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Prognostic value of cancer  
antigen -125 for lung 
adenocarcinoma patients with 
brain metastasis: A random survival 
forest prognostic model
Hao Wang1, Liuhai Shen2, Jianhua Geng3, Yitian Wu3, Huan Xiao2, Fan Zhang1 & Hongwei Si  2

Using random survival forest, this study was intended to evaluate the prognostic value of serum 
markers for lung adenocarcinoma patients with brain metastasis (BM), and tried to integrate them 
into a prognostic model. During 2010 to 2015, the patients were retrieved from two medical centers. 
Besides the Cox proportional hazards regression, the random survival forest (RSF) were also used 
to develop prognostic model from the group A (n = 142). In RSF of the group A, the factors, whose 
minimal depth were greater than the depth threshold or had a negative variable importance (VIMP), 
were firstly excluded. Subsequently, C-index and Akaike information criterion (AIC) were used to guide 
us finding models with higher prognostic ability and lower overfitting possibility. These RSF models, 
together with the Cox, modified-RPA and lung-GPA index were validated and compared, especially 
in the group B (CAMS, n = 53). Our data indicated that the KSE125 model (KPS, smoking, EGFR-20 
(exon 18, 19 and 21) and Ca125) was the best in survival prediction, and performed well in internal and 
external validation. In conclusions, for lung adenocarcinoma patients with brain metastasis, a validated 
prognostic nomogram (KPS, smoking, EGFR-20 and Ca125) can more accurately predict 1-year and 
2-year survival of the patients.

Brain metastases (BM) from cancers were conventionally treated as a single disease entity1, and some 
pre-treatment prognostic factors had been investigated. Using the Radiation Therapy Oncology Group (RTOG) 
databases, Gaspar et al.2 proposed the recursive partitioning analysis (RPA) classes which were modified in 2012 
(modified RPA)3. Based on the data from RTOG 9508, Sperduto et al.4 developed the graded prognostic assess-
ment (GPA) index. Because BM exhibits obviously variability in clinical response and overall survival (OS)1, the 
GPA index was revised as the Diagnosis-Specific GPA (DS-GPA)5. These studies identified the prognostic factors 
of Karnofsky performance status (KPS), age, primary tumor status, extracranial metastases, and number of BM.

Lung adenocarcinoma is one of the diseases that frequently develop BM, and some disease-specific factors 
have been studied, such as, serum markers, epidermal growth factor receptor status (EGFR), tyrosine kinase 
inhibitor (TKI) therapy, and so on6. Recently, Sperduto et al.7 developed the Lung-molGPA, which included two 
new factors (EGFR and ALK alterations), but not serum marker. Therefore, this study was designed to investigate 
the prognostic value of some serum markers for the patients.

In developing prognostic models, variable selection is in such a dilemma. When more factors are integrated, 
the model from the training data set can be fitted more accurately (high overfitting possibility); however, it might 
performed badly in most other sets (low generalization ability)8. In other words, the overfitted model cannot 
accurately estimate the prognosis of other patients. Typically, as illustrated by the cited studies, prognostic factors 
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for survival data are selected by the multivariate Cox proportional hazards regression with the criterion of those 
significantly against OS. Although the regression is popularly used, it suffers from high variance and poor perfor-
mance, especially under the conditions involving multiple factors or nonlinear effects9. Random survival forest 
(RSF) is considered as a more accurate method for right-censored survival data. Based on bootstrap data and the 
majority votes of the individual decision trees, RSF can construct multiple decision trees to predict the outcome10, 
and models non-linear effects and complex interactions among factors11.

Above all, using random survival forest, this study was intended to evaluate the prognostic value of some 
serum markers for lung adenocarcinoma patients with brain metastasis, and tried to integrate them into a prog-
nostic model.

