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Comparative High-Resolution 
Transcriptome Sequencing of 
Lymphoma Cell Lines and de novo 
Lymphomas Reveals Cell-Line-
Specific Pathway Dysregulation
Leila Taher1,2, Julia Beck3, Wen Liu4, Catrin Roolf4, Jan T. Soller6, Barbara C. Rütgen7, Sabine 
E. Hammer   8, Murali Chodisetti2,4, Sina Sender4, Katharina A. Sterenczak4, Georg Fuellen2, 
Christian Junghanss4, Bertram Brenig6, Ingo Nolte5, Ekkehard Schütz3,6 & Hugo Murua Escobar4,5

In dogs as well as humans, lymphoma is one of the most common hematopoietic malignancies. 
Furthermore, due to its characteristics, canine lymphoma is recognized as a clinically relevant in vivo 
model to study the corresponding human disease. Immortalized cell lines are widely used as in vitro 
models to evaluate novel therapeutic agents and characterize their molecular mechanisms. However, 
it is known that long-term cultivation leads to clonal selection, genetic instability, and loss of the initial 
heterogenic character, limiting the usefulness of cell lines as preclinical models. Herein, we present a 
systematic characterization and comparison of the transcriptomic landscape of canine primary B- and 
T-cell lymphomas, five lymphoid cell lines (CLBL-1, CLBL-1M, GL-1, CL-1, and OSW) and four non-
neoplastic control samples. We found that lymphomas and cell lines exhibit a common “differentiation 
and proliferation signature”. However, our analysis also showed that, independently of the cell of 
origin, the transcriptional signatures of lymphomas are more similar to each other than they are to 
those of cell lines. In particular, we observed that not all common therapeutic targets are similarly 
expressed between lymphomas and lymphoid cell lines, and provide evidence that different lymphoid 
cell-lines should be used to model distinct aspects of lymphoma dysregulation.

Lymphoma is one of the most common hematopoietic malignancies. Approximately 89% of human lymphomas 
are non-Hodgkin’s lymphomas (NHLs), and they represent about 5% of all newly diagnosed cancer cases per year 
in the United States (SEER Cancer Statistics Factsheets1). Similarly to human NHLs, canine lymphomas (CLs) 
account for 83% of all hematopoietic malignancies, and approximately 6% of all canine neoplasias2,3. Additionally, 
there is a remarkable resemblance between CLs and NHLs, including clinical presentation, tumor biology, and 
response to therapeutic agents, such as conventional chemotherapy. Akin to their human counterparts, CLs are 
classified into several subgroups, with B- and T-cell lymphomas being the most prominent. B-cell lymphomas 
represent approximately 70% of the reported cases, while T-cell lymphomas are seen in around 20%4. Equally 
important, lymphomas occur naturally in dogs in the presence of an active immune system. Further, dog physiol-
ogy and drug metabolism are more similar to those of humans than of rodents, making CL an invaluable model 
for NHL research.
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The usual therapeutic management of CLs is similar to that of NHLs and consists of a CHOP 
(Cyclophosphamide, Hydroxydaunorubicin, Oncovin, and Prednisone)-based chemotherapy. A complete remis-
sion is habitually achieved within three weeks, but the majority of canine patients relapse within the follow-
ing twelve months. Therapeutic response and survival are highly correlated with lymphoma subtype, which is 
normally determined by immunophenotypic analysis5–7. Current routine lymphoma diagnosis and classification 
largely depends on cytologic evaluation, flow cytometric phenotyping and histopathological WHO classification, 
and, occasionally, PCR for antigen receptor gene rearrangement (PARR). In canine patients, advanced directed 
therapeutic interventions is hampered by limited detailed information on molecular markers for dysregulated 
pathways, tumor character, and consequential chemotherapeutic responsiveness and tolerance.

Immortalized cancer cell lines are frequently used as in vitro cancer models. Indeed, cell lines permit measure-
ments under controlled conditions, and novel drugs and drug combinations are primarily evaluated in suitable 
cell line sets. Moreover, long-term cultivation of primary lymphoma material is infeasible. Hence, lymphoma 
therapy response at phenotypic, cytomorphologic, and other molecular levels are studied in lymphoid cell lines, 
which are widely accepted as a relatively stable in vitro system for these purposes. Commonly used CL cell lines 
include CLBL-1, CLBL-1M, GL-1, CL-1 and OSW8–10. In particular, CLBL-1 represents a canine B-cell lymphoma 
cell line comprehensively characterized and compared to primary neoplastic samples11–14. Nevertheless, despite 
the indisputable value of cell lines, clonal selection and long-term passages in vitro are known to lead to the loss 
of many attributes of the initial tumor, e.g. its heterogeneity15, and thus, well established cancer cell lines often 
show distinctive expression profiles from their clinical counterparts16. A comprehensive comparative molecular 
analysis of lymphoid cell lines and primary lymphomas is crucial to identify concordant and discordant biolog-
ical functions, processes, and/or pathways. Additionally, this knowledge should enhance the efficiency of drug 
screening.

