2/  in valley K− and =↑
+C 1/2 ( = −↓

+C 1/2) in valley 
K+, and so (C, Cs) = (−1, 1/2). In the same way, the topological quantum numbers in other phase regions are 
calculated as: CBI with (0, 0), QSHI with (0, 1), P-QHI with (−2, 0).

In Fig. 1, two phase regimes of the QSHI (0, 1) and P-QHI (−2, 0) are divided by a vertical dotted line. In only 
irradiation of light, the bandgap is reduced to |Vs(Ω)|, where the short-hand notation is for Vs(x) = x + sλso. By 
substituting the Green’s function Eq. (6) in spin space into Eq. (5) and then taking the matrix trace to cancel the 
spin degrees of freedom, the RKKY interaction can be written in the form of Eq. (7), where various coefficients 
are derived as ∫ ε= −

−∞
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Figure 1.  The variation of RKKY exchange coupling with illumination parameter Ω. The QSHI and P-QHI 
phases are divided by a vertical dotted line. Two impurities are distributed on the same lattice along the zigzag 
direction, as shown in inset, with three configurations in spatial distance R = 270a [Mod(R/a, 3) = 0], 271a 
[Mod(R/a, 3) = 1] and 272a [Mod(R/a, 3) = 2]. The other parameters are EF = 0, t = 1.6 eV, and λso = 3.9 meV.
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a
2
3

. Obviously, due to the oscillation factor cos(ΔK · R) or sin(ΔK · R), the RKKY interaction 
is closely related to spatial distance R between impurities. While the impurity distance fulfils = ˆnaxR  along the 
zigzag direction, the oscillating part sin(KxRx) repeats three values: 3

2
, − 3

2
, and 0, corresponding respectively 

to the impurity configuration satisfied Mod(R/a, 3) = 1, 2, 0. This is indicated by A1, A2 and A3 in inset of Fig. 1 
while the other impurity is fixed at A0 point. However, sin(ΔK · R) always vanishes in the armchair direction, 
making the RKKY featureless, so we in the following focus on the impurities distributed along the zigzag direc-
tion and the system is half filled (EF = 0).

We in Fig. 1 present the numerical results for the illumination dependence of different terms of the RKKY 
interaction in the long range for three types of impurity positions. For the distances satisfying Mod(R/a, 3) = 1, 2, 
there emerges a prominent signature in Fig. 1(a) that the in-plane term <J 0 is ferromagnetic in the QSHI phase 
while it changes to be antiferromagnetic in the P-QHI phase. Interestingly, the transition point is close to the 
critical value of phase Ω = λso. This behavior can be understood from Eq. (8), where the second term in N  plays a 
dominant role near the critical point and the sign of its integral is almost determined by λΩ Ω = Ω −+ −V V( ) ( ) so

2 2, 
namely, for QSHI with |Ω| < λso the value of J  is negative while it is positive otherwise. For the impurity configu-
ration of Mod(R/a, 3) = 0, no such sign is observable due to sin(ΔK · R/2) = 0. Besides, it is very interesting to find 
that the out-plane term Jz in Fig. 1(b) provides more accurate signature of phase transition, manifesting itself by a 
large dip exactly at the critical point. This dip structure occurs for all of three impurity configurations. In order to 
understand it, we replace the Bessel function K0(x) with π −x e/2 x in the long range35 under consideration and 
taking a derivative of the Nz with respect to Ω. Finally, we obtain a result in the form of λ εΩ ∝ Ω − ΩdN d f/ ( ) ( , )z so , 
which explains the dip feature. Although Jz cannot changes sign like J  when the phase transition happens, its 
magnitude is quantitatively different in QSHI and P-QHI phases. For the DM term JDM, it keeps vanished for the 
Fermi energy EF = 0 due to the electron-hole symmetry and the well-preserved inversion symmetry36.