Materials and Methods
Study Population. During 2010 to 2015, the patients with a history of lung adenocarcinoma were retrospec-
tively reviewed from the cases at the First Affiliated Hospital of Anhui Medical University (AMU) and Cancer 
Hospital Chinese Academy of Medical Sciences (CAMS). The inclusion criteria were: pathologically verified lung 
adenocarcinoma (International Association for the Study of Lung Cancer, IASLC, eighth edition12), historically 
or newly diagnosed BM, and accepted the EGFR gene mutation detection and the laboratory examinations of 
CA125 (cancer antigen 125), Cy211 (cytokeratins -19 fragments), CA199 (cancer antigen 199), NSE (neuron spe-
cific enolase), CEA (carcinoembryonic antigen), SCC (squamous cell carcinoma antigen), and ProGRP (progas-
trin-releasing peptide). At the diagnosis of BM, besides the factors in the lung-GPA and the modified-RPA model, 
smoking which defined as more than 40 packs per year was also retrieved. From medical records or by telephone, 
the patients were followed to the end of November 2016. OS was the day BM diagnosed to death for any reason. 
Considering the sample size from the two centers, the patients from the AMU (group A) were used to train the 
prognostic model, which was externally validated by the data from the CAMS (group B). Additionally, to make 
sure the robustness of the RSF method, the group A was resampled and analyzed in the “Supplementary Data” 
part. Using SPSS software package, the recruited patients were randomly divided into the group SA (n = 115) and 
SB (n = 27), which was used to train and validate RSF models, respectively. The protocol was approved by the 
ethics committee at the AMU and the CAMS.

Qiagen formalin fixed paraffin embedded (FFPE) DNA extraction kit was used to extract genomic DNA. 
Exons 18, 19, 20 and 21 of the extracted DNA were amplified by polymerase chain reaction (PCR) technique, and 
were analyzed by direct Sanger sequencing13. Because NSCLC patients with EGFR exon 20 insertion were not well 
respond to gefitinib or erlotinib as those with other mutations14, EGFR mutation status was analyzed under two 
classifications, ie EGFR (exon 19–21) and EGFR-20 (exon 18, 19 and 21).

Variable Selection. RSF classifier can select prognostic factors by two indicators: minimal depth and varia-
ble importance (VIMP). Minimal depth is the node number from the root node to the parent node of the factor 
located. The smaller the minimal depth of a factor is, the more ability it has on prediction. Furthermore, the mean 
number of minimal depth distribution of factors is the threshold value for variable selection, and can be used to 
decide whether a minimal depth of a factor is small enough as a powerful one15. VIMP is a comparable meas-
urement of a factor in predicting the response or causal effect16, and is decreased with the increase in prediction 
error if the factor is randomized10. Zero or negative VIMP was not predictive17, which could be discarded in 
further analysis. Above all, minimal depth threshold and VIMP could help us to exclude some factors with low 
prognostic ability.

However, using all remaining factors to develop a prognostic model might result in overfitting, and may 
describe random error instead of the underlying relationship. Akaike information criterion (AIC) measures the 
relative quality of statistical models for a given dataset, and a lower value indicates higher quality and lower over-
fitting possibility. Therefore, it could be used to step-by-step select variables for developing models18. Based on the 
variable selection method, besides AIC, we also introduced another indicator of concordance index (C-index) to 
guide us developing potentially eligible models with both lower overfitting possibility and higher prognostic abil-
ity. C-index is similar to the area under a receiver operating characteristic (ROC) curve, and a higher percentage 
indicates higher prognostic ability19. Above all, a lower AIC and higher C-index of a model had, and the more 
explanatory and informative of the model was.

The nomogram of the best model was plotted by the Regression Modeling Strategies package (rms). A cali-
bration plot (bootstrap = 1000) of its predictions were plotted against the observed probabilities. An accurate 
prognostic nomogram has a plot where the observed and predicted probabilities for given groups fall along the 
45-degree line20.

Internal and External Validation of Prognostic Nomogram. Internal validation was used to select the 
best from the potentially eligible RSF models, which were also compared with current models (modified RPA and 
Lung-GPA). Besides C-index (discriminatory ability) and AIC (overfitting possibility), these models were also 
compared by out-of-bag (OOB) error to estimate the generalization error. Among randomly growing RSF trees, 
about one-third of the cases are not used for training (OOB data), and can be used to unbiasedly estimate the clas-
sification error when trees are added to the forest21. Therefore, a lower OOB error indicates a better RSF model.