High-throughput gene expression analysis has proven to bear major potential in human17–20 as well as in vet-
erinary oncology21–26. Microarray-based analyses of different CL subtypes allowed Frantz et al. (2012) to define 
three major prognostically significant groups and propose a robust real-time PCR-based screening assay that 
relies only on four genes (CD28, ABCA5, CCDC3 and SMOC2). Furthermore, comparative microarray-based 
studies in canine and human diffuse large B-cell lymphomas (DLBCL) revealed the activation of the NF-KB 
pathway24,25 as well as the dysregulation of pathways potentially bearing therapeutic and prognostic value, such 
as the PI3K/AKT, Notch and JAK/STAT pathways24, in both species. Gene profiling has also found noticeable 
differences between human and canine lymphomas. Thus, in contrast to human B-cell lymphomas, canine B-cell 
lymphomas have been shown to rarely express BCL6 and MUM1/IRF425. Compared to conventional molecu-
lar approaches, massive parallel sequencing technologies offer numerous advantages: (i) they are not limited to 
known transcripts; (ii) they have a broader dynamic range of expression levels; (iii) they are more specific and 
sensitive; and (iv) can be used in a variety of applications, including the detection of transcript fusions, differen-
tial exon usage, and alternative splicing27. In particular, we have recently used mass parallel sequencing in order 
to characterize and evaluate experimental drug modes of action in the CL cell lines CLBL-1 and CLBL-1M as a 
model for human neoplasias11. Here, we comparatively characterize the transcriptional signatures of 16 primary 
CL samples, five CL cell lines and four non-neoplastic control samples by massive parallel sequencing (RNA-seq).

Results
The transcriptomic landscape of canine lymphomas and lymphoid cell lines.  To investigate how 
representative lymphoid cell lines are of lymphomas, we systematically compared the transcriptomic profiles 
among primary canine lymphomas, five canine lymphoid cell lines, and four non-neoplastic lymph nodes, which 
were used as controls (see Methods). Specifically, we considered three lymphoid cell lines derived from B-cells 
(CLBL-1, CLBL-1M, GL-1) and two cell lines derived from T-cells (CL-1 and OSW). Twelve samples were classi-
fied as B-cell lymphomas and one sample was classified as T-cell lymphoma using flow cytometry (see Methods). 
Three additional lymphoma samples presented an uncertain phenotype, but were identified herein as probable 
T-cell lymphomas based on their transcriptomic profiles (see Fig. S1). Accordingly, the T-cell lymphoma sample 
was grouped together with the three “probable T-cell lymphomas” for the purpose of further analysis. The two 
resulting groups of primary lymphoma samples and the five lymphoid cell lines defined a total of seven sample 
groups, each with a different number of replicates. A total of 5,712 differentially expressed genes were identified 
in the lymphomas and lymphoid cell lines relative to controls (see Methods, Fig. 1A and Table S1). Of these, 1,703 
were differentially expressed in lymphomas and 5,443 were differentially expressed in lymphoid cell lines, with 
most single lymphoid cell lines exhibiting larger numbers of differentially expressed genes than lymphomas. 
Additionally, both for lymphomas and lymphoid cell lines, most differentially expressed genes were down-regu-
lated (1,055 and 3,553, respectively). Nevertheless, the majority of changes in expression were modest, with most 
genes (between 85 and 95%, depending on the sample group) exhibiting moderated log2 fold-changes between 
−2 and 2 (see Fig. 1B and Methods). Moreover, while extremely (log2 fold-change ≥ 5) up-regulated genes were 
not associated with any specific functions, extremely down-regulated genes (log2 fold-change ≤ 5) were associated 
with lymphocyte differentiation and apoptosis, among others, evidencing impaired lymphocyte activity.

Principal component analysis (PCA) of the moderated log2-transformed expression values for differentially 
expressed genes revealed a clear separation of the different sample groups, with few exceptions (see Fig. 1C). Thus, 
CLBL-1 and CLBL-1M appear to be undistinguishable, reflecting the common origin of these cell lines. Indeed, 
the cell line CLBL-1M was established from a CLBL-1 induced tumor in mouse, and has been shown to maintain 
the cell and molecular characteristics of CLBL-113. Consistent with this general overview of the samples, differen-
tially expressed genes among distinct sample groups featured specific functional profiles (see Fig. 1D).

We identified a total of 9 differentially expressed annotated microRNA genes (miRNAs) in lymphomas and 
lymphoid cell lines relative to controls (see Methods). These miRNAs showed relatively small differences in 
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expression, with moderated log2 fold-changes between −2.6 and 2.4 with respect to control, and no two samples 
groups exhibiting opposite differential expression trends. Nevertheless, these differences were enough to distin-
guish between the lymphomas and lymphoid cell lines (see Fig. S2 and Table S2). Specifically, three miRNAs were 
up-regulated in at least one of the sample groups, while six miRNAs were down-regulated. Likewise, we found 
97 differentially expressed annotated long non-coding RNA genes (lncRNAs) in lymphomas and lymphoid cell 
lines compared to controls (see Methods). The expression profiles of lymphoma and lymphoid cell line samples 
were clearly distinct, and among them, OSW cell lines stood out because of their relatively high expression levels 
for ENSCAFG00000033802, ENSCAFG00000035265, ENSCAFG00000038320, ENSCAFG00000038492, and 
ENSCAFG00000040754, which were virtually not expressed in other samples (see Fig. S3). In addition, only nine 
out of the 28 lncRNAs that were differentially expressed in B-cell lymphomas were also differentially expressed in 
one or more of the remaining sample groups, indicating that these lncRNA are specific B-cell lymphoma markers 

