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Identification of individual 
subjects on the basis of their brain 
anatomical features
Seyed Abolfazl Valizadeh   1,2, Franziskus Liem4, Susan Mérillat3,4, Jürgen Hänggi1 &  
Lutz Jäncke1,3,4

We examined whether it is possible to identify individual subjects on the basis of brain anatomical 
features. For this, we analyzed a dataset comprising 191 subjects who were scanned three times 
over a period of two years. Based on FreeSurfer routines, we generated three datasets covering 148 
anatomical regions (cortical thickness, area, volume). These three datasets were also combined to a 
dataset containing all of these three measures. In addition, we used a dataset comprising 11 composite 
anatomical measures for which we used larger brain regions (11LBR). These datasets were subjected to 
a linear discriminant analysis (LDA) and a weighted K-nearest neighbors approach (WKNN) to identify 
single subjects. For this, we randomly chose a data subset (training set) with which we calculated the 
individual identification. The obtained results were applied to the remaining sample (test data). In 
general, we obtained excellent identification results (reasonably good results were obtained for 11LBR 
using WKNN). Using different data manipulation techniques (adding white Gaussian noise to the test 
data and changing sample sizes) still revealed very good identification results, particularly for the LDA 
technique. Interestingly, using the small 11LBR dataset also revealed very good results indicating that 
the human brain is highly individual.

Is it possible to identify an individual subject on the basis of particular brain anatomical features provided by 
the frequently used and widely available Freesurfer tool? This question has not been answered nor studied so 
far. However, anyone who is working with MRI-based reconstructions of the human brain is likely to have the 
impression that human brains are highly individual. This individuality seems to be obvious when inspecting 
shape and size of the gyri and sulci, or the volume and form of the entire brain.

Although the individuality of the human brain has not been demonstrated scientifically so far, there are many 
scientific reports showing that many features of the human brain are modulated by genetic1, non-genetic biolog-
ical2, and environmental3–5 influences interacting in a currently unknown manner. If brain anatomy depends on 
these individual influences, it should be possible to identify individual subjects on the basis of neuroanatomical 
and neurophysiological features using sophisticated statistical procedures. In this paper, we will demonstrate that 
it is indeed possible to identify individual subjects on the basis of specific neuroanatomical features by applying 
mathematical classifications and identification tools. By applying these techniques, we will be able to scientifically 
substantiate the often-reported impression that specific features of the human brain are individual, providing the 
opportunity to identify individual subjects on the basis of particular anatomical features. In addition, we will be 
in the position to identify those brain features which contribute most to individual subject identification.

Several papers have been published in the last decade reporting more or less successful attempts to identify 
individual subjects on the basis of neuroanatomical and neurophysiological features. In these studies, EEG meas-
ures have mostly been used either obtained from resting state6–8 or during the processing of cognitive tasks9. A 
few more recent studies have used BOLD fluctuations measured with fMRI during resting state and during the 
performance of cognitive tasks. In these studies, subject identification was quite successful, supporting the idea 
of individual connectivity profiles that can be used to distinguish individual subjects10–12. However, only two 
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studies have been published so far describing subject identification attempts on the basis of neuroanatomical 
measures13,14.

In these studies, the authors13,14 used a large dataset of MRI brain scans from three public brain databases and 
used a new mathematical algorithm for shape analysis of anatomical data. With this technique, they developed a 
software pipeline (BrainPrint), with which they have been able to classify nearly all subjects (99.8%) on the basis 
of the MRI scans. In their second paper, the same authors expanded their approach and did very well in classify-
ing age and sex on the basis of their BrainPrint pipeline14. Based on their results, the authors conclude that human 
brain structures are unique to individuals and can be used for subject identification. Wachinger14 have used a new 
transformation for analyzing the shape of the brain, which is called ShapeDNA. By using this ShapeDNA they are 
in the position to calculate eigenvalues and eigenfunctions of the Laplace Beltrami operator using a higher-order 
finite elements method (FEM with Dirichlet or Neumann boundary condition15). The authors claim that this 
algorithm is useful to map the brain shape information to a new space, so if it is possible to identify individuals 
by using ShapeDNA, the shape of the human brain should be unique in each subject. The findings of these two 
studies are intriguing and important in many respects. However, it should be emphasized that they achieved their 
results by using a specifically developed mathematical algorithm to estimate the individual features of the human 
brain (e.g., a shape analysis). One might speculate whether the very good and astonishingly high accuracy levels 
for subject identification might be based simply on the fact that they have developed a new and more efficient 
technique to mathematically describe and define anatomical features.