Additionally, a 10 fold cross-validation was also used to internally validate the performance of these models22. 
The validation method randomly divided the original dataset into10 equal sized subsets, and the model is repeat-
edly trained and validated 10 times. At each time, 9 subsets are pooled to train the model, and then the model is 
validated in the retained subset. The average error across 10 rounds is the indicator (integrated Brier score, IBS) 
for generalizing the model in an independent dataset23, and a lower IBS indicates a better model.
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All data was analyzed with the R project (version 3.3.1). The important software packages for the R project 
included pec, rms, and randomForestSRC. A two sides of p < 0.05 was considered as the significant level.

Ethics approval and informed consent. Our protocol was approved by the ethics committee of the 
First Affiliated Hospital of Anhui Medical University and the National Cancer Center/Cancer Hospital, Chinese 
Academy of Medical Sciences and Peking Union Medical College. The study was conducted in accordance with 
the relevant guidelines and regulations. Informed consent was obtained from all participants according to the 
institutional guidelines.

Data availability statement. The datasets used and/or analyzed during the current study are available 
from the corresponding author on reasonable request.

Results
Patient Characteristics. Patient characteristics of the group A and B are listed in Table 1, and those of the 
group SA and SB are in Table S1 (Supplementary Data). The median age of the group A (AMU) and B (CAMS) 
were 57 y (n = 142, 28 y to 79 y) and 57 y (n = 53, 24 y to 76 y), respectively. In the group A and B, 98/142 and 6/53 
patients already had BM at the time of lung cancer diagnosed (x2 = 51.615, P = 0.000), and others (n = 44 and 
47) developed BM during 0.0–43.1 months (median 5.3 months) and 0.0–87.0 months (median 10.9 months), 
respectively.

Some patient characteristics were significantly different between the groups, such as, the serum markers of 
CA199 (x2 = 4.352, P = 0.037), Cy211 (x2 = 16.875, P = 0.000) and CA125 (x2 = 4.930, P = 0.026), and the prog-
nostic models of modified -RPA (x2 = 32.882, P = 0.000) and lung-GPA (x2 = 13.259, P = 0.004). Additionally, 
compared to the group B, more patients in the group A already had BM (98/142 vs. 6/53, x2 = 51.615, P = 0.000), 
and presented extracranial metastases (104/142 vs. 9/53, x2 = 50.128, P = 0.000).

Furthermore, in the group A, some characteristics were not balanced between already and developed BM 
patients, for example, KPS scores, primary tumor status, extracranial metastases, and modified-RPA. Generally, 
compared to the patients already BM, the developed BM patients tended to have poorer performance status 
and present extracranial metastases. Although, modified-RPA (x2 = 14.886, P < 0.01) was significantly different 
between the already and developed BM patients, lung-GPA (x2 = 3.443, P > 0.05) was not.

Treatment. Among the patients had received at least one cycle of chemotherapy (n = 155), the regimens of 
112 patients could be followed. The most (n = 74) were treated with cisplatin (nedaplatin or lobaplatin) and one of 
paclitaxel (n = 2), docetaxel (n = 14), gemcitabine (n = 14), pemetrexed (n = 31), or vinorelbine (n = 13), and oth-
ers (n = 38) were treated with carboplatin and one of paclitaxel (n = 4), docetaxel (n = 5), gemcitabine (n = 12), 
pemetrexed (n = 13), or vinorelbine (n = 4).

Among all patients (n = 195), 99 individuals received the whole brain radiotherapy by the Varian 6-MV linear 
accelerators. Additionally, radiotherapy was given to 49 patients for primary tumor or/and metastases (n = 6 for 
radiotherapy alone and n = 42 for combined treatment). Among those with available information (n = 33), 12 
and 21 patients received conventional radiotherapy and intensity modulated radiation therapy (IMRT), and their 
median doses were 48 Gy (20–66 Gy) and 60 Gy (20–70 Gy), respectively.