Figure 1.  Significantly differentially expressed genes in the seven lymphoma and lymphoid cell line sample 
groups (B-cell lymphoma, probable T-cell lymphoma, CLBL-1, CLBL-1M, GL-1, OSW, and CL-1) compared to 
controls. (A) Barplot depicting the number of the significantly differentially expressed genes (DEGs) between 
each sample group and controls. (B) Distribution of logarithm (base 2) of the fold changes of the (regularized-
logarithm) transformed expression values generated with the “DESeq2” R/Bioconductor package52 relative 
to controls. (C) Principal component analysis (PCA, the two first components are plotted) for (regularized-
logarithm) transformed expression values generated with the “DESeq2” R/Bioconductor package. PC analysis 
was performed using the R function prcomp, on centered and scaled data. The first PC explains 15% of the 
variance in the data, the second PC, 10%. (D) UniProt keywords significantly associated with genes that are 
significantly differentially expressed in each sample group compared to controls. The Database for Annotation, 
Visualization and Integrated Discovery57,58 (DAVID Bioinformatics Resources 6.8, http://david.abcc.ncifcrf.
gov/) was used to test for statistical enrichment of a given UniProt keyword at a FDR ≤ 5% with the set of 17,950 
genes represented in the dataset with at least one sequence read count as background. Two-way clustering 
was performed using the Euclidean distance metric using complete linkage for both columns and rows. 
Visualization was performed with the R/Bioconductor package pheatmap62. Heatmap shades represent the 
negative log10 of the adjusted P-value (FDR) of enrichment of a given gene set for association with the listed 
UniProt keyword.

http://david.abcc.ncifcrf.gov/
http://david.abcc.ncifcrf.gov/
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(see Table S3). Despite the limited annotation of the canine genome, these results highlight the potential power of 
non-coding RNAs as markers for lymphoma diagnosis.

Overall, our results indicate that whole genome transcriptomics can be used to reliably subtype CLs.

A core of common genes controls cell differentiation and proliferation in both lymphomas and 
lymphoid cell-line models.  Most of the 5,712 differentially expressed genes are most likely downstream 
effectors, that is, genes at the bottom hierarchical layers of the perturbed transcriptional and signaling networks. 
1,703 genes were differentially expressed in lymphomas relative to controls, with 439 of these genes being differ-
entially expressed in both B-cell and probable T-cell lymphomas (see Fig. S4 and Table S1). The vast majority of 
these 439 genes were differentially expressed in the same direction, with 227 and 206 genes being consistently 
up- and down-regulated, respectively, in both B-cell and probable T-cell lymphomas. These genes were signifi-
cantly enriched in functions such as chromosome segregation, cell division, DNA metabolic process, and DNA 
replication whose association with cancer is well established. Among the functions enriched among the 846 genes 
that were exclusively differentially expressed in B-cell lymphomas we found locomotion, cell adhesion, cell pro-
liferation, cell differentiation, cell death, immune system process, and response to stimulus. Further, many of 
these functions were also enriched among the 418 genes that were exclusively differentially expressed in probable 
T-cell lymphomas, suggesting the use of different molecular mechanisms to specify the same general biological 
processes and functions. Moreover, promoter analysis of the genes that were exclusively differentially expressed 
in each of these three groups (see Methods) revealed that they are most likely regulated by many of the same tran-
scription factors, including E2F4 and SP1 from the transforming growth factor-β (TGF-β) pathway. The TGF-β 
pathway is key in cancer development and progression28.

Eighty-four percent of the 1,703 genes that were differentially expressed in lymphomas relative to con-
trols were also differentially expressed in at least one lymphoid cell line. Moreover, 95% (1,362) of these genes 
were consistently up- and down-regulated; specifically, 481 genes were up-regulated in lymphomas and either 
up-regulated or unchanged in all lymphoid cell lines, while 881 genes were down-regulated in lymphomas 
and either down-regulated or unchanged in all lymphoid cell lines (see Fig. S5). These results indicate a rel-
atively large number of shared molecular functions between lymphomas and lymphoid cell lines. Only 166 
genes were differentially expressed in all lymphomas and lymphoid cell line sample groups. Among them, 78 
genes were up-regulated and 86 were down-regulated in all sample groups. The two genes SHCBP1 and FLT3 
(ENSCAFG00000003704 and ENSCAFG00000006716) exhibited discordant differential expression: SHCBP1 is 
down-regulated in GL-1 cell lines and up-regulated in all remaining sample groups, whereas FLT3 is up-regulated 
in GL-1 cell lines and down-regulated in all remaining sample groups. While FLT3 mutations are not directly 
associated with lymphomas, FLT3 mutations are frequently observed in acute myeloid leukemia and considered a 
negative prognostic factor for this disease29. The 166 differentially expressed genes were associated with molecular 
functions and biological processes such as cell cycle, mitotic cell cycle and nuclear division, chromosome segrega-
tion, organelle fission, DNA replication, nuclear and cell division, cytoskeleton organization, nucleotide binding, 
and ATPase activity, among others (see Table S4), representing the active division of cancer cells. Their promoters 
were significantly enriched in motifs consistent with the binding sites of members of the MEF2 and Forkhead box 
transcription factor families (see Methods). Mutations in members of the MEF2 family have been associated with 
leukemia and lymphoma30. In particular, mutations in MEF2B, the most divergent and least studied protein of the 
MEF2 family, promote lymphoma development31. Deregulation of Forkhead box (Fox) proteins is known to have 
a crucial role in T-cell activity and B-cell development32.

