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Efficient decomposition methods 
for controlled-Rn using a single 
ancillary qubit
Taewan Kim & Byung-Soo Choi

We consider decomposition for a controlled-Rn gate with a standard set of universal gates. For this 
problem, a method exists that uses a single ancillary qubit to reduce the number of gates. In this work, 
we extend this method to three ends. First, we find a method that can decompose into fewer gates than 
the best known results in decomposition of controlled-Rn. We also confirm that the proposed method 
reduces the total number of gates of the quantum Fourier transform. Second, we propose another 
efficient decomposition that can be mapped to a nearest-neighbor architecture with only local CNOT 
gates. Finally, we find a method that can minimize the depth to 5 gate steps in a nearest-neighbor 
architecture with only local CNOT gates.

Due to the recent advances in quantum device technology, an arbitrary single-qubit gate or a Z-rotation gate can 
be implemented with fairly high accuracy, and a small quantum algorithm can be tested. However, even with 
the gate of a small error rate currently being realized, it is difficult to directly perform scalable quantum compu-
tation since it requires that arbitrarily large computations is implemented. In order to overcome this problem, 
fault-tolerable computation is still needed1. Therefore, for reliable quantum computation, all quantum operations 
of a quantum algorithm should be represented by a universal gate set that arises from a fault-tolerant protocol 
such as Clifford + T gates2.

We consider a standard set of universal gates consisting of Hadamard (denoted H), phase (S), π/8 (T), and 
controlled-NOT (CNOT) gates. Although it is known that quantum algorithms have much lower computa-
tional complexities than classical algorithms for problem such as factoring large integers3, when such quantum 
algorithm are decomposed into CNOT, H, S, and T gates, the result includes a huge number of gates. Thus, the 
advantages of quantum computing might be nullified. To enhance the benefits of quantum computation, it is 
important to use an efficient decomposition of quantum algorithms into universal gates. Here, we first consider 
the decomposition of single-qubit gates and two-qubit gates. Any single-qubit gate can be decomposed in terms 
of Hadamard gates and Z-rotation gates Rz(θ)4,5, and there are well-known methods to approximate Rz(θ) effi-
ciently6–9. Next, we consider a controlled-Rn gate as the simplest 2-qubit gate to be decomposed into a univer-
sal set of gates. Controlled-Rn gates represent the fundamental part of the quantum Fourier transform (QFT) 
and many other quantum algorithms. Thus, controlled-Rn decomposition has a significant impact on the overall 
decomposition of a quantum algorithm. In this work, we propose efficient controlled-Rn decomposition methods 
as a technique to help enhance the benefits of quantum computation.

Background
Approximation of Rn gate. An Rn gate is defined as follows:
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The R2 gate is an S gate (or P gate), and the R3 gate is a T gate. The R2 and R3 gates are included in the universal 
set. However, Rn for n ≥ 4 cannot be exactly decomposed with only a standard set of universal gates8. Thus, we 
should approximate Rn for n ≥ 4 to express it with the standard set.

To approximate the Rn gate, we use the gridsynth method9. Given a precision ε > 0, the approximation of an 
Rn gate is to find an operator U expressible as H, S, T and Pauli operators such that
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R U , (2)n ε|| − || ≤

where the norm is the operator norm.
The gridsynth algorithm9 gives the result of the efficient approximation of an Rn gate in a probabilistic manner. 

Thus, we estimate the average number of gates for it. From Table 1, we can assume the average numbers of gates 
for an approximation of an Rn gate as 127, 253 and 379 with ε = 10−5, 10−10, and 10−15, respectively. Note that the 
average number of gates is independent of the rotation angle.

Zero ancillary qubit method (Method 1). A controlled-Rn gate is defined as follows:
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Figure 1 shows the circuit of the controlled-Rn gate with 2 CNOTs, 2 Rn+1s and 1 Rn 1+
†  gate. This method is a 

well-known and fundamental method for the decomposition of a controlled-Rn
10. When we approximate the 

controlled-Rn with precision 10−10, the total number of gates is 761 on average from Table 1. Thus, the approxima-
tion of one controlled-Rn requires an excessive number of gates.

