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Quantization of geometric 
phase with integer and fractional 
topological characterization in a 
quantum Ising chain with long-
range interaction
Sujit Sarkar

An attempt is made to study and understand the behavior of quantization of geometric phase of a 
quantum Ising chain with long range interaction. We show the existence of integer and fractional 
topological characterization for this model Hamiltonian with different quantization condition and also 
the different quantized value of geometric phase. The quantum critical lines behave differently from 
the perspective of topological characterization. The results of duality and its relation to the topological 
quantization is presented here. The symmetry study for this model Hamiltonian is also presented. Our 
results indicate that the Zak phase is not the proper physical parameter to describe the topological 
characterization of system with long range interaction. We also present quite a few exact solutions 
with physical explanation. Finally we present the relation between duality, symmetry and topological 
characterization. Our work provides a new perspective on topological quantization.

The physics of Berry Phase (geometric phase) has been playing an important role in understanding pivotal find-
ings of quantum condensed-matter systems1–22. The concept of geometric phase was put first by Pancharatnam23 
in 1956, in the context of interference of polarized light. However the generalization of Berry’s concept has been 
carried out by Wilczek and Zee24 and also by Aharonov and Anandan25 independently. The motivation of this 
research presented here is derived from the seminal work of Berry. Berry has found this phase along with the 
dynamical phase of the system for the cyclic evolution of a wave function and, at the same time, this phase is 
gauge invariant. Here, we mention very briefly the basic aspect of geometric phase to emphasis the importance 
of the present study of quantization of geometric phase from the perspective of integer and fractionally topolog-
ical characterization. One finds the time evolution of the Hamiltonian through the time dependent Schrödinger 
equation

ψ ψ| > = ∂ | > .H R t t ih t( ( )) ( ) ( )t

The Hamiltonian of the system depends on the parameter R(t) which changes with time adiabatically. One 
can also write this equation in a basis |φ(x(t)) > corresponding to the energies En as, H(R(t))|φ(R(t)) > = En(R(
t))|φ(R(t)) >.

Berry assumes that the properties of the Hamiltonian is such that there is no degeneracy and no level crossing 
in the system during the evolution. During the adiabatic time evolution of the system, the state vector acquires an 
extra phase over the dynamical phase, ψ φ| > = | >αR t e R t( ( )) ( ( )n , where αn = θn + γn. ∫θ τ τ= −( )E d( )n h

t
n

1
0

 and 
γn are the dynamical and geometric phases respectively. Finally, Berry obtained the geometric phase as

∫γ φ φ= < |∇| >C i x x dx( ) ( ) ( ) ,n
C
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when the system is given to the cyclic evolution described by a closed curve. It is evident from the analytical 
expression that Berry phase depends on the geometry of the parameter and loop (C) therein. This is the basic 
origin of geometrical character of the Berry phase.

Here, we mention very briefly the famous example of geometric phase of spin-1/2 particle, which is moving in 
an external magnetic field 

→
B  rotating adiabatically under an angle θ around z-axis. The time dependent external 

magnetic field can be written as, Bx(t) = B0 sin θ cos (ωt), By(t) = B0 sin θ sin (ωt), Bz(t) = B0 cos θ, where ω is the 
angular frequency of the rotation and B0 = |

→
B (t)|. The Berry phase can be evaluated very easily as

∫γ ψ ψ θ φ

π θ

= < |∇| >

= −

± ± ±



i B dsin ,

(1 cos ), (1)
C

0

where |ψ± > are the eigenstates with energies E± = ±μB0. The curve C in the parameter space is a sphere due to 
the existence of three component of an external magnetic field, B0 = constant, θ = constant, ε ∈ [0, 2π]. One can 
write the above equation as half of the solid angle enclosed by the path C,

γ = Ω .± C C( ) 1
2

( ) (2)
We will use this result of γ±(C) for the physical arguments of topological nature of geometric phase in the 

following sections of this work.
The Berry phase is geometric in nature through the dependence of local geometry of the path (C), i.e., the 

geometric phase will change if the path changes. However, there are some situations when the Berry phase 
remains the same, that is when the path (C) is subjected to smooth transformation, for this situation the geomet-
ric phase is topological in nature. The most fundamental example to illustrate this concept is Aharonov-Bohm 
effect ( ∫γ = . = ΦC A dR( )n

e
h C

e


, where γn(C) is the geometric phase. It is independent of n and C, here the para-

metric space is ( )2  whereas the parametric space of spin-1/2 particle moving in a external magnetic field is (3). 
Therefore, the solid angle appears for this situations, however there is no scope of solid angle for the 
Aharnov-Bohm effect because the parameter space is (2). It is entirely topological in origin. The whole physical 
explanation become clear after the seminal work of Berry1). The topological phase is non-local in the sense that it 
cannot be defined at a point in space, but only as a closed integral enclosing the magnetic flux or what is observed 
in the Aharonov-Bohm effect26. In the latter phase, Aharonov finds another effect (topological phase) which goes 
by the name “Aharonov-Casher” effect27. The problem which we solve here is topological in nature with many new 
and interesting features and has not been explored explicitly in the literature of this model Hamiltonian and its 
variant system.

Now, we state very briefly why the topological quantum phase transition is so interesting and important?
While the conventional quantum phases are described by continuous order parameters28,29, the topological 

ones are characterized by quantized topological invariants, which correspond to topological properties of occu-
pied quantum state. Landau’s theory of phase transition is related to the local order parameter, but in quantum 
many body condensed matter system, there are several examples of topological order which do not have a local 
order parameter. However, there is no Landau like theory to describe the topological state of matter. These topo-
logical properties are robust under small adiabatic deformations of the Hamiltonian, and changing them requires 
so-called topological phase transitions, which do not accompany symmetry breaking in contrast to conventional 
quantum phase transitions. But are symbolized by gap closing at some specific points in the Brillouin zone (BZ). 
However, topological invariants are ill-defined at topological phase transition points, as they are usually defined 
for each quantum state protected by non-zero energy gaps.

Quantum spin models have got considerable attraction in the condensed matter physics community for the 
following reasons. Firstly, the quantum spin model can be simulated in an artificial quantum system with tunable 
parameters. Secondly, quantum simulations of the spin chain systems can be realized through different physical 
systems30,31. Furthermore, these systems are test-beds for applying new ideas and methods to quantum phase 
transition. Topological properties of quantum matter and interacting light matter systems are also in the state of 
art to understand many basic and fundamental aspects of topological states of matter32–41.

This research paper has some goals
C. N. Yang, in his concluding talk of the TH 2002 conference in Paris characterized the twentieth century theo-
retical physics by three “Melodies”. “Symmetry, quantization and phase factor42. This comment of the legendary 
theoretical physicist motivates us to study the quantization of geometrical phase, duality and symmetry of this 
model Hamiltonian system. The detailed motivation of this research paper is presented below.

In this study, the quantum Ising model with long range interaction is considered. The change in the topologi-
cal characterization due to the introduction of the next-nearest-neighbor interaction in the model Hamiltonian is 
attempted to be elucidated. For this situation, three quantum critical lines are obtained (please see the “Method” 
section for detail derivation for the quantum critical lines).

A pertinent question arises: Are the all quantum critical lines the same in nature from the perspective of top-
ological characterization? This problem is studied explicitly for this model Hamiltonian.

A one-dimensional topological system is characterized by the topological invariant number (winding num-
ber). The system is in the non-topological state for the zero winding number with the absence of zero mode 
Majorana alike excitation at the edge of the system. For the system with the integer winding number is in the top-
ological state with the integer numbers of zero energy Majorana edge mode at both the edges of the system43–63. 
This is the bulk boundary correspondence. The common notion is that bulk boundary remains unchanged 
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for the Hermitian system. The system with non-Hermiticity shows the physics beyond the bulk boundary 
correspondence.