In this paper, we will examine whether it is possible to identify individual subjects on the basis of neuroana-
tomical features when using more standard anatomical measures obtained from the widely used FreeSurfer tool. 
A major question we are trying to answer with our project is which brain measures are necessary for good subject 
identification. Is it necessary to use all anatomical information (e.g., cortical thickness, volume, and area) from all 
anatomical regions provided by the FreeSurfer tool? Or are only some composite measures necessary for achiev-
ing good or acceptable results?

With this study, we will explicitly answer the following questions: (1) Is it possible to identify individual sub-
jects on the basis of a combination of anatomical measures? (2) Which combination of anatomical measures is 
most informative in identifying individual subjects? (3) Do different classification techniques (linear discriminant 
analysis: LDA; weighted k-nearest neighbor: WKNN) substantially differ in terms of their subject identification 
accuracy? We have chosen these two techniques because of several reasons: First, LDA is frequently used, easy 
to apply and provides fast computation times. Second, WKNN, on the other hand, provides generally excellent 
classification and identification results but requires significant computation resources.

Methods
Subjects.  191 participants (100 male, 91 female) with three measurement time points were included in the 
present work. They took part in the Longitudinal Healthy Aging Brain (LHAB) database project15. MRI meas-
urements were conducted once a year over a period of two years (t1: baseline measurement; t2: 1 year after 
baseline; t3: 1 year after t2). At the first time point, subjects were between 64 and 85 years old (M = 70.1 years, 
SD = 4.8 years). Participants were cognitively healthy, right-handed (as confirmed by the Annett Handedness 
Questionnaire16), had no history of neurological or psychiatric disorder, and did not suffer from migraine, dia-
betes or tinnitus. They gave written informed consent prior to participating in the study. In addition, all meth-
ods were carried out in accordance with relevant guidelines and regulations. All experimental protocols were 
approved by the ethical committee of the canton of Zurich (KEK-ZH-Nr. 2010–0267). The data of this sample has 
been used in previous publications of our group17–20.

Preprocessing of Anatomical Data.  MRI data were acquired with a 3.0 T Philips Ingenia scanner (Philips 
Medical Systems, Best, The Netherlands). T1-weighted images were recorded with a gradient echo sequence (3D 
turbo field echo, 160 sagittal slices, slice thickness = 1 mm, in-plane resolution = 1 × 1 mm, FOV = 240 × 240 mm, 
repetition time = 8.18 ms, echo time = 3.80 ms, flip angle = 8°). FreeSurfer (v5.3) was used to obtain measure-
ments of cortical and subcortical anatomy21–23. After completing the standard recon-all pipeline, measurements 
for cortical thickness, surface area, and volume were extracted for the regions of the Destrieux (aparc.a2009s) 
parcellation scheme24. Subcortical and global volume measurements were also extracted from FreeSurfer’s aseg 
segmentation25. To ensure independence between time points, FreeSurfer’s cross-sectional (rather than longitu-
dinal) analysis stream was used.

For this paper, we estimated mainly the same anatomical measures as used in our previous age prediction 
paper17. In short, we will reiterate the obtained measures. First, we estimated compartmental cortical volumes, 
thickness, and surface area measures for 148 brain regions using the FreeSurfer (version 5.3) anatomical region 
of interest (ROI) tool using the aparc.a2009s parcellation scheme24. We also estimated subcortical (thalamus, 
putamen, pallidum, caudatus, hippocampus, amygdala, and accumbens) and total subcortical volume, the vol-
umes of the corpus callosum (CC), cerebrospinal fluid, total white matter hypointensity, brainstem (midbrain, 
pons, medulla oblongata, and superior cerebellar peduncle), total brain volume, mean global cortical thickness, 
and total surface area. The subcortical anatomical measures were obtained using the FreeSurfer’s subcortical seg-
mentation tool (see also18). In summary, we obtained the following anatomical measures, which were first divided 
into five basic anatomical feature sets:

