
1ScientiFic REPORTS |  (2018) 8:5920  | DOI:10.1038/s41598-018-24208-2

www.nature.com/scientificreports

Disposable all-printed electronic 
biosensor for instantaneous 
detection and classification of 
pathogens
Shawkat Ali1,4, Arshad Hassan1,4, Gul Hassan1, Chang-Ho Eun2, Jinho Bae  1,5,  
Chong Hyun Lee1 & In-Jung Kim2,3

A novel disposable all-printed electronic biosensor is proposed for a fast detection and classification of 
bacteria. This biosensor is applied to classify three types of popular pathogens: Salmonella typhimurium, 
and the Escherichia coli strains JM109 and DH5-α. The proposed sensor consists of inter-digital silver 
electrodes fabricated through an inkjet material printer and silver nanowires uniformly decorated 
on the electrodes through the electrohydrodynamic technique on a polyamide based polyethylene 
terephthalate substrate. The best sensitivity of the proposed sensor is achieved at 200 µm teeth spaces 
of the inter-digital electrodes along the density of the silver nanowires at 30 × 103/mm2. The biosensor 
operates on ±2.5 V and gives the impedance value against each bacteria type in 8 min after sample 
injection. The sample data are measured through an impedance analyzer and analyzed through pattern 
recognition methods such as linear discriminate analysis, maximum likelihood, and back propagation 
artificial neural network to classify each type of bacteria. A perfect classification and cross-validation is 
achieved by using the unique fingerprints extracted from the proposed biosensor through all the applied 
classifiers. The overall experimental results demonstrate that the proposed disposable all-printed 
biosensor is applicable for the rapid detection and classification of pathogens.

A rapid and low-cost detection and classification of bacterial contamination is important information in many 
practical applications such as food industry1,2. Food safety, in particular, is a critical global issue with public health 
implications because foodborne outbreaks can create health crises. The World Health Organization (WHO) 
defines foodborne illness as a disease caused by agents that enter into a body through food3. According to a 2015 
WHO report, it has been estimated that 1 out of 10 people in the world have fallen ill after consuming contami-
nated food. 420,000 people have also died from foodborne illnesses, including 125,000 children under the age of 
54. In South Korea, it has been reported that the annual foodborne illness estimate is 3,361,385 people5. The food-
borne pathogens are the main source of causing foodborne illness as they rapidly grow and create toxic effects in 
food6. For the reason, the proper identification methods of foodborne pathogens can provide a solution to prevent 
foodborne disease outbreaks. On the contrary, some of the bacteria are good for health, i.e., in yogurt, which 
need easy and exact classification of bacteria types for disease control. Most of the conventional methods rely on 
biological and biochemical processes for microbial identification7. These conventional methods are well-known 
as simple culture and colony counting methods that involve the counting of bacteria, morphological, enzyme 
linked immunosorbent, immunology based methods that involve the antigen-antibody interactions, and DNA 
analysis based quantitative Polymerase Chain Reaction (qPCR) or microarray methods. Although these methods 
are precise, they can give both qualitative as well as quantitative information of the observed microbes. These 
conventional methods have significant limitations in term of cost, special facilities, and a long procedural time8–10.
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In terms of a detection time for bacteria, the previous methods mentioned should be accompanied with a fast 
prescreening, which helps provide a rapid detection1,2. Newly developed methods based on real time qPCR can 
detect rapidly and robustly compared to the other methods, but they are still restricted by time constraints as 
they require several hours as well as expensive apparatuses8–12. Similarly, another nondestructive technique using 
hyper-spectral imaging is a real time rapid method for identifying microbes13–16, but it is a high-cost technology 
due to it needing sensitive detectors. The food pathogens produce volatile compounds, including terpenes and 
alcohol, which have specific characteristic odors17,18. These bacterial species influence the amount of volatile 
compounds that are used as bio-markers for their identification19,20. In recent years, the electronic nose (E-Nose) 
with the MOS biosensor has been studied for real time monitoring of these characteristic odors. It was found that 
it could applied be applied to identify food pathogens because volatile compounds can change during bacteria 
growth21–24. However, the output signal of this sensor in the array is less reliable due to the cross interference 
caused by irrelevant gasses. The same problem occurs for all the other sensors in the array, which makes the 
output erroneous. The accuracy of the E-nose sensor improved with pattern recognition methods. However, the 
accuracy still remained below hundred percent25–31. In the impedance based bacteria sensors, most of the stud-
ies demonstrated bacteria detection methods by using the antibody to attract the bacteria towards the sensor’s 
electrode, but these methods need several hours to take place32–35. Secondly, the instrument cost is high and not 
available everywhere in developing countries due to their limited resources. In such countries, health centers, 
medicine, and food industries require low cost and disposable biosensors. To fulfil these requirements, a simple 
biosensor that has rapid detection and is low cost and environmentally friendly is essentially required.