The authors of refs64,65, have shown explicitly that the bulk boundary correspondence can be modified in 
the presence of non-Hermiticity. They have shown that for a non-Hermitian Hamiltonian that encircles an 
exceptional point in the momentum space, the winding number has a fractional value 1/2. In this study, model 
Hamiltonian is Hermitian. However, any possibility to find the physics beyond the bulk boundary correspond-
ence is explored. The possibility to find the fractional values of winding numbers for this study even though the 
model Hamiltonian has no exceptional point in the momentum space has been explored in this study.

We search what is the relation between the duality transformation and the topological quantization. Apart 
from that, quite a few exact solutions for the quantization of geometric phase with a physical explanation are 
presented.

We also do the study for the symmetry operations for this model Hamiltonian explicitly to ascertain any dif-
ference of symmetries for the integer and the fractional topological characterization of the system.

The other most important part of this study is how the topology of the auxiliary space changes for the integer 
and fractional topological characterization, along with the physical interpretation of integer and fractional topo-
logical characterization.

Based on our results on quantization of Zak phase, we would like to raise the question whether the Zak phase 
is at all meaningful for the topological characterization of the system with long range interaction. There are quite 
a few studies in the literature of quantum condensed matter physics for studying the topological state and the 
properties of system through the Zak phase. However, the behavior of Zak phase under the integer and fractional 
topological characterization is absent in the literature1–22.

The quantum phase transition properties have already been studied in quantum Ising model. At the same 
time, Ising models with long range interaction have been found to exhibit topological characterization, but the 
study of quantization of geometric phase with integer and fractional topological characterization for this quan-
tum Ising model with long range interaction is absent in the literature66–70.

This work provides a new perspective on topological quantization.

Model Hamiltonian and geometric phase calculations
The model Hamiltonian68 of the present study is

∑ μσ λ σ σ σ λ σ σ= − + + .− + +H ( )
(3)i

i
x

i
x

i
z

i
z

i
z

i
z

2 1 1 1 1

It is clear from the above Hamiltonian that the transverse field Ising model is modified by the presence of 
next-nearest-neighbor spins interaction. λ1 and λ2 are the nearest-neighbor (NN) and next-nearest-neighbor 
(NNN) interactions respectively and μ is the strength of the transverse coupling. Here we consider it as a chemical 
potential.

This Hamiltonian transfer to the spinless fermion Hamiltonian through the Jordan-Wigner transformation, 
σ = − †c c(1 2 )i

x
i i , σ = Π − +<

† †c c c c(1 2 )( )i
z

j i j j j j .
After the Jordan-Wigner transformation, the Hamiltonian is reduced to,

∑ ∑ ∑μ λ λ= − − − + + . − + + . .
= =

−

+ +
=

−

− + + −
† † † † †H c c c c c c h c c c c c h c(1 2 ) ( ) ( )

(4)i

N

i i
i

N

i i i i
i

N

i i i i
1

1
1

1

1 1 2
1

1

1 1 1 1

Finally, after the Fourier transform, the Hamiltonian become,

∑

∑

μ λ λ

λ λ

= − −

+ + + . .− −

†

† † † †

H k k c c

i kc c kc c H C

(2 2 cos 2 cos2 )

(2 sin 2 sin2 )
(5)

k
k k

k
k k k k

1 2

1 2

Now we are interested to derive the analytical expression of geometric (Zak) phase. Basic definition of Zak 
phase is the following. The Berry’s phase picked up by a particle moving across the Brillouin zone. Here, the 
Brillouin zone is in the one dimension as treated by the Zak, and, therefore, the natural choice for the cyclic 
parameter is the crystal momentum (k). The geometric phase in the momentum space is defined as

∫γ = < | ∂ | >
π

π

−
dk u i u , (6)n n k k n k, ,

where |un,k > is the Bloch states which are the eigenstates of the nth band of the Hamiltonian. The model 
Hamiltonian of the present problem is Z type topological invariant and the system has an anti-unitary particle 
hole symmetry (please see the “Symmetry” section for the detailed symmetry operations). For this system, the 
analytical expressions of the Zak phase3,14,19 is

γ π π= .W mod (2 ) (7)

Now the main task is to calculate the topological invariant (winding number).
The BdG equation for this Hamiltonian is
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χ χ

χ χ
=





− −






H

k i k

i k k

( ) ( )

( ) ( ) (8)
BdG

z y

y z

where,

χ λ λ= +k k k( ) 2 sin 2 sin2 , (9)y 1 2

χ λ λ μ= − − +k k k( ) 2 cos 2 cos2 2 , (10)z 1 2

χ χ= + .E k k( ) ( ) (11)k z y( )
2 2

Topological phase transition can be ascribed by the topological invariant quantity. It is convenient to define 
this invariant quantity using the Anderson pseudo-spin approach71. One can write BdG Hamiltonian in the 
pseudo spin as,

χ χ χ= + .��� ��k k y k z( ) ( ) ( )( ) (12)y z

∑χ τ= .���H k k( ) ( ) ,
(13)BdG

i

i i

where τ’s are the Pauli matrices which act in the Nambau basis of HBdG. Finally, we succeeded in presenting the 
model Hamiltonian as a pseudo spin in a magnetic field in a two-dimensional plane (YZ plane). The parameter 
space of the Hamiltonian is (2) but this space is locally flat, whereas the parameter space for a spin-1/2 electron 
in a rotating magnetic field is sphere (2), which is obviously a curve (Equation 1). We notice from the example of 
spin-1/2 particle in a rotating magnetic field that the geometric phase is the half of the solid angle (Equation 2). 
For the present problem, there is no opportunity for the solid angle for the following reasons: The model 
Hamiltonian has only two components of magnetic field and therefore the parametric space is (2), i.e., the 
parameter space is flat, as a consequence of it there is no scope for the appearance of solid angle as we discuss in 
the introduction for Aharnov-Bohm effect. This physical explanation of topological characterization is consistent 
with the discussions of ref.72.

One can write the vector χ̂ k( ) as,

χ θ θ= + .ˆ ˆ ˆk y z( ) cos sin (14)k k

and θ =








χ

χ
−tank

k

k
1 ( )

( )
y

z

.

∫π
θ

= .W d k
dk

dk1
2

( )
(15)

∫γ θ π= .
d k

dk
dk1

2
( ) mod (2 ) (16)

The winding number (W) presents the number of times χ̂ k( ) rotates in the YZ plane around the Brillouin 
zone. It reveals from the above mentioned equation that the variation of θd k

dk
( )  across the Brillouin zone boundary 

carries the most important feature for the nature of geometric phase.
The general expression for the geometric phase (Zak phase) for this model Hamiltonian is

∫γ
λ λ μ λ λ μλ

λ λ μ λ λ μ μλ
π=

− + + −
+ + + − −

.
π

π

−

k k
k k

dk(6 2 ) cos 2( 2 2 cos2 )
(4 4 4 4 (2 2 ) cos 8 cos2 )

mod (2 )
(17)

1 2 1
2

2
2

2

1
2

2
2 2

1 2 2

Justification of the derivation of above equation is the following: The authors of refs14,19 have shown explicitly 
from the symmetry arguments of the model Hamiltonian that the Zak phase is related with the winding number 
(W) by the Eq. 7. The symmetry of our model Hamiltonian is the same as that of refs14,19. We calculate winding 
number by using Eq. 15 (P. W. Anderson pseudo spin approach ref.71). Finally we obtain the general expression 
for geometric phase (Zak phase). This is the justification for the derivation of the geometric phase (Zak Phase).

Results
Here, we study the quantization of geometric phase in the different regime of the parameter space of the system, 
which are, (1) λ2 = 0 and λ1 ≠ 0, (2) λ1 = 0 and λ2 ≠ 0, (3) λ2 = −μ. (4) λ2 = μ + λ1, (5) λ2 = μ − λ1, The last 
three lines are the quantum critical lines.