In the group A and B, EGFR mutation (Exon 18–21) was detected in 69/142 and 27/53 patients (Fig. 1), who 
received TKI therapy in 49/69 and 19/27 patients, respectively. Among those accepted TKI therapy, the most 
(59/61 and 20/25) were after BM both in the group A and B, respectively. Besides those received TKI therapy 
alone (22/142 and 1/53 in the group A and B), 32, 1 and 6 patients of the group A also accepted chemotherapy, 
radiotherapy and combined treatment, and in 8, 0, and 16 patients of the group B, respectively.

Treatment modalities of the patients are also presented in Table 1. Between the group A and B, treatment 
(x2 = 26.915, P = 0.000) and primary tumor control (19/142 vs. 13/53, x2 = 50.264, P = 0.000) were significantly 
different, and the difference of treatment mainly resulted from that less patients in the group A received the 
combined treatment (19/142 vs. 24/53). In the group A, the treatment modalities were not significant against OS 
(x2 = 9.205, p = 0.056); however, TKI therapy (Table 1) was significant against OS (x2 = 7.287, p = 0.026), which 
resulted from the significance between TKI therapy and no TKI therapy (x2 = 6.992, p = 0.008).

Survival and Cox Model. By the end of November 2016, in the group A and B, 92/142 and 27/53 patients 
died within 0.5 to 33.4 months (median 6.6 months) and 0.6 to 30 months (median 10 months). After excluding 
those without any treatment, the median OS was 9.0 (0.5–54.8) months and 13.3 (0.6–42.0) months, respectively.

The Kaplan-Meier analysis indicated that groups were significant factor against OS (x2 = 6.474, P = 0.011). 
Other significant factors were already or developed BM, TKI therapy, EGFR (or EGFR-20), Cy211, Ca125 and 
KPS in the group A, and were already or developed BM and KPS in the group B (Table 1).

In the multivariate Cox regression of the group A, EGFR (OR: 0.397, 95% CI: 0.397–0.942) and KPS (OR: 
4.444, 95% CI: 2.940–6.717) were significant factors, which were confirmed by Table S2 (Supplementary Data). 
However, Fig. 2 indicates that C-index (or area under ROC) for the Cox model, modified-RPA, and lung-GPA are 
not so high enough. Therefore, we tried to build a powerful model by step-by-step RSF.

RSF Models. The data from the group A were used to train RSF models (results of group SA were in the 
Supplementary Data). Because the VIMP of EGFR-20 (exon 18, 19 and 21) was obviously higher than EGFR’s 
(exon 18–21), it was used in constructing RSF models (VIMP: 0.0073 vs. 0.0032). Minimal depth and VIMP of 
variables are plotted in Fig. 3. Among those variables below the minimal depth threshold (4.6023), nine variables 
had positive VIMP scores, and were qualified for further analysis (already or developed BM, KPS, Treatment, 
Ca125, TKI therapy, Cy211, EGFR-20, smoking and gender).
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Characteristic

Group A Group B

n (%) 1-year OS (%) Median (moths) n (%) 1-year OS (%) Median (moths)

Gender
Male 70 (49.3) 43.3 9.6 25 (47.2%) 59.0 15.8

Female 72 (50.7) 49.9 12.0 28 (53.8%) 73.3 20.7

Age (year)