In this paper, we propose a novel impedance based biosensor that can detect three different types of bacteria, 
including Escherichia colistrains JM 109 and DH5-α, and Salmonella typhimurium. We verify this biosensor’s 
capability by using the various machine learning algorithms to classify them. Although both the E. coli JM 109 
and DH5-α are gram-negative bacteria, which are not pathogens, these two strains have a similar phenotype 
to pathogen such as E. coli strain O157. These two strains were developed for laboratory molecular cloning. 
Salmonella is a genus of the rod-shaped gram-negative bacteria and facultative intracellular pathogen. Salmonella 
usually can cause self-limiting gastrointestinal diseases, and can be transmitted through the ingestion of contam-
inated food or water. These three bacteria organisms are quantitatively measured based on their impedance var-
iation under the same conditions. The real-time impedance variation of the sensor for the three types of bacteria 
is measured through an impedance analyzer and the data are fed to a computer program for the classification, as 
shown in Fig. 1.

The proposed biosensor consists of comb type silver electrodes fabricated on a transparent and flexible plastic 
polyethylene terephthalate (PET) substrate by utilizing a Fujifilm inkjet Dimatix material printer (DMP-3000). 
The inter-digital electrodes’ finger width is 100 µm and the separation between the fingers is 200 µm. To increase 
the sensitivity of electrodes for small bacteria detection, Ag nanowires are decorated over the electrodes through 
the electrohydrodynamic (EHD) printing technique, as shown in Fig. 2a. The Ag nano-wires facilitate the bacteria 
species in making an electrical connection between the finger electrodes. When the bacteria sample is dropped on 
the sensor, its impedance varies inversely against the bacteria concentration. Similarly, different types of bacteria 

Figure 1. Schematic diagram of bacteria measurement and classification.
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of the same concentration can result in a slightly different impedance because of their chemical properties. For 
the same concentration (106 CFU) of three types of bacteria, the impedance value is slightly different after 8 min 
of sample injection, which can lead to a rapid detection and classification of pathogens. Using the Agilent probe 
station, we measured the current voltage (I-V) values for three types of bacteria by applying a voltage sweep 
of ±2.5 V, and a small change in the measured data was processed by machine learning algorithms in Matlab 
R2015a to classify the type of bacteria. The pattern classification algorithms were used as linear maximum likeli-
hood estimation (MLE), linear discrimination analysis (LDA), and non-linear back propagation neural network 
(BPNN) methods. In order to classify these bacteria, unique fingerprints, including the power, I-V curve, first, 
and second derivative of the I-V characteristics, were utilized to achieve 100% classification. These results show 
that the proposed low cost and disposable all printed biosensor can be a good candidate for the rapid detection 
and classification of food pathogens.