One ancillary qubit method (Method 2). Figure 2 shows the circuit of the controlled-Rn gate using a 
single ancillary qubit. The circuit consists of 1 Rn, 16 CNOTs, 4 Hs, 8 Ts and 6 T†s.

As noted in ref.8, one advantage of such a circuit is that it reduces the depth with only a small constant over-
head. As mentioned earlier, Rn and Rn+1 require many gates according to the precision. In the case of the precision 
10−10, Rn and Rn+1 both require approximately 253 gates. Therefore, the approach where a single ancillary qubit is 
employed appears to be beneficial.

We note that the ref.11 offers an approach to implementing a controlled-U operation using an ancillary qubit 
containing an eigenstate of U. However, in this paper, we only focus on an approach using 0  state as an ancillary 
qubit. Thus, we have considered decomposition of controlled-Rn gate in an approach of the ref.11. As future work, 
we will analyze the decomposition of a controlled-U operation.

Controlled-T decomposition based method (Method 3). The previously known efficient decomposi-
tion of a controlled-T is shown in ref.12. We can observe that the middle T gate in ref.12 can be replaced with the 
Rn. In this case, controlled-Rn gate can be decomposed into 4 Hadamard gates, 2 Phase gates, 12 CNOT gates, 8 T 
gates, and 1 Rn gate. This result is the best known to date and is the same as in ref.13. If we use two ancillary qubits, 

Angle Precision 10−5 Precision 10−10 Precision 10−15

π/23 126.9226 253.3806 379.3563

π/24 126.7122 253.3352 379.4713

π/25 126.8313 253.2603 379.0883

π/26 126.8625 253.3316 379.3822

π/27 126.8923 253.4391 379.0980

π/28 126.9019 253.1520 379.9702

π/29 126.9230 253.2793 379.0183

π/210 126.9107 253.2635 379.2323

π/211 126.9982 253.5258 379.3016

π/212 126.7677 253.4237 379.1009

π/213 126.8485 253.4133 379.3630

π/214 126.8366 253.1778 379.3084

π/215 126.9337 253.5174 379.2136

Average number of gates 127 253 379

Table 1. Average numbers of gates over 10,000 runs for an approximation of Rn with angle π/2n−1.

Figure 1. Circuit implementing a controlled-Rn gate with CNOT, Rn + 1 and †
+Rn 1 gates10.
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T depth of decompsition of controlled-T can be reduced from 5 to 313. However, if we consider only one ancillary 
qubit, T-depth 5 and T-count 9 are the best results in decomposition of controlled-T gate.

Results
In this work, we improve the previous method to three ends: to reduce the total number of gates, achieve an effi-
cient layout and achieve a smaller depth.

Smaller number of total gates (Improvement 1). We propose an improvement whereby the 
controlled-Rn consists of a lower total number of gates keeping one Rn gate.

Theorem 1. The controlled-Rn gate can be decomposed with at most one ancillary state 0  into one Rn, eight CNOTs, 
four Hs, four Ts and four T†s.

The proof is given in Section Proofs. The corresponding decomposition is shown in Fig. 3.
The advantage of the proposed method is shown in Table 2. The data were estimated by the ScaffCC pro-

gram14. In particular, in the case of a controlled-T, using ancillary qubits results in an exact decomposition of the 
controlled-Rn and not an approximation. Thus, the gap between Method 1 and Improvement 1 is more larger. The 
Method 3 is more efficient than the Method 2 in decomposition of controlled-T. However, it consist of 12 CNOTs, 
4 Hs, 1 P, 1 P†, 5 Ts and 4 T†s. The decomposition includes 27 gates, whereas our decomposition includes only 
21 gates. In more detail, T-count is the same for ref.12 and our method. However, the advantage of our method is 
reduction by 4 CNOT gates and 2 Phase gates. The reduction of CNOT gates is important since implementation 
of CNOT gates is physically not easy and controlled-Rn is not the final algorithm15,16. Thus, its impact in quantum 
algorithms will be large. For example, according to module count analysis of ScaffCC Program14 for Shor’s algo-
rithm, the controlled-T gate is used 641,990,656 times in total. This means that reducing 6 gates in decomposition 
of the controlled-T gate reduces 3,851,943,936 gates in computing of Shor’s algorithm.