<50 y 36 (25.4) 50.6 15.2 13 (24.5%) 60.6 15.3

50–59 y 49 (34.5) 48.8 11.7 16 (30.2%) 73.1 20.7

≥60 y 57 (40.1) 42.4 9.0 24 (45.3%) 66.2 26.0

Smoking
No 87 (61.3) 48.8 12.0 34 (64.2%) 75.0 24.0

Yes 55 (38.7) 42.8 9.0 19 (35.8%) 51.1 15.8

CEA
Normal 68 (47.9) 48.7 11.4 24 (45.3%) 60.6 15.0

Abnormal 74 (52.1) 44.7 10.1 29 (54.7%) 71.5 26.0

CA199
Normal 103 (72.5) 46.0 10.2 46 (86.8%) 66.8 20.0

Abnormal 39 (27.5) 47.6 12.0 7 (13.2%) 68.6 20.0

SCC
Normal 137 (96.5) 47.3 11.4 49 (92.5%) 64.4 17.0

Abnormal 5 (3.5) 26.7 12.0 4 (7.5%) NA 24.0

NSE
Normal 135 (95.1) 46.7 11.4 51 (96.2%) 67.5 20.0

Abnormal 7 (4.9) 42.9 6.9 2 (3.8%) 50.0 1.8

Primary Controlled 19 (13.4) 62.0 15.2 34 (64.2%) 67.8 17.0

tumor Uncontrolled 123 (86.6) 44.7 10.1 19 (35.8%) 64.8 24.0

Extracranial Yes 110 (77.5) 44.6 9.7 9 (17.0%) 77.8 27.0

metastases No 32 (22.5) 53.8 12.5 44 (83.0%) 64.0 20.0

NoBM

1 51 (35.9) 55.0 13.3 18 (34.0%) 81.0 NA

2–3 41 (28.9) 39.9 9.7 19 (35.8%) 51.6 26.0

>3 50 (35.2) 43.5 9.3 16 (30.2%) 68.2 17.0

ProGRP
Normal 141 (99.3) 47.0 11.4 51 (96.2%) 65.4 20.0

Abnormal 1 (0.7) 0.0 6.9 2 (3.8%) 50.0 17.0

Treatment

No treatment 17 (12.0) 17.6 4.4 1 (1.9%) NA NA

Chemotherapy 42 (29.6) 50.5 15.5 26 (49.0%) 49.7 11.3

Radiotherapy 28 (19.7) 59.2 14.4 1 (1.9%) NA NA

Combined 39 (27.5) 48.2 11.4 24 (45.3%) 83.1 26.0

TKI alone 16 (11.3) 53.0 10.1 1 (1.9%) NA NA

EGFR
wt 73 (51.4) 42.3* 9.7 26 (49.1%) 51.0 15.8*

mut 69 (48.6) 51.1 12.5 27 (50.9%) 80.7 30.0

EGFR-20
wt 76 (53.5) 42.0* 9.6 26 (49.1%) 51.0 15.8*

mut 66 (46.5) 51.8 12.5 27 (50.9%) 80.7 30.0

Cy211
Normal 45 (31.7) 62.3* 15.5 34 (64.2%) 70.9 17.0

Abnormal 97 (68.3) 39.8 9.2 19 (35.8%) 60.5 24.0

CA125
Normal 74 (52.1) 57.6** 14.8 37 (69.8%) 61.8 15.8

Abnormal 68 (47.9) 34.4 8.6 16 (30.2%) 79.1 24.0

TKI therapy

No 83 (58.5) 38.1* 8.6 28 (52.8%) 51.3 15.8

in wt pt 12 (8.5) 65.6 15.2 6 (11.3%) 50.0 7.0

In mut pt 47 (33.1) 57.3 16.3 19 (35.8%) 89.5 30.0

BM
Already 98 (69.0) 48.7* 11.8 6 (11.3%) NA* NA

Developed 44 (31.0) 42.7 8.0 47 (88.7%) 62.0 15.8

KPS

<70 40 (28.2) 7.8** 3.2 12 (22.6%) 0.00** 4.0

70–80 86 (60.6) 53.8 13.3 31 (58.5%) 91.5 26.0

90–100 16 (11.3) 93.8 33.4 10 (18.9%) 70.0 24.0

modified-RPA

Classes I 1 (0.7) NA** NA 13 (24.5%) 91.7** 20.0

Classes II 101 (71.1) 60.3 15.2 29 (54.7%) 79.7 26.0

Classes III 40 (28.2) 7.8 3.2 11 (20.8%) 0.0 4.0

lung-GPA

0–1 52 (36.6) 27.4** 6.0 6 (11.3%) 66.7 17.0

1.5–2.5 77 (54.2) 52.9 12.5 37 (69.8%) 57.5 15.0

3 9 (6.3) 77.8 16.4 6 (11.3%) 100.0 NA

>3.5 4 (2.8) 66.7 33.4 4 (7.5%) 100.0 20.0

Table 1. Patient characteristics and univariate Cox regression. The significance between subsets in univariate 
Cox regression (*P < 0.05; **P < 0.01); NA: Not arrival.
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Figure 1. Exon mutations of EGFR gene. Left and right are for the group A and B, respectively.

Figure 2. Comparison of prognostic models for lung adenocarcinoma patients with brain metastasis in the two 