Results
As shown in Fig. 2a, the optimized biosensor is based on silver inter-digital electrodes with 200 µm finger spacing 
and decorated with an Ag nanowire concentration of 30 × 103/mm2 on a PET substrate (For further details about 
the sensor design, see section 1 in supplementary information.). The proposed biosensor measures impedance 
variation to detect and classify bacteria, which is utilized to identify a type among the three bacteria. To collect the 
data, the proposed sensor needs an impedance measurement system, as shown in Fig. 1, where an Agilent semi-
conductor analyzer B5100 is utilized for current-voltage (I-V) characteristics. As shown in Fig. 3a and b, the bio-
sensor was loaded into the probe station, and the probes were connected to the terminals at ambient conditions. 
Bacteria cells were casted on the sensor with the help of a micro-pipette tip (1 μL), as shown in Fig. 3c, and a volt-
age sweep of ±2.5 V was applied across the terminals of the biosensor to characterize the I-V curve. As a result, 
the response time of the sensor was analyzed by injecting the bacteria sample and measuring the impedance with 
respect to time under a fixed 2.5 V. Initially, the sensor showed variation in the impedance. However, after 8 min of 
the sample injection, the impedance became stable for all three types of pathogens. The impedance became stable 
due to the interaction of bacteria with electrodes by making conductive paths between the fingers of the sensor 
with the help of AgNWs. For example, the E. colisalmonella bacteria cell was measured against a concentration of 
104–107 CFU/mL, and the measured impedance went to a steady state after 8 min, as shown in Fig. 3d.

To classify three types of pathogens, E. coli JM 109 and DH5-α, and Salmonella, 40 samples of each bacteria 
type were measured at the same concentration of 106 CFU at an ambient temperature. The temperature had no 
effect on the measurement since the measurement took place immediately after injecting the bacteria sample onto 
the sensor. Hence, the movement of the bacteria was not affected by the temperature variations. Each measure-
ment contained 251 data points that were represented by a vector, = …x x x x( , , , )1 2 251 . The voltage sweeping of 
±2.5 V with 251 steps was applied, which resulted in 251 of current (I) values, and these values are represented by 
x1 up to x251 (See section 6 in supplementary information for the detailed descriptions.). Each component of the 
data vector represents the current (I) value; e.g., x1 and x251 denotes the 1st and the last current values at −2.5 V 
and 2.5 V, respectively. Figure 4a indicates the measured impedance data against ±2.5 V sweep for the salmonella 
against concentrations of 105, 106, and 107 CFU/mL, which can be seen that the impedance value inversely varies 

Figure 2. (a) Comb type electrodes on a PET substrate, the zoomed image shows Ag nanowires in the space 
between two electrodes. (b) Bacteria engaged with sensor that varies the impedance of the sensor.
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Figure 3. (a) Measurement setup of the bacteria sensor. (b) Bacteria sensor connected with probes for 
measurement. (c) Zoomed image of the sensor electrodes engaged with bacteria. (d) Impedance vs bacteria 
concentration curves of salmonella.

Figure 4. Impedance of the sensor against bacteria concentration: (a) DH5-α, (b) JM109, (c), salmonella, and 
(d) combined impedance response of the sensor at 106 CFU/mL.
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with the concentration of bacteria. These impedance relations are because the higher concentrated bacteria cre-
ates more electrical paths between the electrodes’ fingers compared to a lower concentration. For E. coli JM109 
and DH5-α samples, a similar trend was also observed, as shown in Fig. 4b and c. Figure 4d shows the impedance 
comparison of three selected bacteria with the base solvent (blank), as well as the settled impedance values of the 
E. coli DH5-α, JM 109, and salmonella.

As shown in Fig. 3d, the measured impedance before 8 min was not stable and the classification of the bacteria 
type was difficult. After 8 min, the impedance became stable. However, the difference among the impedance of 
three types of bacteria has a small value, which is difficult to detect with a conventional ohmmeter. To make a 
reliable classification of pathogens using both linear and nonlinear classification methods, Matlab R2015a was 
utilized. Unique fingerprints of the sample, including the first and second derivative, power, and energy, were 
extracted as described in the discussion section. These features were used in pattern recognition methods to clas-
sify microbes by using MLE, LDA, and BPNN, as detailed below:

MLE. As shown in Fig. 4d, each bacteria type has its own individual impedance variation for the fingerprint. 
By using a simple visual investigation of the feature differences or I-V response, all three types were rapidly clas-
sified by using the classical statistical MLE method36–38. Only two significant features (125th and 126th) among 
the data points {x1 … x251} were selected from the current data vectors. Forty observations were collected for each 
class, and the training samples among them were randomly selected; 70% of the data set were used to calculate 
the mean and covariance of each class. The ML classifier used this information of the mean and covariance to 
find the best estimate of the given testing sample. Figure 5a shows the result of the ML classifier with a suitable 
color illustrating different classes with a distinguished center, and a circle indicating the mean and covariance 
of each class, which are clearly separable. The accuracy analysis of the ML classifier was carried out by a square 
confusion matrix by comparing the identified class sample with the reference class. The confusion matrix’s rows 
and columns were equal to the number of classes and the diagonal entries represented the correct samples of 
each class while the remaining entries were misclassified. The achieved overall accuracy of the ML classifier was 
100%, indicating correct classification of all the testing samples as compared to the reference samples. This high 
accuracy of MLE was due to the usage of good features, which were extracted from the measured data, as shown 
in Figures S11 and S12 in the supplementary information.

LDA. Fig. 5b graphically illustrates the result of the LDA on the given data set. The measured data set includes 
the 1st and 2nd derivatives of the I-V data. In the scatter plot shown in Fig. 5b, the x-axis and y-axis represent the 
1st and 2nd features of the 1-V data, respectively. These are the 120th and 121st current values, which are called 
features of each class. In the scatter plot, three distinguished cluster trends show Salmonella and E. coli JM 109 
and DH5-α. The Salmonella had more variance as compared to E. coli JM 109 and DH5-α. The Salmonella also 
showed 47% variance, while E. coli JM 109 and DH5-α showed 34% and 19% variance, respectively, summing 
to a total of 100% data variance. As the analysis of scattering plot shows in Fig. 5b, there was a clear separation 
between the three bacterial groups. All the testing samples were well clustered along the two hyper planes with 
the exception of a few samples among these bacterial groups at the edges of the LD’s planes. The achieved overall 
accuracy by LDA is 100%, indicating accurate discrimination of the bacterial types.

BPNN. Previously, linear models were applied to the subjective problem, which produced precise classification 
results. Now, in contrast to the linear model, a nonlinear BPNN was applied to the given classification problem 
with a data set. The configuration of BPNN consisted of an input layer, a hidden layer, and an output layer. All of 
the features were used as an input with the target labels. The total number of nodes in the hidden layer and output 
layer were 10 and 3, respectively (See Figure S13 in supplementary information.). Other BPNN model parameters 
were selected as follows: the data were split into random training, testing, and validation sets, “tanh” was used 
as the activation function, and error gradients were found by the conjugate gradient. The objective function was 
cross entropy, while the learning rate and maximum iteration length were set to be 0.1 and 1000, respectively. 

Figure 5. (a) Prediction of samples of three types of bacteria using MLE model (E. coli DH5-α, JM 109, and 
Salmonella are red, blue, and green color, respectively). (b) Cluster plot with LDA model for three types of 
bacteria.
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Out of a total of 120 data vectors (100% data), 84 vectors (70% data) were used as training, while the remaining 
36 vectors (30%) were divided equally between the testing and validation data sets, as shown by the confusion 
matrices in Fig. 6a,b and c, respectively. The accuracy analysis of BPNN was carried out by a square confusion 
matrix. All the samples were sorted in a diagonal position within a confusion matrix that has 131 interactions. The 
BPNN achieved 100% accuracy in training, testing, and cross validation, and all bacteria samples were correctly 
classified, as shown in Fig. 6d. (See supplementary section 6 for more detail.).

Discussion
As shown in Fig. 4d, the resistance of three types of bacteria at 106 CFU/mL was slightly different for each type 
because of their chemical properties, and these impedances made them distinguishable from each other. When 
the same types of bacteria samples were tested, there was also nominal resistance variation for each sample as 
represented by the error bar. These errors were due to the variation in the sample size, the position of the sample 
on the sensor’s surface, and the concentration of bacteria in each sample. Since the space between the fingers 
of the inter-digital electrode has an impact on the sensitivity of the sensor, it is important to find an appropri-
ate finger space for the inter-digital electrode. For example, when the finger separation is l00 µm, there can be 
short-circuiting because of AgNWs, which makes it difficult to control the proper density during the EHD spray 
deposition. For this reason, from using the measured resistance variations from this finger spacing, the classi-
fication of the three types of pathogens becomes difficult. Although a small amount of each type of bacteria is 
measured, it has almost the same resistance due to interconnections between the fingers.