Quantization of geometric phase with integer topological characterization. In this section, we 
discuss the results regarding Zak phase and their physical consequences with integer topological characterization, 
i.e., winding number takes the integer values.
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Before we present the results, we would like to state a few generic information about the presentation. The Zak 
phase takes only two quantized values 0 and π because it is measured in modulo of 2π. Therefore, when the wind-
ing number is even integer multiple, then the geometric phase is zero because it is measured in the modulo of 
2π. However in the figure, we present the geometric phase, γ as 0,π and 2π, to state the different topological state 
of the system in spite of the geometric phase remaining the same with γ = 0 and γ = π for even and odd integer 
multiple of winding number respectively.

In our study, we observe a region of parameter space, where the system shows the integer topological char-
acterization. This parameter space is stated as: (1) λ1 ≠ 0, λ2 = 0, (2) λ2 ≠ 0, λ1 = 0, (3) λ2 = −μ. The analytical 
expressions for the geometric phase for these regime of the parameter space are the following

∫γ
λ μ λ

λ μ λ μ
π=

− +
+ −π

π

−

k
k

dk2 cos 2
(4 4 8 cos )

mod (2 ),
(18)

(1) 1 1
2

1
2 2

1

where λ1 ≠ 0 but λ2 = 0.

∫γ
λ μ λ

λ μ λ μ
π=

− +
+ −π

π

−

k
k

dk2 2 cos2 2
(4 4 8 cos2 )

mod (2 ),
(19)

(2) 2 2
2

2
2 2

2

where λ2 ≠ 0 but λ1 = 0.

∫γ
λ μ λ μ μ

λ μ λ μ μ
π=

− + + +
+ − +π

π

−

k k
k k

dk8 cos 2( 2 2 cos2 )
(4 8 16 cos 8 cos2 )

mod (2 ),
(20)

(3) 1 1
2 2 2

1
2 2

1
2

where λ2 =−μ. The analytical expressions for Zak phase are ill define at the topological quantum phase transition 
points because the winding number is ill define at that points due to the change of topological state at that point.

Figure 1 consists of three rows: the upper, middle and lower are λ1 ≠ 0 and λ2 = 0; λ2 ≠ 0 and λ1 = 0; λ2 =−μ 
respectively. Our study reveals that the γ(1) is non-zero when λ1 > μ, otherwise it is zero, i.e., the transition occurs 
at the λ1 = μ. The variation of γ(1) with λ1 reveals that the transition of γ(1) from zero to π occurs at λ1 = μ, i.e., 
from the topologically trivial state to the topological state. We observe only a single transition which is related 
to the topological state of the system with a change of winding number unity, i.e., the system is in the state with 
integer topological characterization. Therefore, in this regime of parameter space the topological characterization 
of the state is the same both for Zak phase and winding number study. Only at the topological quantum phase 

Figure 1. The left and the right columns show respectively the variation of geometric phase (γ) with μ and λ1. 
λ1 ≠ 0 and λ2 = 0, λ2 ≠ 0 and λ1 = 0 and λ2 =−μ are for upper, middle and lower row respectively. The curves 
in the right column of this figure for μ = 0, 0.5, and 1 are for red, blue and magenta respectively. The curves in 
the left column for the first and third row of this figure for λ1 = 0.3,0.6 and 0.8 are for red, blue and magenta 
respectively. The curves in the left column for the second row of this figure for λ2 = 0.3,0.6 and 0.8 are red, blue 
and magenta respectively.



www.nature.com/scientificreports/

6Scientific RepoRtS |  (2018) 8:5864  | DOI:10.1038/s41598-018-24136-1

transition point the jump of the winding number is sharp and it is ill define otherwise winding number is definite 
for the topological state. One can also explain this situation physically: The topological invariant quantity depends 
on the topology of the configuration space, for a particular topological configuration space winding number is 
a definite value, and change of winding number leads the system to the different topological configuration. This 
change of configuration space never become continuous because it is topological quantum phase transition, and 
not the continuous phase transition with order parameter. This is the physical explanation of sharp change of 
winding number at the topological quantum phase transition point.

The results and physical analysis of our study are consistent with the previous studies14,73, they have done only 
for the short range interaction.

The authors of ref.63 have also found the transition of geometric phase from 0 to π for the topological orbital 
ladders. We observe in the middle row, the geometric phase that shows transition from 0 to 2π for λ2 > μ. For this 
transition, the winding number of the system changes from 0 to 2 whereas the geometric phase remains 0, but we 
present in the figure as 2π to illustrate the distinction between the two different topological states of the system 
and this is also in the integer topological characterization. The third row is always in the topological state with 
γ(3) = π and remains constant, i.e., the system is in the topological state with winding number unity, and there is 
no transition of γ(3). Here, the system also shows the integer topological characterization, this description is only 
valid when the system is in gapped phase otherwise the situation is different. In Fig. 2, we present both the gapped 
and gapless feature of this quantum critical line explicitly. We also find quite a few exact solutions for different 
regime of the parameter space which also support these results.

We observe that the geometric phase (Zak phase) only describes the topological characterization correctly if 
it takes only two values 0 and π, like to the Kitaev’s model, where the system is either in the non-topological state 
(W = 0, γ = 0) or the topological state with (W = 1, γ = π). However, the system with long range interaction, 
the Zak phase will not depict the right physical picture because, for the same value of Zak phase, the number 
Majorana alike zero mode excitations are different at the edge of the system. Therefore, the results of topological 
invariant number is more fundamental than the results of Zak phase for the characterization of topological state 
of matter74–76. For that reason, we present our results of Zak phase from the perspective of winding number.

The parametric equation of the Hamiltonian in the pseudo spin space is the following form: χ(k) = (χx(k), χy(k), 
χz(k)) = (0, 2λ1 sin k + 2λ2 sin 2k, −2λ1 cos k−2λ2 cos 2k + 2μ). The parametric equations for the system are

Figure 2. Parametric plot of the vector χ̂ k( ). The upper, middle and lower rows of this figure are λ1 ≠ 0, λ2 = 0; 
λ2 ≠ 0 and λ1 = 0, and λ2 =−μ respectively.
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λ λ μ λ λ= − − + = + .y k k k z k k k( ) 2 cos 2 cos2 2 , ( ) 2 sin 2 sin21 2 1 2
We have already discussed the topological origin of the geometric phase for this model Hamiltonian. In Fig. 2, 

we show explicitly how the unit vector χ̂ k( ) changes in the auxiliary space due to the change of the parameter 
space of the model Hamiltonian. This figure consists of three rows: the upper, middle and lower rows and are for 
λ1 ≠ 0 and λ2 = 0; λ2 ≠ 0 and λ1 = 0; and λ2 = −μ respectively. The parameter space of these three rows are the 
same with the parameter space of Fig. 1.

We observe in the auxiliary space that when λ1 > μ and λ2 = 0, the origin of the parametric space is inside the 
circle otherwise not. The same observation is for when λ2 > μ and λ1 = 0. These loop only touch the origin at the 
topological quantum phase transition point. There is no gapless excitation for these two lines except at the topo-
logical quantum phase transition point. But the situation is different for the third row (λ2 = −μ). The system is 
in the integer topological characterization, when it is in the gapped phase (λ1 > |2λ2|). At the gapless phase (λ1 < 
|2λ2|) situation is different, as we observe in the last panel of third row, where the system shows the behaviour of 
fractional topological characterization. As the chemical potential increases the origin of the auxiliary space shifts 
from the centre to the edge and finally loop touches the origin of the auxialiary space. We present detail study of 
fractional topological characterization in the next section. The other consistent picture of this figure which reflect 
in the first column that for μ = 0 the behaviour of all three lines are the same as it should be because at this value 
of chemical potential, the system is in the topological state for all quantum critical lines.

