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Correlation between evolution of 
inclusions and pitting corrosion 
in 304 stainless steel with yttrium 
addition
Weining Shi, Shufeng Yang & Jingshe Li

Effects of the evolution of inclusions on the pitting corrosion resistance of 304 stainless steel 
with different contents of the rare-earth element yttrium (Y) were studied using thermodynamic 
calculations, accelerated immersion tests, and electrochemical measurements. The experimental 
results showed that regular Y2O3 inclusions demonstrated the best pitting resistance, followed in 
sequence by (Al,Mn)O inclusions, the composite inclusions, and irregular Y2O3 inclusions. The pitting 
resistance first decreased, then increased, and then decreased again with increasing Y content, because 
sulfide inclusions were easily generated when the Y content was low and YN inclusions were easily 
generated at higher Y contents. The best pitting corrosion resistance was obtained for 304 stainless 
steel with addition of 0.019% Y.

As very important strategic resources, rare-earth elements are widely used in the petroleum, chemical, metal-
lurgical, textile, ceramics, and glass industries, and as permanent magnetic materials. Addition of rare-earth 
elements at an appropriate content is beneficial to enhancing the mechanical properties of metallic materials by 
refining the grains, improving wear and corrosion resistance, and improving plasticity, strength, grain boundary 
strength, and dislocation movement1,2. Zhao et al. found that appropriate Y content promoted the formation of 
fine carbides, which prevented the migration of grain boundaries, impeded grain growth in the recrystallization 
process, and refined the grains3. More importantly, Y also benefitted resistance to overall corrosion or pitting4–7.

Rare earths enhance overall corrosion resistance by changing the inner structure and the chemical composition 
and structure of the material surface, and promote and stabilize the formation of uniform and compact surface 
films8–11. Liu et al. suggested that increasing Y content ensured a reticular structure in the Y-enriched area, which 
enhanced corrosion resistance, while other structures in the Y-enriched area induced galvanic corrosion12. Riffard 
et al. showed that implanting Y into the matrix surface or use of an Y sol–gel coating could improve the oxidation 
resistance of AISI 304 stainless steel13,14. Li et al. studied the corrosion behaviour of AZ61 Mg alloy by adding 0–0.9 
mass% Y and showed that Y treatment not only refined grains and precipitates, but promoted the formation of a 
passivation film15. Wang et al. found that the surface film of 09CrCuSb alloy with Y treatment was uniform and 
compact, which improved the properties of the corrosion product16. Wang et al. demonstrated that the passivation 
film on 304 stainless steel containing Y was stabilized, improving its resistance to mechanical failure17.

Pitting corrosion resistance is enhanced because rare earths change the morphology, size, type, composition, 
and distribution of inclusions in the matrix. Cai et al. found that adding Ce to steel enabled easy transformation 
of MnS inclusions into multiphase inclusions containing Ce2O2S, which improved the corrosion resistance of 202 
stainless steel; however, inappropriate Ce addition produced a brittle secondary phase that deteriorated pitting 
corrosion resistance18. Kim et al. illustrated that the addition of rare-earth metals to a base alloy led to the forma-
tion of (Mn,Cr,Si,Al,Ce) and (Mn,Cr,Si,Ce) oxides, which improved resistance to pitting corrosion4.

Stainless steel produced by smelting has good corrosion resistance, so many scholars have endeavoured to 
improve this property. The evolution of inclusions and microstructures in stainless steel with rare-earth addi-
tions has been paid much attention19–22. Chen et al. found that many fine Y-enriched oxide inclusions were 
non-uniformly distributed in 21Cr–11Ni austenitic stainless steel containing Y and that segregation of sulfur into 
grain boundaries was reduced23. Kim et al. illustrated that adding a rare-earth metal into duplex stainless steel ren-
dered the inclusions smaller and their shape became spherical, which improved the pitting corrosion resistance4.  
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With the progress of smelting technology, sulfide inclusions have been largely removed and gradually replaced by 
oxide inclusions, which greatly enhances pitting corrosion resistance. Jun et al. argued that conditions where the 
number of sulfide inclusions was smaller than that of the oxide inclusions and the size and distribution of oxide 
inclusions were small and dispersed would improve the pitting corrosion resistance of high clean 304 stainless 
steel24. There are, however, few studies focusing on modifying oxide inclusions by adding rare-earth Y to improve 
the pitting corrosion resistance of clean 304 stainless steel.