On the other hand, the sensors that have a larger finger spacing over 200 µm also have great impact on the 
sensitivity of the sensor. To make the connections in between the fingers for large spacing, a very high concentra-
tion of bacteria is needed because there needs to be a connection of at least 40–100 bacteria in series. In the large 
spacing case, some bacteria were exceptionally connected in the series to create a path between the fingers, and 
the resistance of the sensor did not change enough to detect the pathogens. Hence, a large spacing over 200 µm 
between the fingers reduces the sensitivity and cannot detect the bacteria efficiently. In this paper, we have exper-
imentally used 200 µm finger spacing for three types of pathogens, which significantly detects the bacteria with 
good sensitivity (See section 1 in supplementary information for the best finger space).

Figure 6. Classification of bacteria by using neural network (NN) with (a) 70% training, (b) 15% validation and 
(c) 15% test data. (d) All 40 samples of each bacteria type are correctly classified.
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AgNWs also affect the performance of the proposed biosensor to detect random scattered bacteria. This is 
because a long chain of bacteria between the fingers is needed in order to complete the connected circuit with-
out AgNWs. Hence, the AgNWs enable the sensor to detect easily the random scattered bacteria in a short time 
without making a chain between the fingers, which requires a very long time. To detect three types of pathogens, 
the density of AgNWs is important. For example, there is a short circuit between fingers when the AgNWs are 
deposited with high density, and a low density reduces the sensitivity. We experimentally selected the density 
of AgNWs as 30 × 103/mm2 for maximum sensitivity (See section 2 in supplementary information for AgNWs 
concentration.).

The sensor with 200 µm spacing and a medium concentration of 30 × 103/mm2 AgNWs can detect all concen-
trations of bacteria. However, a high concentration of 107 CFU/mL as well as a low concentration of 105 CFU/mL 
for the bacteria colony had a minimum effect on the performance of the proposed biosensor, but 106 showed good 
sensitivity. Hence, a bacteria concentration of 106 CFU/mL was used, which partially changed the impedance 
of the sensor while the machine learning algorithms efficiently classified the bacteria categories. The reference 
resistance was only due to a culture liquid medium without bacteria, and this reference resistance remained con-
stant over time. When the homogeneous bacteria dilutions were casted over the sensor at ambient conditions, the 
bacteria moved down to the surface of the sensor through the culture medium and attached with AgNWs, which 
decreased the resistance between the fingers of the inter-digital electrodes. This process can take some time, 
which is called the settling time of the sensor, where the impedance of the sensor is not stable during this period. 
After the settling time, the bacteria on the surface of the proposed biosensor becomes almost stable. Hence, it 
gives a constant resistance. Each type of bacteria has a different size, shape, and biochemical composition. Hence, 
these are the main factors that can lead to a slight variation in terms of the electrical resistance against each bac-
teria colony.

For testing purposes, we cultured bacteria with these characteristics: Salmonella cells had diameters between 
approximately 0.7 and 1.5 µm and lengths from 2 to 5 µm, which were rod-shaped motile bacteria that possessed 
flagella. The E. coli strains JM 109 and DH5-α were typically rod-shaped and had a diameter from about 0.25 
to 1.0 µm and a length of about 2.0 µm. S. typhimurium and E. coli showed a high degree of similarity on their 
genome contents as well as the overall shape described above. Both microorganisms were Gram-negative facul-
tative anaerobe bacteria and part of the family of Enterobacteriaceae. Hence, they were closely related bacteria. 
However, two bacteria had different patterns of carbon utilization39 and lipid composition36. E. colistrains JM 109 
and DH5-α were very similar strains, except for F’episome in E. coli JM 109. There were also some additional 
differences in genotype between the E. coli strains JM 109 and DH5-α.