Figure 2. Circuit implementing a controlled-Rn gate with a single ancillary qubit 0 11,12,18. The ancillary qubit is 
initialized in and returned to state 0 .

Figure 3. Circuit for the controlled-Rn decomposition for a smaller number of gates.

Controlled-Rn Controlled-T

Resource analysis Method 1 Method 2 Method 3 Improvement 1

Number of qubits (K) 2 3 3 3

Total number of gates 790 35 27 21

Critical path (Q) 528 21 19 17

Reduction rate of total number of gates 1 22.57 29.26 37.62

Reduction rate of KQ 1 16.76 18.53 20.71

Table 2. Decomposition of controlled-T gate by four methods. Here, the precision for the approximation is 
10−10, and the reduction rate means the reduction rate for Method 1.
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Efficient layout (Improvement 2). For practical quantum computing, we should consider the layout of 
quantum circuits. Since nonlocal two-qubit-gate operation is not allowed in general, a long-range CNOT gate is 
implemented with several adjacent SWAP gates. In the following theorem, we present an efficient decomposition 
of a controlled-Rn gate without using nonlocal CNOT gates.

Theorem 2. A controlled-Rn gate can be implemented under the nearest-neighbor-interaction-only architecture with 
at most one ancillary state 0  using one Rn, twelve adjacent CNOTs, four Hs, four Ts and four T †s.

The proof is given in Section Proofs. The corresponding circuit is shown in Fig. 4. Let us consider one 
long-range CNOT gate, where the control qubit is the first qubit and the target qubit is the third qubit. Naively, 
we can decompose such a CNOT gate into one adjacent CNOT gate and two swap gates. The swap gates can be 
decomposed into three CNOT gates. Thus, the long-range CNOT can be implemented with 7 CNOT gates. More 
efficiently, the long-range CNOT can be implemented with only 4 CNOT gates17. Thus, Method 2 consists of 1 
Rn, 28 adjacent CNOTs, 4 Hs, 8 Ts and 6 T †s, while Improvement 2 consists of 1 Rn, 12 adjacent CNOTs, 4 Hs, 
4 Ts and 4 T †. Therefore, using our method, we use 16 fewer CNOT gates, 4 fewer T gates and 2 fewer T † gates.

Smaller depth (Improvement 3). The depth of a circuit means the length of the critical path of the circuit. 
To ensure an efficient run time of a practical quantum computer, the depth of a circuit should be minimized. For 
this purpose, we propose a circuit with a smaller depth for a controlled-Rn.

Theorem 3. While maintaining the Rn-type gate depth 1, the controlled-Rn can be implemented with at most one 
ancillary state 0  with a depth of 5 gates in + +

†adjacent CNOT R R{ , , }n n1 1 .
The proof is given in Section Proofs. The corresponding circuit is shown in Fig. 5. Method 2 for the 

controlled-Rn has a depth of 25, while this circuit only has a depth of 5. Although Method 1 only has a depth of 4, 
the depth after the approximation of the Rn-type gates is nearly twice that of Improvement 3.

We note that from Fig. 8.(a) in ref.12, controlled-S gate can be decomposed in a depth of 5. However, in the 
decomposition, two long-range CNOTs is used. Thus, in order to represent controlled-S gate only with adjacent 
CNOTs and Rn-type gates, the long-range CNOTs should be transformed into several adjacent CNOTs or layout 
of qubits should be changed. That is, more resources than in the method of in Fig. 5 are required. According to 
module count analysis of ScaffCC Program14 for Shor algorithm, the controlled-S gate is used 641,013,760 times 
in total. This means that reducing one depth in decomposition of the controlled-S gate affects 641,013,760 com-
puting in Shor’s algorithm.

Efficient decomposition of the quantum Fourier transform
The quantum Fourier transform (QFT) is the key ingredient for quantum factoring and many other quantum 
algorithms2. The total number of gates of the QFT for n qubits (denoted QFT(n)) is obtained as

=
+

+
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Figure 4. Circuit implementing a controlled-Rn gate for an architecture with only nearest-neighbor 
interactions.