groups.

Figure 3. Scatter plot of VIMP against minimal depth. The variables on y-axis are sorted by minimal depth, and 
the smaller is closer to the origin. Additionally, only variables with a minimal depth lower than the threshold 
(4.6023) are plotted.
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According to AIC and C-index, variables were selected step-by-step (Fig. 4), and three models (KECS, KSE125 
and KE125) are notable. The KECS model (KPS, EGFR-20, Cy211 and smoking) was the one strictly identified 
by AIC, the KE125 model (KPS, EGFR-20 and Ca 125) was a simple one with relatively high C-index, and the 
KSE125 model (KPS, smoking, EGFR-20 and Ca 125) was the one with the highest C-index (77.2%). Additionally, 
the KTSCS model (KPS, TKI therapy, EGFR-20, Cy211 and smoking) was not evaluated for relatively lower 
C-index (71.6%).

Model Evaluation and Validation. The Cox and the 3 RSF models, together with the 2 scoring systems, 
were separately evaluated in the two groups by C-index, OOB, AIC, and integrated Brier score (Fig. 2).

In the group A, compared with others, the KSE125model had the highest C-index (77.4%), and the lowest 
OOB and AIC value (25.7% and 725.6). Therefore, the KSE125 model was the best for this cohort. In the 10-fold 
cross validation of the group A, the patients were randomly divided into 10 parts, and validated the model in 
each part separately. The performance of the model was evaluated by the integrated Brier score (Fig. 2), which 
indicated that the KSE125 model (13.2%) was only slightly worse than the Cox model (13.0%) and the KE125 
model (13.1%).

In the group B, the 3 RSF models were obviously better than GPA, RPA or Cox model. Although the KECS 
model’s C-index and OOB (77.4% and 28.6%) were the best, its AIC and IBS were worse than those of the KE125 
or KSE125 models in sequence. Above all, compared to others, the KSE125 model developed from the group A 
performed well in the group B, and the model had both higher prognostic ability and lower overfitting possibility.

Additionally, the results of the group SA and SB (Supplementary Data, Figures S1–S3) confirmed that the 
KSE125 model had both higher prognostic ability and lower overfitting possibility. Furthermore, compared to 
other models, the KSE125 model performs obviously better in both groups.

The prognostic nomogram for the KSE125 model was built for all recruits (Fig. 5A), and its C-index was 75.6% 
(95% CI: 66.8–84.4%). The predicted 1- year and 2-year OS of the model agreed well with the corresponding 
actual OS (Fig. 5B and C), and indicated the good performance of the model.

Discussion
Our study indicates that, for lung adenocarcinoma patients with brain metastasis, a validated prognostic nom-
ogram (KPS, smoking, EGFR-20 and Ca125) can more accurately predict the 1-year and 2-year survival of the 
patients before TKI therapy than other models.