	 1.	 Large brain regions (LBR) comprising 11 large (global) brain measures: total cortical volume: CV; mean 
cortical thickness: CT; total cortical surface area: CA; total cortical gray matter volume: CoGM; total 
cortical white matter volume: CoWM; total cerebellar gray matter volume: CeGM; total cerebellar white 
matter volume: CeWM; total subcortical volume: SCV; brainstem volume: BV; corpus callosum volume: 
CC; white matter hypointensities: WMH (11 LBR),
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	 2.	 the 148 compartmental cortical thickness measures (THICKNESS),
	 3.	 the 148 compartmental cortical surface area measures (AREA),
	 4.	 the 148 compartmental cortical volume measures (VOLUME), and
	 5.	 the combination of the cortical thickness, area, and volume measures (ALL). This dataset also includes 

additional brain measures (e.g., CC, ICV, volumes of brain stem, cerebellum, basal ganglia, ventricles) 
totaling 510 anatomical features (the entire list of ROIs is listed in the supplementary material).

Statistical Methods Used for Subject Identification.  In this study, we have used two identifica-
tion methods: (1) Linear Discriminant Analysis (LDA) and (2) a modified version of the Weighted K-Nearest 
Neighbor (WKNN). LDA is one of the simplest classification/identification techniques currently available. LDA 
classifiers aim at finding the best linear combination of predictors in order to optimize the separation between 
multiple classes. Often the primary goal of an LDA is to project a feature space onto a smaller subspace while 
maintaining the class-discriminatory information. The nearest neighborhood (1-NN) rule on the other hand 
identifies the class of unknown data points based on its nearest neighbor data point, the class of which is already 
known. The K-Nearest Neighbor classifier (KNN) is a variant of the 1-NN procedure26. Cover and Hart propose 
KNN, in which the nearest neighbor is calculated on the basis of the value k that specifies how many nearest 
neighbors are to be considered to define a class of a sample data point. For improvement of the KNN technique, 
several methods have been proposed. In this study, we have applied the so-called weighted KNN (WKNN), which 
adds weight over a distance function. In addition, we also applied the square inverse distance in the context of 
the WKNN. The entire code has been written in Matlab by one of this paper’s authors (S.A.V). The code has been 
validated using standard datasets.

Training and Application of the Techniques.  Before presenting our methodological approach, it is nec-
essary to describe the difference between classification and identification. For classification, the number of classes 
is smaller than the number of subjects. For identification, the number of classes is identical to the number of 
subjects; thus, we cannot use the classifier techniques in the way that they are used in the classical classification 
approaches. If we repeat the measurement for each subject M times (for M > 2), we have enough samples for each 
class (here each subject). In these cases, we can use the above-mentioned classifiers and the results can be used for 
subject identification. Each subject in the LHAB dataset was scanned three times, with a year in between scans. 
Therefore, each subject is assumed to be a class with three samples. Two time points were randomly selected for 
training while the other was used for testing. The time points used for testing and training were selected randomly 
to ensure no bias on identification. Each class (subject) was evaluated separately. The accuracies of the identifi-
cations are reported as accuracy, sensitivity, specificity, and F1-scores. Sensitivity (the true positive rate) reflects 
the proportion of correctly identified subjects. Specificity on the other hand (the true negative rate) indicates 
the proportion of negatives that are correctly identified (i.e., here the number of correctly classified cases not 
belonging to a particular subject). Accuracy represents the proportion of truly classified subjects. The F1-score is 
the harmonic mean of sensitivity (also called recall) and precision (the proportion of truly classified subject over 
subjects’ number in the class, also called positive predictive value).

To test whether our identification results depend on the sample size, we conducted our identification calcu-
lations for different sample sizes. For this, we randomly chose a particular number of subjects (starting with ten 
subjects and increasing the sample size by ten). Thus, we obtained 19 samples with different sample sizes (10, 20, 
30, 40, 50, … 190 subjects). For each sample, we calculated accuracy, sensitivity, specificity, and the F1-score.