In this study, we determined the effects of the evolution of inclusions on the pitting corrosion resistance of 304 
stainless steel with Y addition using thermodynamic calculations, potentiodynamic polarization and immersion 
tests, and scanning electron microscopy with energy-dispersive spectroscopy (SEM–EDS) analysis of inclusions.

Methods
Materials and specimen preparation. The raw material used in this study was 304 stainless steel of the 
chemical composition given in Table 1. The experimental alloys were prepared using a Si–Mo electrical resist-
ance-heated furnace. The Y contents of the experimental alloys were 0, 0.007%, 0.013%, 0.019%, and 0.049%. 
Figure 1 shows the Si–Mo furnace with (a): resistance furnace body; (b): body sketch; (c): program console; (d): 
argon tank. A smelting process was executed by switching on the flows of argon gas and cooling water, covering 
the furnace mouth with refractory bricks, and then programming an appropriate procedure into the console. 
After cooling of the furnace, the specimen was not heat treated in any other way. Specimens of the 304 stainless 
steel with different Y contents were used for counting inclusions and for the immersion and electrochemical tests. 
To avoid surface defects, the test surfaces were ground with 2000 grit silicon carbide paper and polished with 
0.5 μm diamond paste, then rinsed with deionized water, degreased in alcohol, and dried immediately.

Determination of inclusion evolution process. The types and sizes of inclusions in the 304 stainless 
steel specimens with different Y contents were observed and analysed by SEM–EDS. Several hundred inclusions 
were randomly selected and classified according to their distribution on a test surface using Factsage 7.0 software 
to reveal their evolution. After choosing the database, the Equilib software module was selected, the alloy com-
positions were input (where the Y content was set as a variable), the desired phase (as determined by SEM) was 
selected, and the compositions of inclusions with increasing Y contents in the matrix were calculated.

Electrochemical measurements. To reveal the pitting trends of 304 stainless steel with different Y con-
tents, potentiodynamic polarization tests were conducted using a three-electrode configuration in 3.5% NaCl solu-
tion at 298 K. A copper wire was attached to the rear side of each specimen and mounted in an epoxy resin and 
the test surface was ground and polished. A platinum sheet and a saturated calomel electrode (SCE) were used as 
the counter and reference electrodes, respectively. The working electrode was the specimen, the exposed area (test 
surface) of which was 1 cm2. Potentiodynamic polarization tests were carried out using a Solartron 1287 power 
supply. Tests were conducted in the potential range of −0.5 VSCE to + 0 VSCE at a scanning rate of 3.8 × 10−4 V/s.

C Si Mn P S Cr Ni Mo Cu Al O N Ca Fe

0.0511 0.4016 1.2005 0.0334 0.0019 18.0614 8.048 0.0198 0.0391 0.0132 0.0031 0.0377 0.002 Balance

Table 1. Chemical composition of 304 stainless steel specimens (mass%).

Figure 1. The Si-Mo heating electric resistance furnace.
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Immersion tests. To clarify the correlation between inclusions in 304 stainless steel with different Y contents 
and pitting corrosion, immersion tests were carried out for times of 0 s, 5 s, 10 s, 20 s, 30 s, 1 min, 5 min, 10 min, 
15 min, and 18 min at 298 K, following which the corrosion morphology of the inclusions was observed in situ. 
The test solution comprised 350 ml deionized water with 69.9 g FeCl3∙6H2O and 20 ml HCl (36–38 mass%). Each 
specimen was sealed with epoxy resin except for the test surface to avoid formation of porosity and cracks around 
the surface. After reaching the set immersion time, the specimen was immediately removed from the test solu-
tion, rinsed, and dried. SEM–EDS was used for observing the corrosion morphology and analysing the composi-
tions of inclusions after different immersion times.

Results
Counting inclusions and thermodynamic calculations. Five compositions of 304 stainless steel with 
different Y contents were obtained by tube furnace smelting. The principle of counting related to the type and size 
of inclusions after cooling in the furnace. The results of the thermodynamic calculations explained the evolution 
of inclusions with increasing Y content.