Figure 5. Circuit for the controlled-Rn gate for a smaller depth.
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Now, we compare the total number of gates for the QFT by applying each decomposition method. QFTM1(n), 
QFTM2(n), QFTM3(n) and QFTI1(n) denote the total number of gates by Method 1, Method 2, Method 3 and 
Improvement 1, respectively, as follows:
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− − +
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where c means average number of gates over 10,000 runs for an approximation of Rn with angle π/2n−1 corre-
sponding to the precision of Table 1. For example, if a precision ε = 10−10 then c = 253. Thus, the benefit of 
Improvement 1 for Method 3 is obtained as

QFT n QFT n n n n n n( ) ( ) 6 12 3( 2)( 3) 3( 1)( 2) (9)M3 I1− = − + − − = − −

for n. In this paper, we only consider the error rate in approximation of Rn gate not the overall error rate in approx-
imation of QFT. However, we can notice that Method 3 and Improvement 1 have the same number of Rn gate, and 
Improvement 1 has smaller number of gates than Method 3. Thus, the overall error rate in approximation of QFT 
for Improvement 1 might be not greater than that for Method 3. From Table 3 and the above Equations (5–8), it is 
shown that Improvement 1 is more efficient than Method 1, Method 2 and Method 3.

Discussion
We have investigated the decomposition problem for the controlled-Rn gate since it is an important two-qubit 
gate. One method has been proposed that utilized a single ancillary qubit to reduce the number of gates. In this 
work, we have extended this method for three purposes: to reduce the number of gates, to find a good mapping 
for an architecture with only nearest-neighbor interactions, and to minimize the critical path. Specifically, we 
have realized that the proposed method reduces the number of gates for the quantum Fourier transform.

As future work, we will consider three issues. First, we need to check whether the proposed methods are 
optimal. In addition, it would be interesting to investigate how much performance gain is possible for quantum 
algorithms such as Shor’s factoring algorithm since it heavily uses the quantum Fourier transform. For more 
general situations, we need to develop a decomposition method for controlled multi-qubit unitary transforms.

Proofs
Proof of Theorem 1.

Proof. Let ψ  be an arbitrary two-qubit state. Then, ψ  can be represented as

00 01 10 11 , (10)00 01 10 11ψ α α α α= + + +

where αi are complex numbers and α∑ | | == 1i i00
11 2 . Thus,

ψ α α α α= + + + .π −
‐R eControlled 00 01 10 11 (11)n

i
00 01 10

/2
11

n 1

Let an unitary operator U be an operator denoted by

† †= ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗U I I H C T I T C C T I T C I I H( ) ( ) ( ) ( ), (12)31 23 21 31

where Cij denotes a CNOT gate with control qubit i and target qubit j. Then,

n-qubit QFT n = 3

Precision Method 1 Method 2 Method 3 Improvement 1

10−5 (c = 127) 399 51 43 37

10−10 (c = 253) 777 51 43 37

10−15 (c = 379) 1155 51 43 37

Table 3. Total numbers of gates induced in the approximation for the 3-qubit QFT with precision 10−5, 10−10 
and 10−15. Note that c denotes the expected number of gates obtained in the approximation of the Rn gate.
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Proof of Theorem 2.

Proof. Let ψ  be an arbitrary two-qubit state. Then, ψ  can be represented as

ψ α α α α= + + +00 01 10 11 , (15)00 01 10 11

where αi are complex numbers and α∑ | | == 1i i00
11 2 . Let an unitary operator U be the operator denoted by

† †U I I H C C I T T C C T T I C C I I H( ) ( ) ( ) ( ), (16)32 21 12 32 21 32= ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗

where Cij denotes a CNOT gate with control qubit i and target qubit j. Then,
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Proof of Theorem 3.

Proof. Let ψ  be an arbitrary two-qubit state. Then, ψ  can be represented as

ψ α α α α= + + +00 01 10 11 , (19)00 01 10 11

where αi are complex numbers and 1i i00
11 2α∑ | | == . Then,
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where Cij denotes a CNOT gate with control qubit i and target qubit j.
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