We used a further strategy to test the stability of our identification results, which is analogous to the identi-
fication strategy used in many machine learning approaches. For example, when training a neural network to 
identify faces, the trained network should be able to identify a face from different angles, under different lighting 
conditions, or when only a fraction of the face is presented27. Thus, the classifier should be able to identify the 
target stimuli (here the face) even when the target quality has been changed or is degraded. To simulate such a 
condition, we added white Gaussian noise to the anatomical features of the test data. In a first step, we performed 
our identification tests without any noise. In the next steps, we continuously added noise to all features linearly 
from 5% to 40%. Thus, we carried out our identification test for nine different noise conditions (no noise, 5%, 
10%, 15% … 40%).

For comparison between the identification results obtained by the LDA and WKNN techniques and the differ-
ent datasets, we first used Cochran’s Q test which is an extension of the McNemar test, when the response variable 
is dichotomous and there are repeated measures. In case of a significant Cochran’s Q test, we performed subse-
quent Bonferroni-Holm adjusted McNemar tests using SPSS version 22 for Mac OS X. In total, we performed 12 
Cochran’s Q tests. For comparing the performance of the two identification methods, we computed five McNemar 
tests (one for each dataset). Thus, we computed in total 17 statistical tests, and started the Bonferroni-Holm cor-
rection with a p = 0.05/17 = 0.002928. To identify those anatomical measures contributing most to the identifica-
tion results, we calculated stepwise linear discriminant analysis using. We calculated these stepwise LDAs for the 
dataset used for training and applied these LDA results to the test dataset.

Results
Identification of single subjects.  The results of the identification procedures computed for the entire 
sample are listed in Table 1. As can be observed from this table, the accuracies, sensitivities, specificities, and 
the F1-scores are consistently high. The identification results are very good and partly perfect. Sensitivity ranges 
between 0.57 and 1, specificity is always perfect, and F1-scores range between 0.51 and 1.

Table 2 shows the results of the Cochran’s Q tests across the different datasets separately for the two methods. 
As can be seen from this Table, the identification results do not strongly differ for the different datasets. At the 
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bottom of Table 2, the post hoc McNemar test results are listed. These tests revealed that the identification is better 
for the datasets ALL, AREA, and VOLUME compared to the ALL dataset.

Table 3 shows the comparisons between the different methods separately for the different datasets. This analy-
sis revealed that LDA is superior to WKNN for the ALL and 11 LBR datasets. For the other datasets both methods 
revealed similar results.

Identification of single subjects using different noise levels.  Adding noise to the anatomical measures 
generally results (with few exceptions) in degraded identification ability. Using LDA, we obtained relatively stable 
identification results for three datasets (ALL, AREA, and VOLUME) across different noise levels (see Fig. 1a). For 
THICKNESS and 11 LBR, the identification results constantly decreased, but never became smaller than F1 = 0.6. 
Using the WKNN technique, we obtained stable identification results across different noise levels for the ALL and 
AREA dataset. A constant low identification result across all noise levels was obtained for the 11 LBR dataset.

Table 4 shows the results of the Cochran’s Q test comparing the identification across the different noise levels 
separately for each dataset. For the LDA technique, the identification results differ across the different noise levels 
for the THICKNESS and 11 LBR datasets. For WKNN, we only found a significant noise influence on the identi-
fication rate for the THICKNESS dataset

Identification of single subjects using different sample sizes.  Figure 2a,b indicate the sample size 
effect for the different identification techniques and the different datasets. As one can observe from this figure, 
the identification results are very good using the LDA technique even for different sample sizes. The identification 
results become worse when sample size increases if the WKNN method is used. This happens especially for the 11 
LBR and the ALL datasets. For LDA, the results are more or less stable across the different sample sizes. Only the 
11 LBR dataset shows a slight decrease in identification accuracy from small to large sample sizes.

Selection of anatomical features contributing to the subject identification.  For highlighting 
those anatomical features contributing most to subject identification, we conducted stepwise LDAs with the train-
ing sample for the ALL and the 11 LBR dataset. To keep the results comparable across the different datasets, we 
restricted the stepwise regression to 11 variables for both datasets (the ALL dataset containing 510 features while 
the 11 LBR datasets contains only 11 features). We performed these stepwise LDAs for the randomly selected two 
time points of measurements (training sample) and applied the results to the data obtained at the other time point 
(test sample).