The statistical results for inclusions in 304 stainless steel with different Y contents are shown in Fig. 2. When 
the Y content was zero, the proportion of (Al,Mn)O inclusions was largest, followed by those of (Al,Mn,Si)O 
wrapped in (Al,Mn)O. When the Y content was 0.007%, the inclusions were mainly MnS, followed by (Al,Y)
O wrapped in (Al,Y)x(SO)y and (Y,Mn)x(SO)y wrapped in MnS. Only two types of inclusions could be found in 
the steel matrix when the Y content increased to 0.013%: a larger proportion of irregular Y2O3 inclusions and 
a smaller proportion of regular Y2O3 inclusions. The proportion of irregular Y2O3 inclusions was significantly 
smaller than that of regular Y2O3 inclusions when the Y content reached 0.019%. YN inclusions mainly presented 
in 304 stainless steel containing 0.049% Y, followed by regular Y2O3 inclusions and then irregular Y2O3 inclusions. 
The average size of the inclusions decreased and then increased with increasing Y content. Inclusions with the 
smallest average size were found in 304 stainless steel containing 0.013% Y.

The morphologies of the main inclusions in 304 stainless steel with different Y contents are shown in Fig. 3, 
where a, b, and c denote the main inclusions in steel matrices containing 0%, 0.007%, and above 0.013% Y, 
respectively.

The results of the thermodynamic calculations (calculated by Factsage 7.0) are shown in Fig. 4. Figure 4a 
shows that the proportion of Y2O3 inclusions gradually increased and reached a peak at ~0.012% Y, while YN 
inclusions gradually increased. Figure 4b shows that the proportions of Al2O3 and MnO inclusions decreased 
while those of MnS increased and then decreased. YN inclusions were surprisingly generated at ~0.012% Y. The 
Al2O3 and MnO components reacted with Y to generate Y2O3 in the (Al,Mn)O inclusions, so (Al,Y)O, (Al,Mn,Y)
O, and (Mn,Y)O inclusions presented sequentially with an increase of Y content. The reactions are as follows:

+ → + ∆ = − + .θ2[Y] Al O (s) Y O (s) 2[Al] G 587482 270 28 T (1)2 3 2 3

+ → + ∆ = − + .θ2[Y] 3MnO(s) Y O (s) 3[Mn] G 909747 269 75 T (2)2 3

Figure 4b shows that MnS inclusions were generated at 0.004%–0.011% Y; the proportion of MnS inclusions 
would therefore increase after furnace cooling in this range of Y contents25.

Electrochemical results. Potentiodynamic polarization tests were performed on the 304 stainless steels 
with different Y contents to determine their pitting corrosion resistance. The results are shown in Fig. 5; the 
corresponding corrosion potentials and pitting potentials are shown in Table 2. When the Y content was 0.007% 

Figure 2. Distribution of inclusions in 304 stainless steel with different Y contents. 1: (Al,Mn)O inclusions, 2: 
(Al,Mn,Si)O inclusions wrapped in (Al,Mn)O inclusions, 3: (Al,Mn,Si,Ca)O inclusions, 4: (Al,Y)O inclusions 
wrapped in (Al,Y)x(SO)y inclusions, 5: (Al,Y)x(SO)y inclusions wrapped in MnS inclusions, 6: (Al,Y,Si)O 
inclusions, 7: (Y,Mn)x(SO)y inclusions wrapped in MnS inclusions, 8: MnS inclusions, 9: CaO inclusions, 10: 
Irregular-Y2O3 inclusions, 11: Regular-Y2O3 inclusions, 12: YN inclusions.
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Figure 3. The morphology of main inclusions in 304 stainless steel with different Y contents.

Figure 4. Thermodynamic calculation results. (a) Y content range 0–0.05%, (b) Y content range 0–0.016%.
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or 0.049%, the corrosion potential (−0.35 V) was lower than for other Y contents, which indicated that severe 
pitting corrosion susceptibility occurred at these Y contents. The highest pitting potential (−0.11 V) was achieved 
by 0.019% Y, indicating that the 304 stainless steel with 0.019% Y possessed the best pitting corrosion resistance. 

Figure 5. The potentiodynamic polarization curves of 304 stainless steel with different Y contents.

Y contents 0% 0.007% 0.013% 0.019% 0.049%

corrosion potential/V −0.31 −0.35 −0.29 −0.30 −0.35

pitting potential/V −0.19 <−0.35 −0.18 −0.11 −0.22

Table 2. The corrosion potential and pitting potential in potentiodynamic polarization curves of 304 stainless 
steel with different Y contents.