Taken together, these observations indicate the existence of a common core differentiation and proliferation 
signature for lymphomas and lymphoid cell lines, as has been reported for other types of cancer33.

Distinct lymphoid cell-lines model different aspects of lymphoma dysregulation.  Despite the 
relatively large overlap between the expression changes in lymphomas and lymphoid cell lines relative to con-
trols, each lymphoid cell line exhibited a distinct expression profile. Thus, only 19% (93) of the genes that were 
up-regulated in B-cell lymphomas were also up-regulated in all B-cell-derived lymphoid cell lines (see Fig. 2A). 
Similarly, only 29% (233) of the genes that were down-regulated in B-cell lymphomas were also down-regulated 
in all B-cell-derived lymphoid cell lines. The products of the genes that were found differentially expressed in 
B-cell lymphomas and all B-cell-derived cell lines were enriched in kinases, proteins modified by the formation 
of disulfide bonds and containing coiled coil and EGF-like domains, immunoglobulins, and nucleotide-binding 
proteins (see Fig. 2B), and involved in cell development, proliferation and migration, among other functions 
(see Table S5). Moreover, the genes that were exclusively differentially expressed in each of the B-cell-derived 
sample groups (or closely related sample groups, in the case of CLBL-1 and CLBL-1M cell lines) exhibited dis-
tinct functional and molecular profiles (see Fig. 2B). Nevertheless, compared to other sample groups, the genes 
that were exclusively differentially expressed in B-lymphomas were only associated with relatively few specific 
processes or functions (see Fig. 2B and Table S5), suggesting few systematic differences in gene regulation and, 
therefore, strengthening the utility of lymphoid cell lines as lymphoma models. Analogously, 48% (193) of the 
genes that were up-regulated in probable T-cell lymphomas were also up-regulated in all T-cell-derived lymphoid 
cell lines, while 58% (265) of the genes that were significantly down-regulated in probable T-cell lymphomas 
were also down-regulated in all T-cell-derived lymphoid cell lines (see Fig. 3A). The products of the genes that 
were differentially expressed in all probable T-cell lymphoma and T-cell-derived cell line samples were found 
to be enriched in nucleotide-binding proteins, proteins with signal sequences and immunoglobulins, among 
others (Fig. 3B), and associated with cell proliferation, cell migration, and immune response, among others (see 
Table S6). Similarly as observed for B-cell lymphomas and B-cell-derived cell lines, the genes that were exclusively 
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differentially expressed in probable T-cell lymphomas were associated with relatively few functions and processes 
(see Fig. 3B and Table S6).

Genes that were differentially expressed in lymphomas or lymphoid cell lines were involved in virtually all 
examined KEGG pathways34–36 (257/260, see Methods). To identify common dysregulated pathways among the 
different sample groups we examined pathway net expressions, computed as the number of up-regulated minus 
the number of down-regulated genes within a sample group in relation to the total number of genes in a given 
pathway (see Methods). Net expression values varied between −0.58 (“tuberculosis”, in OSW cell lines, with 22 
genes down-regulated out of 39) and 0.52 (“DNA replication”, in CLBL-1 cell lines, with 17 genes up-regulated 
and only one down-regulated out of 32), with a median of −0.06. In particular, several of the genes downregu-
lated in the pathway with the most negative net expression values, “tuberculosis”, belong to the major histocom-
patibility complex class II (MHC II, 8) and/or are complement factors (11), which are key in immune response 
and antigen presentation. An impaired antigen presentation is essential for tumor cells to evade an immune 
response37. Consistent with the overall numbers of up- and down-regulated genes we found that a large number 
of pathways (between 122 and 205, depending on the sample group, with a median of 198) exhibited negative 
net expressions. Also, a total of 219 pathways had net expression values close to zero in at least one sample 
group, in the sense their absolute net expression values were in the range −0.05 to 0.05. Pathways with similar 