LDA WKNN

Acc Sens Spec F1 Acc Sens Spec F1

All 1.00 0.99 1.00 0.99 1.00 0.70 1.00 0.65

AREA 1.00 0.99 1.00 0.99 1.00 0.99 1.00 0.99

THICKNESS 1.00 0.98 1.00 0.97 1.00 1.00 1.00 1.00

VOLUME 1.00 0.99 1.00 0.99 1.00 1.00 1.00 1.00

11 LBR 1.00 0.92 1.00 0.90 1.00 0.57 1.00 0.51

Table 1.  Summary of the identification results broken down for the different methods (LDA and WKNN) and 
the different datasets. Acc: accuracy, Sens: sensitivity, Spec: specificity, F1: F1-score.

P-Value significant McNemar

LDA *** ALL vs. 11LBR AREA vs. 11LBR VOLUME vs. 11LBR

WKNN ***
ALL vs. AREA ALL vs. THICKNESS All vs. VOLUME 
ALL vs. 11LBR AREA vs. 11 LBR THICKNESS vs. 11LBR 
VOLUME vs. 11LBR

Table 2.  Summary of the Cochran’s Q test results for the two identification techniques. ***p < 0.001.

Dataset P value

WKNN vs. LDA

ALL ***
AREA n.s.

THICKNESS n.s.

VOLUME n.s.

11 LBR ***

Table 3.  Summary of the McNemar tests comparing the accuracies for the LDA and WKNN techniques 
broken down for the 5 different datasets. ***p < 0.001, significant after Bonferroni-Holm correction; n.s.: not 
significant.
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The results of the stepwise LDAs and the ALL dataset are shown in Table 5. The identification results for sub-
ject identification were better than 91% (F1-value) for the ALL dataset for the test sample. As can be seen from 
Table 5, several area, volume, and thickness measures from relatively small brain regions are included here. The 
largest measure included in this list is the left-sided cortex volume.

Using the 11 LBR dataset (see Table 6) revealed approximately similar good or even excellent identification 
results. The brain region contributing most strongly to the subject identification is the total intracranial volume, 
followed by the total grey matter volume, the volume of cerebrospinal fluid, and the surface of the white matter. 
With these four measures the F1-value mounts to an F1 = 0.64. Adding all measures of the 11 LBR dataset results 
in an F1-value of 0.90, with the corpus callosum measure adding no additional information to the 10th step dur-
ing which mean cortical thickness has been added resulting in an F1-value of F1 = 0.91.

Figure 1.  Identification results in the context of different noise levels added to the anatomical measures broken 
down for the different methods (a) LDA and (b) WKNN.

LDA WKNN

ALL n.s. n.s.

AREA n.s. n.s.

THICKNESS ***a ***c

VOLUME n.s. n.s.

11LBR ***b n.s.

Table 4.  Summary of the Cochran tests comparing the identification results for the 6 different noise levels 
separately for the LDA and WKNN techniques. n.s. not significant, ***p < 0.001; a–c: significant differences 
between 0% noise and all noise additions exceeding 15%.

Figure 2.  Sample size effect for the different identification techniques and the different datasets. a) LDA and b) 
WKNN.
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Discussion
Our study was guided by three study questions: (1) Is it possible to identify individual subjects on the basis of a 
combination of anatomical measures? (2) Which combination of anatomical measures is most important in iden-
tifying individual subjects? (3) Do different classification techniques (linear discriminant analysis: LDA; weighted 
k-nearest neighbor: WKNN) substantially differ in terms of their subject identification accuracy? With respect to 
the first study question, we can clearly state that it is indeed possible to identify an individual subject on the basis 
of their brain anatomical measures. With respect to the second study question, it is obvious that only a few (≈ 11) 
anatomical features are needed for excellent subject identification. In terms of the third study question, we can 
say that the relatively simple-to-use LDA method provides good results and is slightly better in terms of subject 
identification than WKNN. In the following, we will discuss our findings in the context of the current literature 
and possible applications and future research.