Many prognostic factors had been related to the survival of NSCLC patients. Besides those in the 
modified-RPA and the lung-GPA model, the factors also included gene mutations and laboratory indicators13,24,25. 
However, all factors could not be simultaneously included in the prognostic model for overfitting. Therefore, how 
to use them to develop a model with high predicted ability and low overfitting possibility becomes a problem. In 
the past, the multivariate Cox regression was popularly applied to select variables. However, as in this cohort, the 
regression was inferior to RSF in developing prognostic models. Some factors without statistical significance in 
the Cox model, such as smoking and Ca125, could be integrated into RSF models, and could obviously improve 

Figure 4. Variable selected by AIC and C-index. Broken lines indicate the ruled out variables. The last variable 
of eligible models are marked in grey background (n = 4). KTSCS model (KPS, TKI therapy, EGFR-20, Cy211 
and smoking) is not selected for relative lower C-index (71.6%). Finally, three models (KECS, KSE125 and 
KE125) are selected (in the red dialog box).
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the model’s prognostic ability without apparently increasing overfitting possibility. Above all, as a substitute for 
the Cox regression method, the RSF based step-by-step variable selection method could be used to develop prog-
nostic models for better meeting the requirement of survival prediction.

Furthermore, our data indicated that the variable selection method could be used to develop reliable models. 
Using the method, we identified 3 RSF models, which were all confirmed to have both higher prognostic ability 
and lower overfitting possibility (Fig. 2). Although all of these RSF models could be used to predict the prognosis 
of the patients, as indicated by the indicators, the KSE125 model was slightly better than others. Additionally, 
both the models integrated CA125 (KSE125 and KE125) were slightly better than the KECS model, and indicated 
that CA125 was an important prognostic factor for the patients.

It should note that some patient characteristics were not balanced between the groups (or hospitals). For 
example, at the diagnosis of lung adenocarcinoma in the group A, more patients already had BM and presented 
extracranial metastases. And that, less patients in the group A received the combined treatment, which might 
result in a lower local control rate and shorter median OS. However, the selection bias between the hospitals could 
not obviously weaken the performance of the KSE125 model in the group B.

In this study, the KSE125 model was superior to others; furthermore, its nomogram performed well in discrim-
ination and calibration. Four variables of the models (KPS, smoking, EGFR-20 and CA125) were all reported as 
factors for lung adenocarcinoma patients previously26–29. Among the factors, KPS which stratified into <70, 70–80 
and 90–100 was the key one, and others acted to more accurately correct its prognostic ability. One of such factors 
was CA-125, which was not in present prognostic models for the patients, but turned out to be a valuable one.

Figure 5. Nomogram (upper) and validation plot (middle and lower) for KSE125 model in all patients. On the 
nomogram, the 4 predictors for a given patient are projected to the Points axis, and the accumulated total points 
can be used to predict the 1-year survival rate of the patient.
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However, this did not mean that all the four factors were the most powerfully independent ones in the predic-
tion. As indicated by minimal depth, although the factors of treatment, already or developed BM and TKI therapy 
were also powerful, C-index of their combination with other factors was not so high in this cohort of patients 
(Fig. 4). Above all, the combination of the KSE125 model was better than other variables’.

Regardless of the fact that the KSE125 model was developed from the patients who did not receive TKI ther-
apy before BM, it could also be applied in those who received. According to the study from Sperduto et al.7, 
among most patients received TKI therapy before BM, the factor of EGFR was still in the Lung-molGPA model 
for BM. The prognostic value of EGFR-20 could be explained by that the mutations well responded to TKI ther-
apy14, and was classified as a protected predictor on the nomogram (Fig. 4).

Additionally, as indicated by our results and those from Gao et al.30, some biomarkers from cancer hallmarks 
have powerful prognostic ability31. Currently, more and more these markers were integrated in prediction mod-
els; however, overfitting possibility and generalization ability of the models should be thorough evaluated with 
sufficient sample size. In this study, because only a part of the patients had the information on Alk and Kras 
mutational status, to develop reliable model, the markers were not evaluated. Considering the importance of the 
markers in lung adenocarcinoma patients7, their prognostic ability would be studied in our future studies.

Conclusions
For lung adenocarcinoma patients with brain metastasis, a validated prognostic nomogram (KPS, smoking, 
EGFR-20 and Ca125) can more accurately predict the 1-year and 2-year survival of the patients before TKI ther-
apy than other models.
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