Figure 2.  Comparison between B-cell lymphomas and B-cell-derived lymphoid cell-line models. (A) Venn 
diagram of consistently significantly up- and down-regulated genes in B-cell lymphoma and B-cell-derived 
lymphoid cell line samples. (B) UniProt keywords significantly associated with genes that are differentially 
expressed in B-cell lymphomas and/or B-cell-derived lymphoid cell lines. All considered sets are disjoint. 
For example, “B-cell lymphoma; CLBL-1” corresponds to the set of genes that are differentially expressed 
exclusively in both B-cell lymphoma and CLBL-1 samples. The Database for Annotation, Visualization and 
Integrated Discovery57,58 (DAVID Bioinformatics Resources 6.8, http://david.abcc.ncifcrf.gov/) was used to test 
for statistical enrichment of a given UniProt keyword at a FDR ≤ 5% with the set of 17,950 genes represented in 
the dataset with at least one sequence read count as background. Two-way clustering was performed using the 
Euclidean distance metric using complete linkage for both columns and rows. Visualization was performed with 
the R/Bioconductor package pheatmap62. Heatmap shades represent the negative log10 of the adjusted P-value 
(FDR) of enrichment of a given gene set for association with the listed UniProt keyword.

http://david.abcc.ncifcrf.gov/
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net expression profiles across all lymphoma and lymphoid cell line sample groups were clustered together using 
self-organizing maps (SOMs, see Fig. 4 and Table S7). The SOMs revealed that 28% (72) of the pathways had net 
expression values close to zero across most sample groups (units 7, 11, 12 and 16, with median net expression 
values across all pathways and sample groups in the range −0.05 to 0.05, see Fig. 4A and B). In addition, 37% 
(94) of the pathways exhibited negative net expressions in most sample groups (units 1, 5, 9, 10, 13 and 14, with 
median net expression values < −0.10), while only 7% (18) of the pathways had positive net expressions in most 
sample groups (units 4 and 8, with median net expression values > 0.10). Pathways with negative net expressions 
in lymphomas are those that would normally prevent tumor dissemination (e.g., “cell adhesion molecules” and 
“tight junction”) and that are required for establishing and/or maintaining the circadian rhythm and immune 
responses (e.g., “circadian rhythm” and “primary immunodeficiency”). In contrast, pathways with positive net 
expressions were associated with increased cell cycle (e.g., “DNA replication” and “pyrimidine metabolism”) and 
increased energy metabolism (e.g., “glycolysis gluconeogenesis” and “pentose phosphate pathway”). Furthermore, 
the SOMs indicated that pathway dysregulation is, in general, stronger in lymphoid cell lines compared to lym-
phomas. Indeed, of the aforementioned 94 pathways with negative net expressions in most sample groups (units 
1, 5, 9, 10, 13 and 14), 31 had net expression values that were closer to zero in B-cell lymphomas than in any other 
sample group, while 56 had net expression values that were closer to zero in probable T-cell lymphomas than 
in any other sample group. Moreover, 81 pathways had net expression values that were closer to zero in B-cell 
or probable T-cell lymphomas compared to any other sample group. Similarly, as observed for pathways with 
negative expressions, of the aforementioned 18 pathways with positive net expressions in most sample groups 
(units 4 and 8), 4 had net expression values that were closer to zero in B-cell lymphomas than in any other sample 
group, while 2 had net expression values that were closer to zero in probable T-cell lymphomas than in any other 
sample group. Moreover, the only sample group which exhibited net expression values closer to zero than any of 
the lymphomas for more pathways was GL-1 (for 13 pathways). Despite the similarities in pathway dysregulation 
between lymphomas and lymphoid cell lines, we found punctual differences. For example, all lymphoid cell lines 
exhibited more down-regulated than up-regulated genes in the p53 signaling pathway (net expressions between 
−0.02 and −0.09), while B-cell and probable T-cell lymphomas displayed the opposite trend (net expressions 0.16 
and 0.09, respectively). Inactivation or functional alternation of p53 by genomic loss or modulating mutations 
are frequently observed in human hematopoietic neoplasias including DLBCLs. Thereby, loss or mutation of p53 

Figure 3.  Comparison between probable T-cell lymphomas and T-cell-derived lymphoid cell-line models. (A) 
Venn diagram of consistently significantly up- and down-regulated genes in probable T-cell lymphoma and 
T-cell-derived lymphoid cell line samples. (B) UniProt keywords significantly associated with genes that are 
differentially expressed in probable T-cell lymphomas and/or T-cell-derived lymphoid cell lines (see Fig. 2).
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correlates with chemo resistance, shorter overall as well as progression free survival38. Consequently, the herein 
observed downregulation in the cell lines indicated a selection of an aggressive clone within the cell line com-
pared to the primary samples. Consequently, if used for drug evaluation studies the analyzed cell lines are likely 
to represent chemotherapy-resistant cell fractions.

Overall, our data suggest that gene expression changes arising in in vitro culture affect multiple functions, 
processes, and pathways that are also affected in lymphomas. In turn, most if not all functions, processes, and 
pathways affected in B-cell lymphomas are altered in at least one of the lymphoid cell lines, while probable T-cell 
lymphomas appear to have a distinct expression profile. In general, we observed that most common pathways 
associated with cancer, and, in particular, lymphoma, are more profoundly dysregulated in the cell lines when 
compared to lymphomas, but the level of dysregulation and the identity of the pathways depends on the specific 
cell line.