Figure 3 consists of three rows: the upper, middle and lower rows are λ1 ≠ 0 and λ2 = 0; λ2 ≠ 0 and λ1 = 0; and 
λ2 = −μ respectively. We have already emphasized that the variation of θd

dk
k  with k plays an important role for the 

determination of geometric phase of the system. The parameter space of these three rows are the same with the 
parameter space of the three rows of Fig. 1. In the case of upper row, we observe that for μ = 0, there is no varia-
tion of =θ ( 1)d

dk
k , which represent the state with γ = π, whereas the θd

dk
k  shows the appreciable variation with k for 

different values of μs for a fixed value of λ1. The result reveals from the second row μ = 0 that there is no variation 
of =θ ( 2)d

dk
k  with k. It presents the topological state with γ = 2π(≡0), and θd

dk
k  shows the appreciable variation with 

k for different values of μs for a fixed value of λ2. The most beautiful feature of this study reveals that θd
dk

k  is sym-
metric with the variation of k for this parameter space. In the lower row, =θ 1d

dk
k  for all values of μ, and as a con-

sequence of it is γ(3) = π.

Quantization of geometric phase with fractional topological characterization. In this section, 
we present the quantization of geometric phase for the fractionally topological characterization parametric 
regime of the system, where the winding number takes only the fractional values. We study the quantization of 
geometric phase for the lines λ2 = μ + λ1 and λ2 = μ − λ1. The analytical expression for the geometric phase 
for these two fractionally topological characterization of the system are γ(4)(λ2 = μ + λ1) and γ(5)(λ2 = μ − λ1).

∫γ
λ μ λ μ λ μ λ μ μ λ

λ μ λ μ λ μ λ μ μ μ λ
π=

+ − + − + + +
+ + + + + + − +

.
π

π

−

k k
k k

dk(6( ) 2 ) cos 2( 2( ) 2 ( ) cos2 )
(4 4( ) 4 4 (2( ) ) cos 8 ( ) cos2 )

mod (2 )
(21)

(4) 1 1 1
2

1
2

1

1
2

1
2 2

1 1 1

∫γ
λ μ λ μ λ μ λ μ μ λ

λ μ λ μ λ μ λ μ μ μ λ
π=

− − + + − − −
− − + + − − − −

.
π

π

−

k k
k k

dk(6( ) 2 ) cos 2( 2( ) 2 ( ) cos2 )
(4 4( ) 4 4 (2( ) 2 ) cos 8 ( ) cos2 )

mod (2 )
(22)

(5) 1 1 1
2

1
2

1

1
2

1
2 2

1 1 1

The study of upper panel of Fig. 4 reveals that there is no variation of γ(4) with μ and λ1. In the lower panel, 
where we consider the variation of γ(5) for different values of λ1 and μ, we observe that there is a transition from 
γ = π(5) 3

2
 to π

2
 at μ = λ

2
1 . Therefore, we conclude that the geometric phase is also quantized but for a fractional 

value of π and the analytical relation between λ1 and μ are different from the integer topological characterization 
(μ = λ1,2). The detail derivation for this parametric relation is relegated to the “Method” section. The difference of 
geometric phase between the two fractionally topological characterization is π, which is same with the difference 
between the trivial and topological state for the integer topological characterization.

Now, we discuss two possible physical picture of the fractional topological characterization. The first physical 
explanation is the following: The fractionally quantized winding number for the above mentioned two quantum 
critical lines is not physically realizable; the explanation is the following: For this situation there is no topological 
excitations in the system. Here one can continuously deform the topological patch to a single point (because the unit 
vector χ̂ k( ) not complete any integer number of rotation), as if the system is in the trivial topological state, with zero 
value of winding number. This physical situation has explained very nicely in ref.29. Therefore, it is very clear from 
our study that the topological properties of three quantum critical lines are different. Only one of them shows the 
integer topological characterization for a certain regime of the parameter space. In the “Method” section, we have 
shown explicitly that for the other two quantum critical lines, the system is always in a gapless phase, apart from the 
parametric condition of gapless phase. Therefore, due to the presence of gapless state, the system never achieve the 
gapped topological state. This is main difference between the integer and fractional topological characterization.

The second physical picture is the following: To interpret the fractional topological characterization with 
gapless edge mode, one can think the redefinition of the “ill-defined” point, i.e., to exclude the gapless points 
for the quantum critical lines. The band gap vanishes at a specific momentum along a quantum critical line, in 
order to avoid the ill-definition problem, one can exclude the momentum during the calculation of winding 
number. In this situation system has no bulk mode, only possesses the edge mode with fractional topological 
characterization.



www.nature.com/scientificreports/

8Scientific RepoRtS |  (2018) 8:5864  | DOI:10.1038/s41598-018-24136-1

There are a few non-Hermitian model Hamiltonian systems with chiral symmetry having an anomalous 
edge modes64,65. These anomalous edge modes are embedded within a complex gapless band structure and have 
appeared in the vicinity of exceptional points. However, definite clarity whether this physics has any relation to 
the model independent bulk topological invariant similar to those in Hermitian systems65 is yet to be found. 
This is the main motivation to make a comparison between this study with the study of topological state of 
non-Hermitian Hamiltonian system.

The model Hamiltonian of the present study is the Hermitian one. However, we have found the presence of 
fractionally quantized excitation with winding numbers W = 3/2, and 1/2. However, the nature of excitation is 
different from the non-Hermitian system. For the non-Hermitian system, the authors64,65 have predicted W = 
1/2. For their study, there is only one dynamically stable zero-energy edge state due to the non-Hermiticity of the 
Hamiltonian.

Figure 3. shows the variation of θ( )d k
dk
( )  with k. The upper, middle and lower rows are λ1 ≠ 0 and λ2 = 0; λ2 ≠ 0 

and λ1 = 0, and λ2 = −μ (different colours like red and blue are hiding under the magenta curve) respectively. 
The curves red, blue and magenta are for μ = 0,0.5 and 1 respectively.
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In Fig. 5, we present the parametric study of χ̂ k( ) in the auxiliary space for the fractionally topological charac-
terization. The upper and lower rows are for the λ2 = μ + λ1 and λ2 = μ − λ1 respectively. Here, we present the 
results for the same parameter space that has been used in the Fig. 4.

It is very interesting to observe that for fractionally quantized topological characterization, the loop always 
touch the origin of the auxialary space (χy = 0 = χz). We show explicitly in the “Method” section that for these 
two quantum critical lines, the system has bulk gapless excitation (at k = 0 for λ2 = μ − λ1 and k = π for λ2 = 
μ + λ1), as a consequence of it the loop always touch the origin of the auxiliary space. Thus the system is in the 
bulk gapless non-topological state for these two quantum critical lines. There is no gapless excitation for integer 
topological characterization except at the topological quantum phase transition point, we observe that the loop 
only touch the origin for that situation.

We show explicitly in the “Method” section that the system has only one bulk gapless excitation for the quan-
tum critical line λ2 = μ + λ1, whereas the quantum line, λ2 = μ − λ1, has two bulk gapless edge modes.

Now we discuss the another interpretation based on redefinition of the “ill-define” points. The band gap 
always vanishes at a specific momentum along a quantum critical line, if we exclude the specific momentum 
where the band gap vanishes along the quantum critical lines, when calculating the winding number, thus the 
fractional topological characterization preserve and the edge mode exist. Thus the physical picture and also the 
difference of integer and fractional topological characterization has explained explicitly in this study.