To test whether our identification results remain stable under different conditions, we introduced two data 
modifications. First, we added white Gaussian noise to the anatomical measures and second, we changed the 
sample sizes used for training of the classifiers. Adding noise to the anatomical data simulates the often-used 
strategy in machine learning to examine whether identification still works when the data quality is diminished. 
This approach is frequently used in machine learning to test whether the used algorithm is efficient to identify 
features even if the quality of the features is degraded27. In our sample, we obtained generally very good identifi-
cation results even when the “noisy” data were used (see Fig. 1a,b). The relatively simple LDA technique revealed 
excellent identification results for three datasets (ALL, AREA, and VOLUME) even if 40% Gaussian random 
noise was added to the anatomical features of the test sample. The identification results are less good for the 11 
LBR and THICKNESS datasets. However, the F1 values never dropped below F1 = 0.6, indicating that even mod-
erate sensitivity and specificity is achieved when 40% noise is added to these anatomical measures. For WKNN, 
we obtained excellent identification results for the VOLUME and AREA datasets across the different noise lev-
els. For the 11 LBR dataset, the results were consistently worse across the different noise levels. A moderate 
identification result was achieved for the ALL dataset. The identification results are less accurate if the WKNN 
method was used, particularly for the ALL and 11 LBR datasets. The identification results are fairly similar when 

Step Feature name ACC. SENS. SPEC. F1

1 rh_S_oc_middle_and_Lunatus_area 0.99 0.04 0.99 0.03

2 rh_Lat_Fis-ant-Horizont_area 0.99 0.15 1.00 0.12

3 rh_S_interm_prim-Jensen_volume 0.99 0.34 1.00 0.29

4 rh_S_subparietal_area 0.99 0.48 1.00 0.41

5 lh_S_suborbital_thickness 1.00 0.55 1.00 0.50

6 rh_S_oc_middle_and_Lunatus_volume 1.00 0.63 1.00 0.56

7 rh_S_orbital-H_Shaped_area 1.00 0.66 1.00 0.60

8 rh_G_front_middle_area 1.00 0.79 1.00 0.74

9 lhCortexVol 1.00 0.82 1.00 0.78

10 lh_G_temp_sup-Lateral_volume 1.00 0.88 1.00 0.85

11 lh_S_oc_sup_and_transversal_area 1.00 0.93 1.00 0.91

Table 5.  Results of the stepwise LDAs for the ALL dataset. Shown are the anatomical measures contributing to 
the identification result separately for each step. In addition, the identification results (ACC: accuracy, SENS.: 
sensitivity, SPEC.: specificity, F1: F1 value as a harmonic mean of specificity and sensitivity) are shown for the 
test sample.

Step Feature name ACC. SENS. SPEC. F1

1 EstimatedTotalIntraCranialVol 0.99 0.14 1.00 0.11

2 TotalGrayVol 0.99 0.38 1.00 0.32

3 CSF 0.99 0.48 1.00 0.41

4 WhiteSurfArea_area 1.00 0.71 1.00 0.64

5 Cerebellum-Cortex 1.00 0.78 1.00 0.73

6 SubCortGrayVol 1.00 0.90 1.00 0.86

7 CorticalWhiteMatterVol 1.00 0.89 1.00 0.86

8 WM-hypointensities 1.00 0.94 1.00 0.92

9 Cerebellum-White-Matter 1.00 0.89 1.00 0.86

10 MeanThickness_thickness 1.00 0.93 1.00 0.91

11 CC 1.00 0.93 1.00 0.90

Table 6.  Results of the stepwise LDAs for the 11 LBR dataset. Shown are the anatomical measures contributing 
to the identification result separately for each step. In addition, the identification results (ACC: accuracy, SENS.: 
sensitivity, SPEC.: specificity, F1: F1 value as a harmonic mean of specificity and sensitivity) are shown for the 
test sample.
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using different sample sizes. For LDA, the results are approximately similar across the different sample sizes. For 
WKNN, the results become worse with increasing sample size for the ALL and 11 LBR datasets.