Not all pathway-specific drug targets in the B-Cell receptor signaling pathway are similarly 
expressed between lymphomas and lymphoid cell lines.  Because of its centrality to hematopoie-
tic neoplasias, many current human therapeutic approaches target proteins within the B-cell receptor signaling 
pathway. Indeed, several inhibitors are already in clinical use, FDA-approved or in clinical trials. In contrast to 
humans, dogs are usually not subjected to targeted therapeutic protocols, but the similarities in lymphoma pres-
entation in both species suggest that pathway-specific inhibition should enhance treatment outcome in dogs as 
observed for humans. With the aim of evaluating the value of cell lines as in vitro models for pathway-specific 
inhibitor testing, we comparatively examined the expression of B-cell receptor pathway-inhibitor targets in the 
different lymphoid cell lines and primary lymphoma samples (see Fig. 5).

Figure 4.  Self-organizing maps (SOMs) representing differences in pathway activity across sample groups. 
SOMs are a class of neural network algorithm for unsupervised machine learning with a strong visualization 
capability. Each hexagonal cell in the SOM grid is called a “unit” and represents a group of KEGG pathways34–36. 
Pathways have been grouped according to similarity in their “net expression” profiles across seven sample 
groups (B-cell lymphoma, probable T-cell lymphoma, CLBL-1, CLBL-1M, GL-1, OSW, and CL-1). The net 
expression of a pathway is defined as the number of significantly up-regulated genes minus the number of 
significantly down-regulated genes within each sample group in relation to the total number of genes in 
the pathway whose expression was detected by RNA-seq analysis (see Methods). (A) The gray scale and the 
numbers in parentheses indicate the number of pathways associated with each unit. The numbering of the units 
is indicated in red and corresponds to Table S7. (B) Each SOM map corresponds to a different sample group. 
The color of unit represents the average net expression of the corresponding group of pathways for the sample 
group indicated by the label of the SOM map, with blue indicating the lowest net expression and red the highest 
net expression. Two evident patterns are the red units in the right lower corner (units 4 and 8) and the blue units 
in the left upper corners (units 9 and 13). In contrast to lymphoid cell lines SOMs, lymphomas SOMs show only 
a few red and green units.
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GSK3B, AKT1, SYK, BTK, and PIK3CA are common targets of kinase inhibitor therapies. Thus, GSK3B inhib-
itors are currently used to target different acute leukemia and lymphoma forms39,40. AKT1 inhibitors are used 
to target different solid tumor types as well as leukemia and relapsed lymphoma forms41. Additionally, SYK has 
been shown to be frequently activated in primary human DLBCL42, and is a target for several human leukemia 
therapies. Thus, the SYK-inhibitor entospletinib is currently undergoing several clinical trials for hematopoietic 
malignancies. Likewise, BTK dysregulation has been implicated in a variety of B-cell-related diseases. Finally, 
four well-described PI3K isoforms (α, β, δ and γ) are encoded by PIK3CA, PIK3CB, PIK3CD and PIK3CG. 
Consequently, PIK3 inhibitors are used in targeted therapeutic approaches for several human hematopoietic neo-
plasias and are in clinical trials for lymphoma types such as indolent non-Hodgkin’s lymphoma and DLBCL43,44. 

Figure 5.  Pathway analysis of genes differentially expressed in the canine B-cell receptor signaling pathway 
(“cfa04662”) in the (A) lymphoma and (B) lymphoid cell-line sample groups. The boxes representing the genes 
are uniformly divided by the number of sample groups34–36. Sample groups are laid out from left to right as 
follows: (A) B-cell lymphoma and probable T-cell lymphoma, and (B) CLBL-1, CLBL-1M, GL-1, OSW, and 
CL-1. The logarithm in base 2 of the fold change relative to controls for the genes involved is indicated in yellow 
(up-regulated) or blue (down-regulated). White boxes represent genes whose expression was not detected. 
Fold changes were determined based on the average (regularized-logarithm) transformed expression values 
generated with the “DESeq2” R/Bioconductor package for each sample group52. The “Pathview” R/Bioconductor 
package63 was used to generate the graphical representation of the pathway and indicate which genes are 
differentially regulated.
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None of the aforementioned genes were differentially expressed in B-cell lymphomas relative to controls and 
most were not differentially expressed in probable T-cell lymphomas either. Only SYK was down-regulated 
(log2 fold-change −2.7) and BTK showed a borderline non-significant tendency towards down-regulation (log2 
fold-change −2.0) in probable T-cell lymphomas. Among the cell lines, we found that GSK3B expression was 
slightly up-regulated in OSW cells (log2 fold-change 1.0), while AKT1 was not differentially expressed. SYK 
and BTK were down-regulated in OSW and CL-1 cell lines (SYK had log2 fold-changes −5.0 and −5.0, respec-
tively, and BTK had log2 fold-changes −4.2 and −4.2, respectively). Lastly, PIK3CD was down-regulated (log2 
fold-change −3.2) in CL-1 cell lines. Independently of their efficacy as therapeutic agents in the canine model, 
AKT1, SYK and BTK expression is consistent between B-cell lymphomas and B-cell-derived cell lines as well as 
between probable T-cell lymphomas and T-cell-derived cell lines, indicating the suitability of the cell lines to eval-
uate AKT1, SYK and BTK inhibitors. In contrast, the divergence in expression observed for GSK3B and PIK3CD 
between lymphomas and cell lines is likely due to clonal selection or cultivation induced artifacts, hence limiting 
the value of the cell lines as drug testing system. It is important to note, though, that since kinase inhibitors show 
major effects in protein phosphorylation patterns, further evaluation at the protein level using canine specific 
antibodies should be warranted to evaluate the relevance of these findings.