By utilizing the cultured bacteria, the output impedance of the sensor was measured and normalization was 
done to make it consistent for the feature extraction. The normalization was done by dividing each measurement 
with a maximum value among the samples. Based on power, energy, and slop, the features were extracted from 
the collected data. These variables were used for linear analysis, and there were clusters of each bacteria type, as 
shown in Fig. 5. There was partial overlapping between the measured variables. However, the machine learning 
algorithms were used to get a good performance in terms of classifying different bacteria categories. Linear MLE, 
LDA, and non-linear BPNN tools were studied for classification, which clearly separated each bacteria type by 
classifying 100%. Hence, it was feasible to use these algorithms to classify these bacteria categories.

In conclusion, a new type of biosensor based on the resistance variation of a rapid detection of bacteria was 
proposed. The detection time was less than 10 min and the per unit cost was less than 1 USD/unit. To verify 
the biosensor, it was applied to classify different types of pathogens through pattern recognition methods by 
using the measured data from the sensor. The biosensor based on comb type highly conductive silver electrodes 
was fabricated through printed inkjet technology at ambient conditions and standard atmospheric pressure. To 
increase the detection for random scattered samples, AgNWs were sprayed over the printed biosensor by the 
EHD technique. The quantitative concentration of microbes 106 CFU/ml was used for the identification process. 
The current of the proposed biosensor varied and reached up to few micro amperes for different bacteria types 
when a voltage of −2.5 to 2.5 V was applied across its terminal. The Agilent B1500A semiconductor device ana-
lyzer and the probe station were utilized to measure the I-V characteristics of three popular bacterial types: E. coli 
JM 109 and DH5-α, and Salmonella. Unique fingerprints or features (I-V curve, slop, 2nd derivative, and energy) 
were extracted from the measured I-V characteristics from the proposed electronic biosensor. Linear MLE, LDA, 
and nonlinear BPNN pattern recognition methods were used to classify three food pathogens. All the samples 
were correctly classified with 100% accuracy by using the MLE, LDA, and BPNN pattern recognition methods. 
The overall results show the proposed scheme is simple, fast, accurate, and economical. Hence, it can be utilized 
in the food industry as an early detection and classification method.

Methods
Sensor. Design. The proposed biosensor consists of silver inter-digital electrodes decorated with silver nano-
wires on a plastic, 100 µm thick PET substrate. The dimension of the biosensor was experimentally selected with 
a finger width of 100 µm and fingers spacing of 200 µm, as shown in Fig. 2a, and an AgNWs density of 30 × 103/
mm2 (See the detailed description in supporting information about selecting the best sensor.).

Materials. The electrodes of the sensor were made of silver nano particle ink that was prepared as follows: First, 
silver nanoparticles (purchased from ANP South Korea) 55 wt% were diluted in a 10 mL ethylene glycol solvent 
and mixed for 2 hours by a magnetic stirrer. Then, there was bath sonication for 25 min. The Ag ink had a viscosity 
of 11.3 mPa.s (by using the Viscometer VM-10A system), a surface tension of 36.8 mNm (analyzed with surface 
electro optics), and a specific gravity of 1.66 gm/mL. The second material used in fabricating the sensor was silver 
nanowires (AgNWs) that were purchased from Sigma Aldrich in South Korea. The average length and diameter 
of the silver nanowires were in the µm and nm range, respectively.
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Two steps fabrication. The sensor was fabricated in a two step process. First, the comb type electrodes of the bio-
sensor were designed in ACE-3000 and fabricated by a DMP-3000 material inkjet printer. In the second step, the 
silver nanowires were sprayed over the surface of the sensor using the EHD technique. The electrode file designed 
in ACE-3000 was converted into a compatible file format for the DMP-3000 material printer, loaded into DMP-
3000, and silver ink (3 mL) was filled in a cartridge that contains 16 nozzles. The substrate was treated with a UV 
ozone cleaner for 30 sec and then loaded into the inkjet printer. The printing process and setup conditions such as 
drop spacing, drop velocity, heating temperature, number of layers to be printed, and number of nozzles used in 
printing and height of the substrate were selected in the Dimatix Drop Manager (DDM). Before the biosensor was 
printed using the Fuji Film Dimatix DMP-3000 printer, the software design was exported to ACE 3000 software 
in a Gerber file format that contains all the geometrical dimensions of the electrodes design. The converted file in 
the DMP-3000 was used for printing the electrode from a material inkjet printer.