In Fig. 6, we present the study of θd k
dk
( )  with k for the fractional topological characterization regime of the 

parameter space. The left panel of the figure is for the λ2 = μ + λ1 and the right panel of the figure is for λ2 = μ − λ1. 
We observe for both the cases μ = 0, θd k

dk
( )  is constant and a fraction, as a consequence of it γ(4) is also a fractional 

Figure 4. The left and the right column show the variation of geometric phase (γ) with λ1 and μ respectively. 
The upper and lower rows are for λ2 = μ + λ1 and λ2 = μ − λ1 respectively. The curves in the right column of 
this figure are red, blue, and magenta for μ = 0,0.5 and 1 respectively. The curves in the left column of this figure 
are red, blue, and magenta for λ1 = 0.3,0.6 and 0.8 respectively.

Figure 5. Parametric plot of the χ̂ k( ). The upper panel is for the λ2 = μ + λ1 and the lower panel is for λ2 = μ − λ1.
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value of π. For the right panel of this figure, we observe two constant lines of θd k
dk
( )  for μ = 0,0.3. These two 

constant lines correspond to two different fractional values of winding number. The behavior of θd k
dk
( )  with k 

for the left panel and right panel of the figures are different for non-zero values of μ. The variation of θd k
dk
( )  is 

symmetric with k, but this symmetric behavior of fractional topological characterization is different from the 
integer topological characterization.

Exact calculations based results for quantization of geometric phase study. In the previous sec-
tion, we have presented the results based on γ (Equations 18–22). It is not possible to find the exact solution for 
the entire regime of the parameter space.

Here, we find quite a few exact solutions for our model Hamiltonian in the different regime of parameter 
space and the related physics is discussed. This exact solutions also show difference between the integer and the 
fractional topological characterization.

The integrand of the expression for the geometric phase for γ(1) and γ(2) are in the following form77

∫
+
+

= +
−

−







−
+






>

= +
−

−







− + +

− − +






> .
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 (1). Exact solutions for λ1 ≠ 0 and λ2 = 0:
We observe from the analytical expression of γ(1) = π for μ = 0 for all the values of λ1. We also observe that 
this transition occurs at λ1 = μ (upper row of Fig. 1), i.e., the γ(1) jumps from 0 to π. Now we look to find a 
result from the exact analytical expression for arbitrary λ1 and μ. At first, we present the results for λ1 ≠ 0 
and λ2 = 0. For this regime of parameter space is (Equation 18):

λ μλ= = −A B2 , 21
2

1. λ μ μλ= + = −a b4 4 , 81
2 2

1. The result which we obtain for indefinite integral by 
using the first equation of Eq. (23) is the following,

λ μ
λ μ

λ μ λ μ π= +
−

+ | = .
δ

π δ
π δ

→
=− +
= −

+
g k k arc k g k( , , )

4
1

2( )
tan(( ) tan( /2)); lim ( , , ) k

k
1 1

1
1

0 1 1

We obtained this result for the condition λ1 > μ.
 (2). Exact solutions for λ2 ≠ 0 and λ1 = 0:

We observe from the analytical expression of γ(2) = 2π that for μ = 0 for the all values of λ2. Topological 
quantum phase transition occurs at λ2 = μ (middle row of Fig. 1). Now the question is how to get the 
results from the exact analytical expression for arbitrary λ2 and μ. For this regime of parameter space (we 
get it from Equation. 19):

λ μλ= = −A B4 , 42
2

2. λ μ μλ= + = −a b4 4 , 82
2 2

2. The result which we obtain for indefinite integral 
by using the first equation of Equation (23) is the following,

λ μ
λ μ

λ μ λ μ π= +
−

+ | = .
δ

π δ
π δ

→
=− +
= −

+
g k k arc k g k( , , )

2
1
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tan(( ) tan( /2)); lim ( , , ) 2k

k
2 2

2
2

0 2 2

We obtain this result for the condition λ2 > μ.
 (3). Exact solutions for λ1 ≠ 0, λ2 ≠ 0, and μ = 0:

In this case, the analytical expression for geometric phase become,

∫γ
λ λ λ λ
λ λ λ λ

π=
+ +

+ +
.

π

π

−

k
k

6 cos 2( 2 )
(4 4 8 cos )

mod (2 )
(24)

1 2 1
2

2
2

1
2

2
2

1 2

For this regime of parameter space:

Figure 6. Shows the variation of θ( )d k
dk
( )  with k. Different curves are for different values of μ, red (μ = 0), blue (μ = 

0.3), magenta (μ = 0.6) respectively. The left panel is for the λ2 = μ + λ1 and the right panel is for λ2 = μ − λ1.
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1 2. Now using Equation 23, we get the 
following results.
For λ1 > λ2:
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This is one of the most important results of exact solutions. Here we predict the transition of geometric 
phase from π to 2π, i.e., the winding number changes from 1 to 2.

 (4). The exact solution for the quantum critical line λ2 = − μ: The exact solution for μ = 0 is 
∫γ π= =

π

π

−
dk(3) 1

2
 for non-zero values of λ1. We obtain the exact value of γ(3) = π for μ = λ1. We also 

observe that there is no transition of γ3 at λ1 = μ, ∫γ π= =
π

π

−
dk(3) 1

2
.

 (5). The exact solution for the quantum critical line (λ2 = μ + λ1):
We obtain for μ = 0, value of ∫γ = =

π
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2 2 2 . Thus, the exact solution also predicts 
the fractional topological quantization.

 (6). The exact solution for the quantum critical line λ2 = μ − λ1:

We obtain for μ = 0, ∫γ = =
π

π λ

λ

π
−

−

−

k

k
(5) 6 (1 cos )

8 (1 cos ) 2
1

2

1
2

. The exact solution for λ1 = μ, we obtain, γ =(5)
∫ =

π

π μ

μ−
−

−

k
k

2 (1 cos )
8 (1 cos )

2

2
π3

2
. We exclude the point k = 0, during the integration. Thus, the exact solution also predict the fractional topological 

quantization.
These exact solutions for this model Hamiltonian and its variant are absent in the literature.

An analysis of duality and its relation to the topological characterization. Here, we present the 
results of duality study of the model Hamiltonian for all regime of parameter space of our interest, including three 
quantum critical lines, and also its relation with the topological characterization. The other objective of the dual-
ity study is to show how the duality transformation manifests in different quantum critical lines.

Duality and the topological state of the system have a relation. The non-zero values of duality operator 
β< >+

z
n 1/2  is to introduce the disorder in the system78. This disorderness can be realized in the following form. 

This operator acting on the perfectly ordered vacuum state (ψ = Πn|↑n>) introduce a kink in the system, which 
is a topological excitation.

Here, we introduce the order and disorder operator following the study of duality of the model Hamiltonian 
explicitly. These operators are defining the sites of the dual lattice, i.e., we define the operator between the 
nearest-neighbor site and of the original lattice. The analytical relation between the Pauli operators and β opera-
tors are the following:

β β= =1 , (25)z x
2 2

β β σ− + = .n n n( 1/2) ( 1/2) ( ) (26)z z x

β σ σ+ = +n n n( 1/2) ( ) ( 1), (27)x z z

β σ+ = Π .=n j( 1/2) ( ) (28)z j
n

x1

σ β= Π + .=
−n j( ) ( 1/2) (29)z j

n
x0

1

Now we write the Hamiltonian in terms of the dual operators. The present Hamiltonian (Equation 3) consists 
of two parts. At first, we study the duality of the first part of the Hamiltonian, i.e., the quantum Ising model with 
NN interaction only and then we consider the presence of next-nearest-neighbor interaction.