Discussion
Historically, classification of lymphomas has been dominated by histological and histopathological methods, but 
has recently evolved with the application of high-throughput transcriptomics and proteomics technologies. Thus, 
in humans, genome-wide gene expression profiling has led to the definition of different molecular subtypes with 
distinct prognosis22. Our results confirm that massive parallel sequencing (RNA-seq) can also be used for classi-
fication of B- and T-cell lymphomas in dogs, enabling a depth of analysis that was not feasible with conventional 
PARR (PCR for Antigen Receptor Rearrangement) and flow cytometry.

Cell lines are among the most used models in lymphoma studies45,46. Our comparative analyses of primary 
lymphoma and lymphoid cell line samples at the transcriptome level indicate that in vitro cultured lymphoid cell 
lines at least partially retain the transcriptomic landscapes of primary lymphomas. Specifically, we found that 
the majority of the differentially expressed genes are down-regulated compared to the controls. This suggests 
that an important mechanism in both lymphoid neoplasms and lymphoid cell lines involves turning off, rather 
than activating the expression of genes. Consistently, extremely down-regulated genes were highly enriched for 
normal lymphocyte functions, most likely indicating a dedifferentiation of the cells. In addition, genes that were 
differentially expressed in both primary lymphomas and lymphoid cell lines relative to controls were strongly 
associated with cell differentiation and proliferation. Distinct examples of proliferation signatures have been iden-
tified in many different tumor and tumor-derived cell types33. Basically, such proliferation signatures consist of 
a core set of genes whose expressions correlate with rapid cell proliferation and, they have been proposed as a 
component of clinical diagnostics for cancer patients, for example, to distinguish between low and high grade 
breast cancers46. We also observed a large number of genes whose expression was discordant between matched 
primary lymphomas and lymphoid cell lines. These alterations indicate cell population selection during primary 
and long-term culture. Moreover, the number of genes significantly differentially expressed in lymphoid cell line 
samples is many-fold larger than that in primary lymphoma samples. Many of these changes appear to represent 
a more extensive dysregulation of biological functions, processes, and/or pathways that were already dysreg-
ulated in the primary lymphomas. Despite the possibility of cross contamination of the primary tumors with 
non-neoplastic tissue, the fact that we found evidence for pathway- and cell-line-specific dysregulation suggests 
that in vitro culture leads to loss of tumor heterogeneity and clonal selection. Remarkably, we noted that not all 
common therapeutic targets in the B-cell receptor signaling pathway are similarly expressed between lymphomas 
and lymphoid cell lines, a finding that may have implications for the assessment of novel lymphoma drugs by cell 
line experiments and warrants further investigation.

In general, targeted therapies combining conventional chemotherapy with pathway-specific inhibitors 
improve treatment outcome. Although, in contrast to humans, dogs are normally not subjected to targeted ther-
apeutic protocols, the similarities in lymphoma presentation in both species suggest that pathway-specific inhi-
bition should enhance treatment outcome in dogs as well. Consequently, experimental therapeutic protocols in 
dogs bare significant value for human patients. Our systematic comparison between the transcriptome of primary 
lymphomas and lymphoid cell lines provides a solid rationale for the use of lymphoid cell lines as in vitro models 
for primary lymphomas, but also point out their limitations.

Methods
Cell lines and de novo samples.  Canine B-cell lymphoma cell lines CLBL-1 (5 replicates), CLBL-1M (5 
replicates), GL-1 (1 replicate), and canine T-cell lines CL-1 (2 replicates) and OSW (4 replicates) were cultured 
routinely in RPMI 1640//20% FBS/2% penicillin-streptomycin (all components from Biochrom AG) medium. All 
cells were maintained in a humidified incubator at 37 °C and 5% CO2.

Samples from dogs with naturally occurring lymphomas (12 multicentric B-cell lymphomas, one T-cell lym-
phoma, and three intestinal lymphomas) were collected from 16 patients at the Small Animal Clinic, University of 
Veterinary Medicine Hannover, Foundation, Germany according to the respective legislation of the state of Lower 
Saxony, Germany. Four non-neoplastic lymph nodes were used as controls.

RNA isolation.  Total RNA was isolated from primary lymphoma samples and lymphoid cell lines using the 
RNeasy Mini Kit (Qiagen) according to the manufacturer’s instructions. On-column DNase digestion was per-
formed with the RNase-Free DNase Set (Qiagen) to avoid genomic DNA contamination. RNA quality was char-
acterized by RIN analyses on an Agilent 2100 Bioanalyzer (Biorad, Germany) using the Nano Kit according to 
manufacturer’s instructions (Biorad, Germany).
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Library construction and sequencing.  For the preparation of sequencing libraries, 2 µg total RNA with 
RIN > 8 were used. Poly-A RNA was enriched and ligated to sequencing adapter using the NEBNext Ultra RNA 
preparation Kit (New England Biolabs) according to manufacturer’s protocols. Sequencing was conducted on 
an Illumina Hiseq. 2500. 100bp-long paired-end reads were generated, with approximately 30 × 106 reads per 
sample.