Figure 6. The morphology of (a,b,c) inclusions in 304 stainless steel containing 0% Y after immersion at 0 s, 
5 s, 2 min, 5 min, 10 min. (a) (Al,Mn)O inclusions, (b) Al2O3 inclusions wrapped in (Al,Mn)O inclusions, (c) 
(Al,Mn,Si)O inclusions wrapped in (Al,Mn)O inclusions.
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Figure 5 shows that the pitting potential disappeared in 304 stainless steel containing 0.007% Y because the corro-
sion potential was greater than the pitting potential, so no passive region was attained: pitting corrosion occurred, 
indicating the weakest resistance to pitting corrosion by this steel composition. From these data, it was evident 
that the pitting potential first decreased, then increased, and then decreased again with increasing Y content.

Figure 7. The morphology of (a,b,c,d) inclusions in 304 stainless steel containing 0.007% Y after immersion 
at 0 s, 5 s, 2 min, 5 min. (a) (Al,Y)x(SO)y inclusions wrapped in MnS inclusions, (b) (Y,Mn)x(SO)y inclusions 
wrapped in MnS inclusions, (c) MnS inclusions, (d) (Al,Y)O inclusions wrapped in (Al,Y)x(SO)y inclusions.

Figure 8. The morphology of (a,b) inclusions in 304 stainless steel containing 0.013% Y after immersion at 0 s, 
5 s, 15 min, 18 min. a: Irregular-Y2O3 inclusions, b: Regular-Y2O3 inclusions.
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Figure 9. The morphology of (a,b) inclusions in 304 stainless steel containing 0.019% Y after immersion at 0 s, 
5 s, 15 min, 18 min. (a) Regular-Y2O3 inclusions, (b) Irregular-Y2O3 inclusions.

Figure 10. The morphology of a, b inclusions in 304 stainless steel containing 0.049% Y after immersion at 0 s, 
5 s, 18 min. a: YN inclusions, b: Regular-Y2O3 inclusions.

Y contents/% Inclusion numbera 5 s 5 min 18 min

0
1 0% 94% 100%

2 92% 100% 100%

0.007

8 82% 100% 100%

4 88% 100% 100%

7 100% 100% 100%

0.013
10 100% 100% 100%

11 0% 0% 96%

0.019
10 100% 100% 100%

11 0% 0% 92%

0.049

10 100% 100% 100%

11 0% 0% 94%

12 98% 100% 100%

Table 3. The proportion of pits induced by inclusions at 5 s, 5 min, 18 min in 304 stainless steel with different 
Y contents. a1: (Al,Mn)O inclusions, 2: (Al,Mn,Si)O inclusions wrapped in (Al,Mn)O inclusions, 4: (Al,Y)O 
inclusions wrapped in (Al,Y)x(SO)y inclusions, 7: (Y,Mn)x(SO)y inclusions wrapped in MnS inclusions, 8: MnS 
inclusions, 10: Irregular-Y2O3 inclusions, 11: Regular-Y2O3 inclusions, 12: YN inclusions.
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Characteristics of inclusions after immersion. Immersion tests were conducted to observe the pitting 
of inclusions in 304 stainless steel with different Y contents and determine the effect of inclusion evolution on 
the pitting corrosion resistance. The morphologies of the inclusions in 304 stainless steel containing no Y after 
immersion for 0 s, 5 s, 2 min, 5 min, and 10 min are shown in Fig. 6, where a shows (Al,Mn)O inclusions, b shows 
Al2O3 inclusions wrapped in (Al,Mn)O inclusions, and c shows (Al,Mn,Si)O inclusions wrapped in (Al,Mn)O 
inclusions. Miro-crevices formed in the inclusion/matrix boundary at 5 min (Fig. 6a and b), while Fig. 6c shows 
the formation of a micro-crevice after 5 s.

The morphologies of inclusions in 304 stainless steel containing 0.007% Y after immersion for 0 s, 5 s, 2 min, 
and 5 min are shown in Fig. 7, where a shows (Al,Y)x(SO)y inclusions wrapped in MnS inclusions, b shows 
(Y,Mn)x(SO)y inclusions wrapped in MnS inclusions, c shows MnS inclusions, and d shows (Al,Y)O inclusions 
wrapped in (Al,Y)x(SO)y inclusions. Figure 7a and b show serious corrosion, resulting in large pits after 5 s, while 
Fig. 7c shows the formation of a micro-crevice after 5 s and the development of corrosion along the inclusion/
matrix boundary. The inclusion in Fig. 7d exhibited the best pitting corrosion resistance: serious corrosion only 
occurred after 5 min.