Taken together, we obtained relatively good (and at times even excellent) identification results using the LDA 
and WKNN methods even if we modified the samples. However, the relatively easy LDA technique turned out 
to reveal the best and most stable results across the different datasets and conditions (with noise included). Most 
interesting is, however, that using the small 11 LBR dataset containing only 11 anatomical composite measures 
revealed astonishingly good identification results, particularly when using the LDA.

Our study demonstrates that brain anatomical measures are highly individual. Thus, a combination of only a 
few brain anatomical measures is necessary to identify an individual subject. It is also interesting to note that even 
the usage of composite anatomical measures representing relatively large brain areas (e.g., total brain volume, 
total brain area, or mean cortical thickness) are so individual that they can be used for individual subject identifi-
cation. Our results are interesting because of several issues. First, it again shows that the human brain is an organ 
with a highly individual architecture driven by specific genes, a specific environment, differential experience, 
and a combination of all three factors. Thus, our findings complement neuroanatomical research showing that 
brain anatomical features in humans are related to expertise29, experience30, learning31,32, gender18, ethnicity33,34, 
age35, giftedness36, intelligence36,37, personality traits38, diagnosed psychiatric diseases39, subliminal psychiatric 
diseases40, and social status41. Second, our findings suggest that these anatomical measures can be used to iden-
tify an individual subject. Thus, these measures provide the potential for complementing those techniques cur-
rently used for subject identification (e.g., fingerprints, eye features). Although these “brain print” applications 
are potentially interesting, we would like to emphasize that we are more interested in the obvious “individuality” 
of the human brain.

For identification, we used two frequently applied statistical techniques – LDA and WKNN. LDA is a rela-
tively simple and rapid operating mathematical procedure, while WKNN is a non-parametric exhaustive search 
procedure that requires a substantial amount of computational resources. As we have already mentioned in the 
method section, LDA and WKNN are both sensitive to distance measures representing the difference between 
the variables (here anatomical measures).

LDA is a parametric classifier using Fisher’s distance metric. Learning in this algorithm means finding the 
mean and covariance of the training dataset. For classification and identification, the classifier uses these means 
and covariances and determines the minimum distance between the subjects. At the end, LDA provides a linear 
function with weighted predictors (here anatomical measures), which is used for subject identification.

WKNN on the other hand is a nonparametric method, which uses the inverse squared Euclidian distance 
between each subject. A major disadvantage of this technique is that it is actually impossible to delineate which 
predictors contribute most effectively to the identification result. This, however, can be achieved by using the 
stepwise LDA as we have done in our study. Thus, by identifying the particular predictors (here anatomical meas-
ures) contributing to the identification result, it is possible to delineate those anatomical features which are highly 
individual and also stable across time.

Limitations.  There are some limitations to mention here. First of all, we only have anatomical data from three 
successive time points for our identification computations. This is the minimum number of time points for the 
necessary computations. It would be much better and more valid to work with more than three time points, since 
more time points are generally associated with increased variance. However, since anatomical measures change 
in older age approximately <  = 1% per year17,18,42, it is only meaningful to obtain the anatomical measures on a 
yearly basis. For this project, we used anatomical data obtained over a time period of two years during which the 
subjects were scanned on a yearly basis. However, we will continue with the measurements and obtain anatomical 
measures for the subjects for the next 2–3 years. With these data, we plan to validate our identification results. A 
second limitation pertains to the sample from which we have obtained the anatomical measures. Here, we have 
used subjects older than 65 years. Whether the identification results would have been different for younger sub-
jects has to be shown in future projects. We anticipate even more stability over the time periods, and thus very 
good identification results also for younger subjects. Third, we have used FreeSurfer software to compute the 
anatomical measures. Thus, some as-yet-unknown procedural aspects (e.g., related to the usage of the FreeSurfer 
package) might have influenced the anatomical measurements. However, since the FreeSurfer procedures are 
identical for all subjects, we anticipate only negligible influences from the FreeSurfer method.

Conclusion
With this paper, we demonstrate that only the combination of a relatively small number of neuroanatomical 
features can be used to identify individual subjects with relatively high precision. Even the easy-to-apply LDA 
technique provides very good identification results. Thus, this study demonstrates that human brain anatomy is 
highly individual.
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