We deposited two layers of silver ink on the PET substrate to increase the electrical conductivity as well as 
to achieve continuous conductive patterns (See section 4 in supplementary information for more details). After 
depositing the silver ink for the electrodes, the silver ink was cured at 100 °C for 30 min. The fabricated biosensor’s 
electrode is shown in Fig. 7a. NV-2000 (Universal) non-contact surface profiler with a nano level accuracy was 
used for surface morphology measurements in a phase shifting interferometry (PSI) mode. As the 3D profile of 
Ag electrodes is shown in Fig. 7b covering two fingers and space between them, it can be seen that the electrodes 
deposited through the inkjet printer are uniform with a thickness of almost 400 nm. The bacteria detection was 
difficult as the spacing between the fingers was 200 µm, while the size of the bacteria was less than 4 µm. Hence, we 
used AgNWs to reduce the spacing between the electrodes, which helped in detecting a lesser amount of bacteria, 
easily. The AgNWs were decorated on the electrodes through the EHD system with an average density of 30 × 103/
mm2 (See section 5 in supplementary information about AgNWs deposition using EHD.). The average length of 
the AgNWs varied between 2 to 5 µm and the length of bacteria was 0.2 to 5 µm, as shown in Figs 7d and 8a,b,  

Figure 7. (a) Photograph of the fabricated bacteria sensors on a PET substrate, the zoomed image is shown in 
the inset. (b) 3D nano profile image of the Ag bare electrodes. (c) SEM image of the Ag nanowires between the 
electrodes. (d) TEM image of the AgNWs spread over the electrodes. (e) Optical microscope images of AgNWs. 
(f) Optical microscope images of bacteria over the electrodes of sensor.
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respectively. In the case of electrodes without AgNWs, a chain of 40 to 100 bacteria was needed to make a finger 
to finger electrical connection, which can cause changes in impedance. This detection is rarely possible in a high 
bacteria concentration. Hence, the sensitivity of the sensor is very low and it cannot be used for low and medium 
concentrations of bacteria as the detection of these concentrations are important in the food industry (See section 
3 in supplementary information about bacteria concentration).

After decorating AgNWs on the electrodes, the average spacing between the two AgNWs is the same as the 
length of the bacteria where a lesser amount of bacteria can make connections from finger to finger and enable the 
sensor to detect a lesser amount of bacteria. The scanning electron microscopy (SEM) image (taken through Jeol 
JSM-7600F) of decorated AgNWs on the electrodes is shown in Fig. 7c. Because of the non-uniform deposition of 
AgNWs, they are making chunks, but they are still not making a short circuit between fingers. The surface morphol-
ogy of the AgNWs was also studied using transmission electron microscopy (TEM) as the corresponding image 
given in Fig. 7d. It shows the diameters of nanowires in nm range and lengths of tens of micrometer. The optical 
microscope images of AgNWs and bacteria between the inter-digital finger electrodes are shown in Fig. 7e and f.  
The spacing between the bacteria is in micro meter that can be occupied with an average concentration of AgNWs 
(See section 2 in supplementary information about AgNWs concentration.). The sensor was analyzed with energy 
dispersive spectroscopy (EDS) on order to confirm the elements present on the surface of the sensor. During 
the EDS analysis through SEM, the sensor surface contain AgNWs and E.Coli bacteria. The EDS spectrum and 
tabulated results revealed that Ag, C, Cl, and Zn are the main elements present with C being the most abundant 
in the selected field as shown in Fig. 8. The Ag peaks originate from the AgNWs, whereas C peaks originate from 
the PET substrate, Cl and Zn are present due to the E-Coli bacteria and its solvent.