In Fig. 2(a,b), we display respectively the in-plane term J  and the out-plane term Jz as a function of the illumi-
nation parameter Ω. Obviously, the transition point of the ferro-antiferromagnetism remains unchanged for 
different impurity distance R as long as the impurity configuration satisfying Mod(R/a, 3) = 1 or 2. In the same 
way, the dip feature in Jz is also independent of the impurity distance R though the magnitude of Jz varies in dif-
ferent phases with increase of R. These signatures are for EF = 0. We depict the case for finite Fermi level in 
Fig. 2(c,d), where the signatures of phase boundary can still keep robust as long as EF ≤ λso. If one further increases 
EF beyond λso, the phase boundary becomes fuzzy somewhat, especially for J . This can be seen easily from Eq. (8) 
since the first term cannot be ignored any more with increasing EF. Figure 2(e,f) show the spatial dependence of 
Jz on the impurity distance R, where no difference in the order of magnitude appears in between the QSHI phase 
[Fig. 2(e)] and P-QHI phase [Fig. 2(d)]. At the same time, one can find the oscillation behavior, which is contrib-
uted by an additional phase factor cos(ΔK · R). Likely, J  also presents a similar scenario. The same RKKY oscilla-
tions due to the momentum difference ΔK of two valleys were in detail discussed in graphene22, which is a 
characteristic of bulk RKKY interaction obtained from the lattice Green’s function. In ref.16, this effect is dropped.

RKKY under electric field.  We here discuss the variation of the RKKY interaction when the silicene is sub-
ject to a perpendicular electric field U. As |U| > λso, the resulting staggered potential can drive the silicene from 
QSHI phase to CBI phase, whose topological numbers are labeled, respectively, as (0, 1) and (0, 0) in Fig. 3. This 
topological phase transition is discussed in detail in refs12,13. For this case, we derive the RKKY interaction as 
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Performing the numerical calculations with above expressions, we plot the J , Jz and JDM terms of the exchange 
coupling in Fig. 3(a–c), respectively. For two impurities placed at Mod(R/a, 3) = 0, though J  and Jz present a tran-
sition from the ferromagnetic to antiferromagntic phase, the transition point is far away from the critical point 
U = λso. In contrast, both J  and Jz for impurity configuration Mod(R/a, 3) = 1, 2 provide a relatively accurate sig-
nature for phase boundary: a ferro-to-antiferromagntic transition for J  and a dip structure for Jz. They are approx-
imately located at the phase transition point. Very different from the case of light irradiation, JDM shows a strong 
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dependence on the electric field as in Fig. 3(c), where Mod(R/a, 3) = 1, 2 exhibit a dip and a peak, respectively, 
providing an unambiguous fingerprint to ascertain the phase boundary between QSHI and CBI. In recent work16, 
the authors found that the RKKY interaction of QSHI phase is about 20 times greater than that in CBI phase, and 
thus it is proposed to identify the topological phase transition. But, one can notice that the precondition for this 
signature is that the magnetic impurities must be placed at the edge of silicene where the topological edge states 
play a crucial role. If the impurities are deposited in bulk, this signature vanishes. On the contrary, in our study 
the signatures characterizing phase transition stem completely from the bulk band, regardless of the contribution 
of topological edge states. Thus, one can probe the topological phases simply by measurement of the bulk doping, 
not needing to elaborately grasp the edge-state contribution, which is experimentally accessible more easily.

RKKY under both electric and light fields.  When both the electric and light fields are exerted, there 
emerge rich phases: QSHI, P-QHI, PS-QHI, and CBI as shown in Fig. 4(c), where the dashed lines denote the 
phase boundaries. Since the expressions are too tedious, we here only give the numerical results of Jz, J , and JDM 
for Mod(R/a, 3) = 1 as functions of the electric potential U and illumination parameter Ω in Fig. 4(a,b,d), respec-
tively. Intriguingly, the phase plots in Fig. 4(a,b) present distinct changes in color in different regions, which can 
be used to differentiate the different phases though it is not too very strict. Importantly, Jz not only has different 
values for different states, but also clearly characterizes the various phase boundaries, especially for the phase 
transitions between PS-QHI and CBI, PS-QHI and P-QHI, and QSHI and P-QHI, where a largest dip exists. To 