∑ λ σ σ μσ= − + .
=

+H ( )
(30)n

N
z

n
z

n
x

n1
1

1 1
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After using all the relations between the order and disorder operators, finally, we obtain the duality transform 
Hamiltonian as,

∑ μβ β λ β= − + .
=

− + +H ( )
(31)n

N
z

n
z

n
x

n1
1

1/2 1/2 1 1/2

It is clear from the above Hamiltonian that it is duality invariant under the exchange of μ and λ1. Now, we do 
the duality transformation for the total Hamiltonian (Equation 3),

∑ μσ λ σ σ λ σ σ σ= − + + .+ − +H [ ]
(32)n
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z
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x
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z

n
z
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Now, we use the relations between the order and disorder operators to study the duality invariant study of the 
total Hamiltonian.
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The final modified Hamiltonian is,

∑ μβ β λ β λ β β= − + + .− + + − +H [ ]
(33)n

z
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z
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y
n1/2 1/2 1 1/2 2 1/2 1/2

Now we see how the duality transform the Hamiltonian at the quantum critical lines.

 (A) For the quantum critical line λ2 = −μ,

∑ μ β β β β λ β= − − + .− + − + +H [ ( ) ]
(34)
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 (B) For the quantum critical line λ2 = μ + λ1,
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 (C) For the quantum critical line λ2 = μ − λ1,
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 (D) For the NNN interaction only, λ2 ≠ 0,λ1 = 0,

∑ μ β β β β λ β β= − + + .− + − + − +H [ ( ) ]
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We have shown that the Hamiltonian H1, H(A), H(D) show the integer topological characterization, and, we 
observe that the Hamiltonian, H1 is only duality invariant. The Hamiltonian H(B) and H(C) show the fractional top-
ological characterization and at the same time duality is not preserved. Therefore, the invariance and breakdown 
of duality is independent whether it is in the integer or fractionally topological characterization, it depends only 
on the range of the interaction.

To the best of our knowledge, this is the first study in the literature of quantum Ising models to find the rela-
tions between the duality for all quantum critical lines and its relation to the topological characterization, i.e., 
whether the duality depends on the nature of topological characterization.

Symmetry study of the model Hamiltonian. In this section, we present the result of Time-reversal 
symmetry (Θ̂), Charge-conjugation symmetry (Ξ̂), Chiral (Π̂) symmetry, Parity symmetry (P), CT symmetry, PT 
symmetry and CPT symmetries of the model Hamiltonian. We do this study of symmetries for three reasons79–82: 
In the first point, we have already discussed γ is related W, when the model Hamiltonian of the system obeys the 
anti-unitary particle-hole symmetry, it triggers us to study the other different symmetries of the model 
Hamiltonian. The second point is that whether the symmetries of the model Hamiltonian manifests in different 
way for the integer and fractional topological characterization. The third point is that the non-Hermitian 
Hamiltonian which shows the anomalous edge modes with fractional value of winding number possess the chiral 
symmetry and PT symmetry. Therefore, it also motivates us to study the symmetry properties of this model 
Hamiltonian system and how it responses for the fractional and integer topological characterization.

Here, we only present the basic aspects of symmetry and the results of symmetry study. The detailed calcula-
tions are relegated to the “Method” section. The BdG Hamiltonian of the present problem is for spinless fermion, 
and, therefore, we use the spinless format of the symmetry operators. We use the properties of χy(k) and χz(k) 
during the derivation of these results.

Now we present the results of symmetry studies of this model Hamiltonian. The detail derivations are rele-
gated to the “Method” section.
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Time reversal symmetry operation:

Θ Θ = .ˆ ˆ ˆ ˆ ˆ ˆ† †
H k K H k K( ) ( )BdG BdG

χ χ

χ χ
Θ Θ =







− −









= .ˆ ˆ ˆ ˆ ˆ†
H k K

k i k

i k k
K H( )

( ) ( )

( ) ( )BdG
z y

y z
BdG

Thus, the model Hamiltonian is invariant under time reversal symmetry.
Charge-conjugation symmetry:
Charge-conjugation symmetry operator is Ξ̂.

σ σ σ σΞ Ξ = = = − .ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ† † †
H k K H k K K H k K H K( ) ( ) ( )( ) ( ) ( )x x x x

Thus, the model Hamiltonian is invariant under charge-conjugation symmetry.
Chiral symmetry:
Chiral symmetry operator is given by, Π̂.

σ σΠ Π = = − .ˆ ˆ ˆ ˆ†
H k H k H( ) ( )BdG x BdG x BdG

Thus, the model Hamiltonian is invariant under chiral symmetry.
Parity symmetry PHBdG(k)P−1 = σzHBdG(k)σz = HBdG(−k)
Thus, the Hamiltonian obeys parity symmetry.
CP symmetry CPHBdG(k)(CP)−1 = σxKσzHBdG(k)σzK−1σx = −HBdG(−k).
Thus, the Hamiltonian obeys CP symmetry.
PT symmetry:

σ σ= ≠ .− −PTH k PT KH k K H k( )( ) ( ) ( )BdG z BdG z BdG
1 1

Thus, the Hamiltonian does not obeys PT symmetry.
CT symmetry:

σ σ= = − .−CTH k CT H k H( )( ) ( )BdG x BdG x BdG
1

Thus, the Hamiltonian obeys CT symmetry.
CPT symmetry:

α α σ σ σ σ= ≠ − .− −H k KH k K H k( ) ( ) ( )BdG x z BdG z x BdG
1 1

Thus, the Hamiltonian does not obey CPT symmetry.
Now we compare the relations between the duality and symmetry: For the NN coupling the duality is invariant 

and the results obtained from the Zak phase study is also physically consistent. In the presence of NNN or fur-
ther long range interaction duality breaks down for this model Hamiltonian but the behaviour of the symmetry, 
whether it is preserved (time reversal, chiral, parity CP and CT) or breakdown (PT and CPT), is the same for NN, 
NNN and any long range interaction. Therefore, the duality and symmetry behaves differently depending on the 
range of interaction.

Effect of further long range interaction. Here, we have studied the interaction up to NNN interac-
tions. One can generalize these results for further long range interaction. Suppose one consider the third NN 
interaction, the integer winding number will be 0, 1, 2, 3 and the fractional winding number will be 5/2, 3/2, 1/2. 
Similarly, one can generalize it for further long range interaction with maintain the sequence of NN and NNN 
interactions. The only thing is that the properties of duality and symmetry will be the same as we obtain from the 
study of NNN interactions, i.e., the NNN interaction is sufficient to characterize the complete nature of duality 
and symmetry for this model Hamiltonian system.

Discussion
We have presented the quantization of geometric phase for both integer and fractionalize topological character-
ization for this system along with the physical explanations. We have shown that all the quantum critical lines 
are not topologically equivalent. We have also presented the exact solutions based results for the quantization of 
geometric phase. The model Hamiltonian possesses different symmetries and the symmetry properties are the 
same for all quantum critical lines. One of, the most important conclusion is that Zak phase is not the proper 
physical quantity for the characterization of topological state in the presence of long range interactions. One can 
generalize this result for further long range interaction. We have shown explicitly relation between the duality, 
symmetry and topological characterization. Our work provides a new perspective of topological quantization.

Method
Detailed derivation of quantum critical line. We start with the Hamiltonian H2 (Equation 5),
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Now our main task is to express the Hamiltonian in the diagonalized form. We follow the Bogoliubov trans-
formation η α β= + −

†c i ck k k k k  and η α β= −− −
†c i ck k k k k , k > 0.

The operator ηk and η †
k  are the fermionic operators. We use the following relations,

η η δ=†{ , }k p k p, , {ηk, ηp} = 0, η η =† †{ , } 0k p . This relation implies α β+ = 1k k
2 2 .