Bacterial Colony Preparation. In this paper, the E. coli strains JM 109 and DH5-α purchased from 
Promega Corporation and the Salmonella strain kindly provided by Prof. Tatsuya Unno in Jeju National 
University were used. The three bacteria strains were cultured on a Luria-Bertani (LB) solid medium at 37 °C 
for 16 hours to obtain a single colony. The single colony of each bacteria cell was picked up and cultured in an 
LB liquid medium at 37 °C for 16 hrs with shaking at 180 rpm. After the culture, the bacteria cells were col-
lected by centrifugation at 3000 rpm for 5 min and the supernatant was removed. The collected bacteria cells were 
re-suspended in 1 mL of deionized water (DW) and the cell density was checked using a spectrophotometer. The 
re-suspended cells were diluted with DW to adjust the cell density from 104 to 107 colony-forming units CFU/mL.

Measurement. In measurement, we loaded the sensor in the Agilent probe station. Then, we casted the bac-
teria over the sensor and measured the electrical characteristics.

Casting the bacteria over sensor. The sensor was loaded on the adjustable stage of the Agilent probe station, as 
shown in Fig. 3a, and probes were connected across the sensor. The prepared solution of each type of bacteria was 
casted over the sensor by using a 1 µL micropipette tip. At each time, a new sensor was used to measure the data 
of each bacteria sample. The zoomed image of the sensor can be seen in Fig. 3c. The optical microscope image 
of the sensor is shown in Fig. 7f, which clearly shows that the bacteria are present over the surface of the sensor.

Data Acquisition System. Each bacteria type was uniformly casted over the surface of the sensor to take a meas-
urement by using the Agilent probe station. The resistance of the sample was measured across the terminal of the 
sensor. The sample data values were measured after 8 min of the sample injection on the sensor. A total of 120 
measurements were taken from 40 samples of each type of bacteria.

Classification. Feature extraction. The data set contained forty voltage and current vectors of each bacteria 
type. The sample impedance was measured from the voltage and current values for the voltage sweep of ±2.5 V. 
The characteristic variable of the current has scalar values, which has an important role in recognizing the bacte-
ria type. This is because it has different characteristics for each bacteria type, which helps to classify the bacteria. 

Figure 8. EDS analysis of the sensor between two finger electrodes.
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We also extracted the first and second derivative of the current vector as feature vectors (See sub section 6.3 in 
supplementary information for more detail). Similarly, the characteristic variation of power, which is the scaled 
version of the current, is an important feature variable for classifying bacteria categories. Therefore, the current, 
impedance, current vector first and second derivative, power, and energy were extracted as feature vectors for 
classification. The obtained features, as shown in Figure S11, make a good classification of pathogens more easily, 
quickly, and accurately.

Algorithms. Both the linear as well as nonlinear machine learning algorithms were used to discriminate bac-
teria types. In linear algorithms, we selected the maximum likelihood (ML) and linear discriminant analysis 
(LDA) methods, as they are widely accepted as standard approaches and are simple and easy to implement. The 
MLE classifier is a statistically consistent approach for estimation and it becomes a minimum variance unbiased 
estimator as the size of the data set increases. This means the estimator has the minimum variance and the nar-
rowest confidence interval of all estimators for that type. However, the computational cost of MLE is high and 
takes a longer time to estimate the data points as the data size increases. For this reason, LDA is an attractive 
linear classifier because it has design criteria based on maximizing class separability. For the nonlinear machine 
learning algorithms, we used BPNN, which is a popular, powerful, self-adaptive, and flexible algorithm. It also 
has the capability of capturing nonlinear and complex underlying characteristics of any physical process with a 
high accuracy. However, its convergence is slow, but guaranteed. BPNN is a black box learning approach and the 
user cannot interpret the relationship between input and output to deal with uncertainties. It is also complex as 
compared to MLE and LDA due to it being nonlinear and consisting of a layered configuration, where the error 
back propagates and then the weights in the layers update to minimize the error. The extracted feature variables 
were provided to LDA, MLE, and BPNN, and the performance of all these algorithms were evaluated to discrim-
inate bacteria classes. The data analysis process that used machine learning algorithms was carried out in Matlab 
R2015a (Mathworks) on MS Windows 7.
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