Data processing and differential gene expression analysis.  The reads were subsequently mapped 
to the canine genome (Broad CanFam3.1/canFam3, Sep. 2011) using BWA47. Duplicate reads and low quality 
mappings were removed using Picard (http://broadinstitute.github.io/picard) and samtools48. Raw read counts for 
each of the Ensembl49 (release 85, fpt://ftp.ensembl.org/pub/release-85/gtf/canis_familiaris) genes were obtained 
using the Python package HTSeq50. (version 0.6.1). Quality control was assessed using FastQC51.

Of the 19,856 annotated canine protein-coding genes in Ensembl, 17,950 genes (90.4%) were represented with 
at least one sequence read count (i.e., one mapped read) in at least 1 of the 37 individual sample RNA-seq librar-
ies. These 17,950 genes were further filtered by removing lowly expressed genes, whereby only genes displaying a 
number of reads normalized by the library size above the 40th percentile for at least one sample were used for sub-
sequent analyses, yielding 10,771 genes (54% of annotated canine genes). Of the 846 annotated canine microRNA 
genes (miRNAs) in Ensembl, 401 (48%) had at least one sequence read count (i.e., one mapped read) in at least 1 
of the 37 individual sample RNA-seq libraries. These miRNAs were further filtered by removing lowly expressed 
miRNAs (below the 40th percentile for all samples), resulting in 246 miRNAs. Finally, of the 8,124 annotated 
canine long non-coding RNA genes (lncRNAs) in Ensembl, 4,729 (58%) had at least one sequence read count 
(i.e., one mapped read) in at least 1 of the 37 individual sample RNA-seq libraries. 1,889 where considered lowly 
expressed and excluded from the differential expression analysis, which included then a total of 2,840 lncRNAs.

The DESeq2 R/Bioconductor package52 (version 1.10.1) was used to process read counts from HTSeq and 
determine statistically differentially expressed genes. Our experimental design included cell lines and primary 
B- and T-cell lymphoma samples (B-cell lymphoma, probable T-cell lymphoma, CLBL-1, CLBL-1M, GL-1, OSW, 
and CL-1). Dispersion was estimated for these 10,771 genes using the function “estimateDispersions” with default 
options. The function rlogTransformation was used to transform the original count data to the log2 scale. For 
each of the primary lymphoma or cell line sample groups, the expression value of each gene was compared to the 
controls using pairwise comparison (Wald test with H0: moderated log2 fold-change = 0 and H1: moderated log2 
fold-change ≠ 0). Genes were considered differentially expressed if the Benjamini-Hochberg adjusted P-value 
(false discovery rate, FDR53) was ≤1 × 10−5. The rlogTransformation() function in the DESeq2 R/Bioconductor 
package was used to transform the count data to the log2 scale; this transformation minimizes differences between 
samples for genes with small counts and normalizes the counts with respect to library size.

Promoter motif analysis.  We used DREME54 in conjunction with TOMTOM55 and JASPAR56 to iden-
tify putative transcription factor binding sites (TFBFs) in gene promoters. Gene promoters were defined as 
1000-bp-long sequences starting 750 bp upstream and ending 250 bp downstream of the annotated transcription 
start site (TSS).

Functional analysis.  The Database for Annotation, Visualization and Integrated Discovery57,58 (DAVID 
Bioinformatics Resources 6.8, http://david.abcc.ncifcrf.gov/) was used to test for functional and pathway statisti-
cal enrichment analysis. In particular, we focused on the categories: GOTERM_MF_ALL, GOTERM_BP_ALL, 
GOTERM_CC_ALL, GOTERM_MF_DIRECT, GOTERM_MF_FAT, GOTERM_CC_FAT, UP_KEYWORDS, 
and KEGG_PATHWAY, and applied and identified enriched categories based on the FDR.

Pathway analysis.  Kohonen’s self-organizing maps (SOMs59) were used to extract prominent patterns of 
pathway activity. Specifically, SOMs were used to cluster and visualize the “net expression” of KEGG pathways34–36 
across seven sample groups (B-cell lymphoma, probable T-cell lymphoma, CLBL-1, CLBL-1M, GL-1, OSW, and 
CL-1). The net expression of a pathway was defined as the number of significantly up-regulated genes minus the 
number of significantly down-regulated genes within each sample group in relation to the total number of genes 
in the pathway. Only genes whose expression was detected with at least one sequence read count in at least one 
RNA-seq library were considered. Definitions for 309 KEGG pathways were downloaded using the KEGGRest R/
Bioconductor package60. The net expressions of 257 KEGG pathways comprising a minimum of 20 genes detected 
at the level of at least one sequence read count in at least one RNA-seq library were used to train the SOMs. 
Calculations were conducted with the kohonen R package61 with a 4 × 4 hexagonal SOM grid and additional 
default parameters.

The RNA-seq data presented in this manuscript has been deposited in the NCBI GEO database (entry 
GSE112474).
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