One can also revert the relation between ck and ηk. We also parameterize αk = cos θk and βk = sin θk. One can 
express the transformed Hamiltonian in two parts

= +H H H (39)A B2 2 2
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To express this Hamiltonian in the diagonal form, we find the following relation

μ λ λ α β λ λ α β− + + + + − = .k k i k i k4( cos cos2 ) (2 sin 2 sin2 )( ) 0k k k k1 2 1 2
2 2

2αkβk = sin2θk, α β θ− = cos2k k k
2 2 . Finally this gives the condition,

θ
λ λ

λ λ μ
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.
k k

k k
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cos cos2 (42)k
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Finally, we write the Hamiltonian as,

∑ λ λ η η= †H E ( , )
(43)k

k k k2 1 2

λ λ χ χ= +E k k k( , , ) ( ) ( ) (44)z y1 2
2 2

Now, we derive the analytical expressions for quantum critical lines based on the energy dispersion of Ek(λ1, λ2).  
The analytical expressions for χz(k) and χy(k) are given in Equations 9 and 10 respectively. The energy gap van-
ishes at this quantum critical lines, i.e., |E(k, λ1, λ2)| = 0.

First, we consider for k = 0 case.
|E(0, λ1, λ2)| = 0, from this condition, we find the analytical expression for quantum critical line is λ2 = 

μ − λ1.
Second, we consider for k = π case.
|E(π, λ1, λ2)| = 0, from this condition, we find the analytical expression for quantum critical line is λ2 = μ + λ1.
Third, we consider for = −λ

λ
− ( )k cos 1

2
1

2
 case.

λ
λ

λ λ




−






=−E(cos
2

, , ) 0,1 1

2
1 2

From this condition, we find the analytical expression for quantum critical line is λ2 = −μ.
A detailed analysis to search the parametric relations at the topological quantum phase transition point

χ λ λ= +k k k( ) 2 sin 2 sin2 , (45)y 1 2

χ λ λ μ= − − +k k k( ) 2 cos 2 cos2 2 , (46)z 1 2

The analytical expression for winding angle is,

θ
χ

χ
=












.−tan

k

k

( )

( )k
y

z

1

At first we discuss the parametric relations for the quantum critical lines
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(1). λ2 = μ + λ1 and (2). λ2 = μ − λ1.

 (1) The parametric relations for the quantum critical line λ2 = μ + λ1 become

χ λ μ λ= + +k k k( ) 2 sin 2( ) sin2 , (47)y 1 1

χ λ μ λ μ= − − + +k k k( ) 2 cos 2( ) cos2 2 , (48)z 1 1

Now we find the values of ks where χy(k) = 0 = χz(k) and we find the parametric relations at the topologi-
cal quantum phase transition point. From the analysis of χy(k), we get that χy(k) = 0 for the two values of k, 
that are respectively k1 = 0 and = − λ

λ μ
−

+( )k cos2
1

2
1

1
. The corresponding values of χz are −4λ1 and 2(λ1 + 

2μ) respectively. Here λ1 and μ both are positive, therefore it is clear that there is no situation for this 
quantum critical line with a parametric relation that satisfy 






 =

χ

χ
0/0

k

k

( )

( )
y

z

.

Now we discuss the third point, i.e., k3 = π, which gives χy = χz = 0. So there is a gap closing point at 
k3 = π for this quantum critical line and the system is always in gapless excitation and does not satisfy 
the gapped topological excitation state, although we get the fractional values of winding number. This 
excitation is the bulk gapless excitation, there is no edge excitations, which occurs in the integer topological 
characterization. We only obtain the fractional topological characterization with edge excitations, If we 
redefine the ill define point for this quantum critical line.

 (2) Analysis for the other quantum critical line λ2 = μ − λ1. From the analysis of χy(k), we get that χy(k) = 0 
for the two values of k, that are respectively k1 = 0 and ( )k cos2

1
2

1

1
= − λ

λ μ
−

−
. For k1 = 0, χy(k1) = 0 χz(k1) 

= 0, and for k2, χz(k2) = 2(λ1 − 2μ). So for k = 0, we get this condition 





 =

χ

χ
0/0

k

k

( )

( )
y

z

 satisfy and the system 

is in always gapless phase.
It is clear from the analysis for k2 this quantum critical line satisfy the condition 






 =

χ

χ
0/0

k

k

( )

( )
y

z

 for μ = λ1/2. 

This is the parametric relation where the another gapless phase occurs. This excitation is the bulk excitation 
which differ from the edge excitation of integer topological characterization. We only obtain the fractional 
topological characterization with edge excitations, If we redefine the ill define point for this quantum 
critical line.
The numbers of bulk gapless edge modes are different for these two quantum critical lines. It is one for λ2 = 
μ + λ1 and two for λ2 = μ − λ1.
Now we discuss the situation of parametric relation for integer topological characterization:

 (3) λ1 ≠ 0, λ2 = 0, the gap vanishes only at k = 0. Therefore it is clear from the above analysis for k this 
quantum critical line satisfy the condition 






 =

χ

χ
0/0

k

k

( )

( )
y

z

. This occurs for χz(k) = 2(λ1 − μ), i.e., the 

condition satisfy when λ1 = μ. For this situation, the system has gapless edge mode except when λ1 = μ.
 (4) λ1 = 0, λ2 ≠ 0, the gap vanishes only at k = 0. Therefore, it is clear from the above analysis for k this 

quantum critical line satisfy the condition 





 =

χ

χ
0/0

k

k

( )

( )
y

z

. This occurs for χz(k) = 2(λ2 − μ), i.e., the 

condition satisfy when λ2 = μ. We also observe this transition in Fig. 1 (1st and 2nd row). For this 
situation, the system has gapless edge mode except at λ2 = μ.

 (5) The other quantum critical line is the λ2 = −μ, here we have not found any parametric relation to show the 
topological quantum phase transition. For this situation, the system is in the integer topological character-
ization for the gapped phase (λ1 > 2λ2) and in the fractional topological characterization for gapless phase 
(λ1 < 2λ2). This result has shown explicitly in Fig. 2.

Detailed derivation of symmetries for this model Hamiltonian. At first we introduce the basic con-
cept of the different symmetries very briefly and then the detail derivation of the symmetry operations73–76 for 
this model Hamiltonian.

Time-reversal symmetry. This symmetry operation can be represented by an operator Θ̂. This operator reverses 
the arrow of time, i.e., t → −t. The condition for the time-reversal invariant is,

Θ Θ = −ˆ ˆ ˆ ˆ†
H k H k( ) ( ); Θ =ˆ Ĥ k[ , ( )] 0. In general, Θ̂ can be written as, Θ =ˆ ˆ ˆUK , where Û is unitary operator and 

K̂  is complex conjugate operator. The BdG Hamiltonian of the present problem is for spinless fermion, and there-
fore, Θ =ˆ K̂ .

Charge conjugation symmetry. In this symmetry operation is replacing particle by its antiparticle. Ψ = ΨC p p( ) ( ) 
when particles are their own antiparticles and then we have a charge conjugation quantum number ηc. CΨ(p) = 
ηcΨ(p), ηc is usually taken to be unity.

A generalization of charge-conjugation symmetry with operator, Ξ̂, satisfy the following relation:

σ σ σ σΞ Ξ = = .ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ† † †
H k K H k K K H k K( ) ( ) ( )( ) ( )x x x x
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Chiral symmetry. A new symmetry can be defined which is called chiral symmetry. It is basically the product of 
time reversal operator Θ̂ and charge conjugation operator C.

Π Π = − .ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ
†
H P r H P r( , ) ( , )

Parity symmetry. This symmetry is discrete unitary symmetry of nature. Parity symmetry is a transformation of 
all spatial coordinate axes, i.e., P̂: r → −r, where P̂ is parity operator. Thus, parity transformation flips the sign of 
all spatial axes and also the momentum. Square of parity operator equals to identity ( =P̂ 1

2
), and thus it has eigen-

values ±1. =P̂ 1 and = −P̂ 1 corresponds to even and odd parity states respectively. If a Hamiltonian is invariant 
under parity it obeys → = −→ = .