Figure 2.  The dependence of J  and Jz on Ω for (a,b) different impurity distances R with EF = 0, (c,d) for 
different EF with R = 271a. The spatial dependence of J  and Jz for (e) the QSHI phase (Ω = 1 meV) and (f) for 
the P-QHI phase (Ω = 6.8 meV). The other parameters are the same as in Fig. 1.
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compare with the phase plot, we describe the characterizing signatures of the RKKY interaction in Fig. 4(c), 
marked with red circles by selecting the local minimal values in their boundaries. With a tolerable error, depend-
ence of Jz on electric and light fields provides unambiguous signatures to identify the various phase transitions. By 
comparison, the phase boundaries of J  in Fig. 4(b) become blurry but show remarkable difference in magnitude 
or sign for different phase regions, suitable for characterizing different phase regions. It is noted that, JDM in 
Fig. 4(d) with a deep dip exactly at the critical point can only be applied to divide the phase transition between 
QSHI and CBI states, but cannot characterize the other intricate phases. As discussed above, the main reason is 
that JDM is insensitive to irradiation. Therefore, the measurement of Jz as well as J  could be a valid method to 
divide the different topological areas and their phase boundaries. A recent theoretical work in ref.14 proposed that 

Figure 3.  The dependence of (a) J , (b) Jz, and (c) JDM on the electric potential U. The others are the same as in Fig. 1.

Figure 4.  The phase diagrams of (a) Jz, (b) J , and (d) JDM as functions of U and Ω. (c) The comparison between 
the phase boundary (black dashed lines) and the dip position of Jz (red circles) which is selected from the local 
minimum value in (a). Different phases are labeled by different quantum numbers (C, Cs), which represent for 
charge- and spin-Chern numbers, respectively. The chosen parameters are EF = 0 and R = 271a.
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the abundant topological phases can be distinguished by measuring the Nernst conductivity. Notice that there, 
three types (spin, charge, and valley) of Nernst conductivity have to measure simultaneously, and then to compare 
them carefully to determine the phase transition boundaries. By contrast, we present an Ising RKKY diagram, 
from which various phases and their boundaries can be determined simultaneously only by the measurement of 
one type of the RKKY terms.

Conclusions
We have studied the RKKY coupling of a monolayer silicene subject to an off-resonant light and a perpendicular 
electric field. Due to topological phase transition, the RKKY coupling shows strong dependence on the illumina-
tion and electric potential. Based on the lattice Green’s function formalism37, we have analyzed in detail the vari-
ation of the RKKY interaction for different impurity configurations along zigzag direction. It is found that the 
indirect magnetic interaction has tight connection with various topological phase transitions. For the case irradi-
ated by light, a dip structure of Jz can exactly identify the phase transition of QSHI/P-QHI while the peak or dip 
of JDM can feature the critical point of phase transition of QSHI/CBI induced by an electric field. For more com-
plex phase driven by both light and electric fields, it is found that Jz provides information enough to divide the 
different topological areas with a forgivable error in the phase boundary. Also, J  exhibits remarkable difference of 
magnitude or sign in different phase regions though it is hard to differentiate the phase boundary. Since there are 
quite rare methods to detect them, especially for the phase transition between PS-QHI and P-QHI, measurement 
on the RKKY interaction provides us an alternative method to probe the rich topological phases in silicene or 
other spin-orbit systems. The underlying physics is that both the topological property and magnetic property are 
determined by bandgap of the band structure. Our proposal is expected to feasible with present technique of 
spin-polarized scanning tunneling spectroscopy38, which can measure the magnetization curves of individual 
atoms.

Methods
Derivation of RKKY interaction.  Starting from the effective Hamiltonian ′ηH s in Eq. (3), the spin- and 
valley- dependent retarded Green’s function in k-space can be calculated as
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
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where the matrix is in the sublattice space {A, B}. Performing a Flourier transformation from k-space to real space 
and only consider the same sublattice A,
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which is Eq. (6) in maintext. Due to Gs(R, ε) diagonalized in spin space, the RKKY interaction of impurities in 
Eq. (5) is given by
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Inserting the Green’s function G(R,ε) in Eq. (15) into the above equation and calculating the trace of the 
matrix product σiG(R, ε)σjG(−R, ε) over the spin, the RKKY interaction can be divided into three parts
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For the radiation with light field, Uηs = ηVs(Ω) = η(Ω + sλso). With the help of Eqs (15) and (18), one can sim-
plify the RKKY component J  as
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We denote ∫ ε= −
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Similarly, the other RKKY components N  and NDM can be obtained to be Eqs (9) and (10).
In applied electric field where Uηs = ηVs(U) = U + ηsλso, one can perform the same procedure, and the RKKY 

interaction in Eqs (11–13) are also obtained.
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