The morphologies of inclusions in 304 stainless steel containing 0.013% Y after immersion for 0 s, 5 s, 15 min, 
and 18 min are similarly shown in Fig. 8, where a and b represent irregular and regular Y2O3 inclusions, respec-
tively. Figure 8a shows pit formation after 5 s, the depth of which increased with time, while b showed no disso-
lution until 18 min. This trend is similar to that shown in Fig. 9, which represents 304 stainless steel containing 
0.019% Y, where Fig. 9a and b show regular and irregular Y2O3 inclusions, respectively.

The inclusion morphologies in 304 stainless steel containing 0.049% Y after immersion for 0 s, 5 s, and 18 min 
are shown in Fig. 10, where a represents YN inclusions and b shows regular Y2O3 inclusions. Figure 10a shows 
that large pits formed after 5 s, while b exhibited little or no corrosion after 18 min. This indicated that lower 
pitting corrosion resistance was achieved by 304 stainless steel containing 0.049% Y because of the generation of 
YN inclusions.

Pitting corrosion is randomly induced in stainless steel26,27. We therefore calculated the proportions of pits 
induced by inclusion after immersion for 5 s, 5 min, and 18 min in 304 stainless steel with different Y contents, as 
shown in Table 3. The results showed that different types of inclusions induced different trends of pitting initiation 
at these times. Pitting initiation induced by regular Y2O3 inclusions did not all occur after 18 min, which indicated 
that these inclusions had the best pitting corrosion resistance.

Discussion
The evolution of inclusions in 304 stainless steel with different Y contents directly affected their pitting resist-
ance. The inclusion size first decreased and then increased with increasing Y content (Fig. 2). When the 304 
stainless steel contained 0.013% Y, the average inclusion size in the matrix was lowest, but its pitting corrosion 
resistance was weaker than that of 304 stainless steel containing 0.019% Y (Fig. 5). Kim et al. argued that the 
addition of rare-earth elements changed the composition and shape of inclusions and decreased the inclusion 
size in duplex stainless steel4. Ha et al. illustrated that rare-earth elements reduced the size and surface density of 
(Mn,Cr,RE)-oxysulfide inclusions20 and that smaller inclusion sizes enhanced pitting corrosion resistance. From 
the point of this study, however, the type of inclusion (Figs 5–10) was more dominant than the inclusion size. 
With the increase of Y content, inclusions that were mainly composed of (Al,Mn)O and (Al,Mn,Si)O wrapped in 
(Al, Mn)O evolved into inclusions of MnS, (Al,Y)O wrapped in (Al,Y)x(SO)y, and (Y,Mn)x(SO)y wrapped in MnS 
(0.007% Y), and then into Y2O3 inclusions. When the Y content increased further (0.013% to 0.019%), the pro-
portion of regular Y2O3 inclusions increased further and YN inclusions were eventually generated (Figs 2–4). This 
evolution behaviour ensured that 304 stainless steel containing 0.007% Y gave the weakest resistance to pitting 
corrosion, because most inclusions (the composite inclusions) were etched and almost half were severely etched 
(Fig. 7). A large number of YN inclusions were severely etched after 5 s in 304 stainless steel containing 0.049% 
Y, but its pitting corrosion resistance was greater than the steel containing 0.007% Y because of the generation of 
regular Y2O3 inclusions (Fig. 10). The best pitting corrosion resistance was exhibited by 304 stainless steel con-
taining 0.019% Y, which contained the largest proportion of regular Y2O3 inclusions (Figs 5, 9).

Conclusions
In 304 stainless steel with Y addition, pitting corrosion resistance induced by inclusion was not predominantly 
related to the inclusion size, but also to the inclusion type. The composite inclusions and irregular Y2O3 inclusions 
showed the weakest resistance to pitting corrosion.

The pitting corrosion resistance first decreased, then increased, and finally decreased again with increasing Y 
content (within the range of 0%–0.049% Y) in 304 stainless steel. MnS inclusions and the composite inclusions 
were produced when Y contents were relatively low and YN inclusions formed at relatively high Y contents, both 
of which deteriorated the pitting corrosion resistance. Regular Y2O3 inclusions gave the best pitting corrosion 
resistance: the higher the number of inclusions, the better was the pitting corrosion resistance. The best pitting 
corrosion resistance was exhibited by 304 stainless steel containing 0.019% Y.
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