−ˆ ˆ ˆPH p P H p P H( ) ( ) ; [ , ] 0
1

 Parity operator(P̂) can be defined in the matrix form 
as, σ=P̂ z, where σz is one among the Pauli matrices.

CP symmetry. This symmetry is the combination of charge conjugation and parity symmetry. CP symmetry is 
a transformation of particles into antiparticles with the inversion of spatial coordinates. From the definitions of 
the charge conjugation and parity symmetries, one can write, CPH(k)(CP)−1 = −H(−k), where CP symmetry 
operator can be given by CP = σxKσz.

PT symmetry. This symmetry is a combination of parity and time-reversal symmetries. PT symmetry is trans-
formation of space coordinates along with time. In other words, the reflection of space and time coordinates, i.e., 
PT: (x, y, z, t) → (−x, −y, −z, −t). For a Hamiltonian which is invariant under PT symmetry we can write,

= − = .−PTH p PT H p PT H( )( ) ( ); [ , ] 0 (49)1

Since time reversal flips the sign of the spin, we have PT symmetry operator for spinless systems as PT = σzK.

CT symmetry. This symmetry is a combination of charge conjugation and time-reversal symmetry. It is a trans-
formation of particles into antiparticles with inversion of time. For a Hamiltonian which is invariant under CT 
symmetry must obey this relation, CTH(p)(CT)−1 = −H(p); {CT,H} = 0. One can write the CT operator for 
spinless systems as CT = σxKK = σx.

CPT symmetry. This symmetry is combination of charge conjugation, parity and time-reversal symmetry. It is a 
transformation of particles into antiparticle with inversion of all space and time coordinates. We denote CPT 
symmetry operator as α. Hamiltonian which is invariant under CPT symmetry must obey the relation, αH(k)α−1 
= −H(k); {α, H} = 0, where the CPT operator is given by α = −iCPT. For spinless systems, one can compute the 
operator as α σ σ σ σ= − = − = − =

−( )iCPT i K K i i
i

0
0x z x z

Time-reversal symmetry
Time-reversal symmetry operation is Θ̂.

χ χ

χ χ
Θ Θ = . Θ Θ =







− −









.ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ† † †
H k K H k K H k K

k i k

i k k
K( ) ( ) ( )

( ) ( )

( ) ( )BdG BdG BdG
z y

y z

χ λ λ μ χ λ λ χ

χ χ χ

= − − + = +

= − = − − .

k k k k k k k

k k k

( ) 2 cos 2 cos2 2 , ( ) 2 sin 2 sin2 , ( )

( ) and ( ) ( )
z y z

z y y

1 2 1 2

χ χ

χ χ
Θ Θ =









− − −

− − −









= .ˆ ˆ ˆ†
H k

k i k

i k k
H k( )

( ) ( )

( ) ( )
( )BdG

z y

y z

It is clear from the above expression that the model Hamiltonian obeys time reversal symmetry. During this 
derivation, we use the properties of χz(k) = χz(−k) and χy(k) = −χy(−k).

Charge-conjugation symmetry
This symmetry operator is Ξ̂.

σ σ σ σ

χ χ

χ χ

χ χ

χ χ

χ χ

χ χ

Ξ Ξ = =

Ξ Ξ =




− −






.

Ξ Ξ =






− − 




=







− − 




= −

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ

† † †

† †

†

( ) ( )
H k K H k K K H k K

H k K
k i k

i k k
K

H k K
k i k

i k k
K

k i k

i k k
H k

( ) ( ) ( )( ) ( )

( ) 0 1
1 0

( ) ( )

( ) ( )
0 1
1 0

( )
( ) ( )

( ) ( )

( ) ( )

( ) ( )
( )

x x x x

z y

y

z y

y z

z y

y z
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Thus, the Hamiltonian obeys charge-conjugation symmetry.
Chiral symmetry
This symmetry operator is given by, Π̂.

σ σ

χ χ

χ χ

χ χ

χ χ

χ χ

χ χ

Π Π =

Π Π =




− −






.

Π Π =






− − 




= −





−






.

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ

ˆ ˆ ˆ

†

†

†

( ) ( )
( )

H k H k

H k
k i k

i k k

H k
i k k

k i k

k i k

i k k

( ) ( )

( ) 0 1
1 0

( ) ( )

( ) ( )
0 1
1 0

( )
( ) ( )

( ) ( )
0 1
1 0

( ) ( )

( ) ( )

BdG x BdG x

z y

y z

y z

z y

z y

y z

Π Π = − .ˆ ˆ ˆ ˆ†
H k H k( ) ( )  Thus, the Hamiltonian also obeys chiral symmetry.

Parity symmetry

σ σ

χ χ

χ χ

χ χ

χ χ

χ χ

χ χ

=

=
−





−





 −

=










 −

=






−

−






= − −

−

( ) ( )
( )

PH k P H k
k i k

i k k

k i k

i k k

k i k

i k k
H k

( ) ( )

1 0
0 1

( ) ( )

( ) ( )
1 0
0 1

( ) ( )

( ) ( )
1 0
0 1

( ) ( )

( ) ( )
( )

(50)

z z

z y

y z

z y

y z

z y

y z

1

Thus, the Hamiltonian obeys parity symmetry.
CP symmetry

σ σ σ σ

σ
χ χ

χ χ
σ

σ
χ χ

χ χ
σ

χ χ

χ χ

χ χ

χ χ

=

=
−





− −





 −

=






−

−







=






−

−







=






−

−






= − −

− −

−

−

( ) ( )

( ) ( )

CPH k CP K H k K

K
k i k

i k k
K

K
k i k

i k k
K

k i k

i k k

k i k

i k k
H k

( )( ) ( )

1 0
0 1

( ) ( )

( ) ( )
1 0
0 1

( ) ( )

( ) ( )

0 1
1 0

( ) ( )

( ) ( )
0 1
1 0

( ) ( )

( ) ( )
( )

(51)

x z z x

x
z y

y z
x

x
z y

y z
x

z y

y z

z y

y z

1 1

1

1

Thus, the Hamiltonian obeys CP symmetry.
PT symmetry

σ σ
σ σ

χ χ

χ χ

χ χ

χ χ

=
=

=
−





− −





 −

=






−

−






≠

− −

( ) ( )

PTH k PT KH k K
H k

k i k

i k k

k i k

i k k
H k

( )( ) ( )
( )

1 0
0 1

( ) ( )

( ) ( )
1 0
0 1

( ) ( )

( ) ( )
( )

(52)

z z

z z

z y

y z

z y

y z

1 1

Thus the Hamiltonian does not obeys PT symmetry.
CT symmetry



www.nature.com/scientificreports/

1 8Scientific RepoRtS |  (2018) 8:5864  | DOI:10.1038/s41598-018-24136-1

σ σ

χ χ

χ χ

χ χ

χ χ

χ χ

χ χ

=

=




−







=






− − 





=






− − 




= −

−

( ) ( )
( )

CTH k CT H k
k i k

i k k

i k k

k i k

k i k

i k k
H k

( )( ) ( )

0 1
1 0

( ) ( )

( ) ( )
0 1
1 0

( ) ( )

( ) ( )
0 1
1 0

( ) ( )

( ) ( )
( )

(53)

x x

z y

y z

y z

z y

z y

y z

1

Thus, the Hamiltonian obey the CT symmetry.
CPT symmetry

α α σ σ σ σ

χ χ

χ χ

χ χ

χ χ

=

=
−





− −







−

=






−

−






≠ −

− −

( ) ( )
H k KH k K

k i k

i k k

k i k

i k k
H k

( ) ( )

0 1
1 0

( ) ( )

( ) ( )
0 1
1 0

( ) ( )

( ) ( )
( )

(54)

x z z x

z y

y z

z y

y z

1 1

Thus, the Hamiltonian does not obey the CPT symmetry.
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