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Assessment of plant species 
diversity based on hyperspectral 
indices at a fine scale
Yu Peng, Min Fan, Jingyi Song, Tiantian Cui & Rui Li

Fast and nondestructive approaches of measuring plant species diversity have been a subject of 
excessive scientific curiosity and disquiet to environmentalists and field ecologists worldwide. In 
this study, we measured the hyperspectral reflectances and plant species diversity indices at a fine 
scale (0.8 meter) in central Hunshandak Sandland of Inner Mongolia, China. The first-order derivative 
value (FD) at each waveband and 37 hyperspectral indices were used to assess plant species diversity. 
Results demonstrated that the stepwise linear regression of FD can accurately estimate the Simpson 
(R2 = 0.83), Pielou (R2 = 0.87) and Shannon-Wiener index (R2 = 0.88). Stepwise linear regression of 
FD (R2 = 0.81, R2 = 0.82) and spectral vegetation indices (R2 = 0.51, R2 = 0.58) significantly predicted 
the Margalef and Gleason index. It was proposed that the Simpson, Pielou and Shannon-Wiener 
indices, which are widely used as plant species diversity indicators, can be precisely estimated 
through hyperspectral indices at a fine scale. This research promotes the development of methods for 
assessment of plant diversity using hyperspectral data.

The fast and nondestructive estimation of plant species diversity has received increasingly more attention from 
ecologists in recent decades1,2. Remote sensing facts offer composite data which can sense the features of an item 
and mirror its real standing, agreeing on a considerable decrease in field survey costs and labor. Such methods 
display great potential for estimating plant diversity3. Spectral heterogeneity among plant species is related to 
the variation in plant species and thus can be considered as one method to specify plant species diversity3,4. 
Theoretically, data obtained by remote sensing of adequate spectral resolution could indicate plant species diver-
sity, but the identification of the appropriate spectral bands is challenging.

Near infrared4, middle infrared5 and thermal infrared bands6,7 have been strongly suggested for species diver-
sity discrimination. Their combinations were also verified robust indicators of plant diversity. The combination as 
Normalized Difference Vegetation Index (NDVI) used to estimate species richness8–10 and Shannon and Simpson 
diversity indices11,12, Enhanced Vegetation Index (EVI) can minimize atmospheric noise and soil background 
and improve the estimation of plant diversity in the case of dense canopy13,14. Other combinations as Infra Red 
Index (IRI), Middle Infra Red Index (MIRI), Atmosphere Resistance Vegetation Index (ARVI) and Soil Adjusted 
Vegetation Index (SAVI) were also found to closely relate to plant species diversity7,10,13,15.

Numerous statistical methods have also been used to reform the excellence in plant diversity. Linear regres-
sion11, hierarchical agglomerative cluster16, standard deviations17 as well as the first17,18 and second18 order deriv-
atives of reflectance values were all used for diversity material extraction and validated a good fit between the 
outcomes and plant diversity indices. Even though previous researchers have discovered the near connection 
between plant diversity and spectral indices, the coarse spectral and spatial resolutions have limited the estima-
tion accuracy19,20. Higher spectral variation is closely related to higher environmental heterogeneity, thus indi-
cated the possibility of higher species diversity21. Hyperspectral data have hundreds of wavebands and the highest 
spectral resolution. They can depict greater detail in spectral heterogeneity as well as image plant diversity.

Plant species diversity was successfully predicted by the hyperspectral indices (with an error of ca. 20%) 
within a 4 m2 scale in dry grazed grasslands in Sweden20, as well as in a temperate forest in Germany (R2 = 0.76)22. 
The combination with hyperspectral data (4 meter resolution), the WorldView-2 imageries can statistically 
significantly improve species classification accuracy (79% ± 1.8) compared to the WorldView-2 data alone 
(77% ± 3.1)23. However, the estimating accuracy is also affected by the spatial resolution of hyperspectral data. 
The hyperspectral data from airborne sources are made at a coarser scale (4–30 meters) and tend to provide an 
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average for several aspects—such as healthy and diseased leaves, stems, and even the shadows and orientation of 
the woody plant shoot rather than canopy alone. These data are largely affected by the illumination conditions 
of species measuring and canopy reflectance, hence the biodiversity estimation24. Additionally, hyperspectral 
imagery is expensive and not readily available. The high cost, atmospheric noise, and coarse resolution have con-
siderably limited the wide direct application of hyperspectral data from airborne imagery.

Associate to the aloft borders, the hyperspectral facts at a good scale (less than 1 meter) can gather the detailed 
reflectance data by less inspiration from background environment and atmosphere by the benefit from the fine 
scale, may be regarded as a desirable source to extract plant diversity information. However, to the best of our best 
knowledge, few studies reported, the direct relationship between hyperspectral data and plant species diversity 
at a fine scale. We assume that 1) hyperspectral data at a fine scale can accurately estimate plant diversity, and 2) 
spectral indices based on sensitive bands can get more desirable results than based on empirical bands. In order 
to test these hypotheses, we conducted a field study in the Hunshandak Sandland, Northern China, collected 
field-survey vegetation parameters and hyperspectral data for the pant diversity indices, exploring the potential 
of hyperspectral data in estimating plant diversity.

Methods
Study area. The study was conducted in temperate grassland of Hunshandak Sandland (41°46′-43°69′N, 
114°55′-116°38′E), Inner Mongolia, Northern China (Fig. 1). The prevailing climate is of temperate semi-arid 
type with an annual mean temperature of 1.7 °C. The diurnal minimum and maximum monthly temperature 
is −18.3 °C and 18.7 °C, respectively. Hunshandak Sandland receives an annual precipitation of 250–350 mm, 
80–90% of which falls between May and September. Semi-natural grasslands in Hunshandak Sandland are asso-
ciated with high levels of species-rich habitats at a fine scale, where shelter most plant species, hence prevent the 
movement of sandy dunes and desertification process25. Operative scheme for the rapid assessment of fine-scale 
(0.25–1 meter) plant species diversity are therefore needed for monitoring of ecological status in species-rich 
habitats. The landscape of Hunshandak Sandland possesses a unique pattern consisting of fixed sandy dunes, 
semi-fixed sandy dunes, moving dunes, and lowland where relatively rich in plant diversity. These fine-habitats 
with rich plant diversity and the nearly flat landform mark it a perfect region to discover the relationship between 
hyperspectral data and plant species diversity at a fine-scale.

Plant diversity survey and analysis. A total of 24 plots, each measuring 10 m by 10 m, randomly dis-
tributed throughout the northern and southern central Hunshandak Sandland were chosen for the survey. The 
geographical position of centre in each sampling plot was acquired using a high-precision GPS (accurate to within 
a metre). Within each plot, five subplots (circles with diameter of 0.8 meter each) were marked off, each meas-
uring a diameter of 0.8 m and originating from different corner and centre of the main plot. The abundance, 
cover and height of each plant species and habitat categories (fixed sandy dunes, semi-fixed sandy dunes, mobile 
sandy dunes, lowland, water, and construction land) were recorded in July of 2016. The number of individuals 
was recorded for species whose stems were either fully or partially within the subplot. The clonal species were 
accounted as separate individuals if stems or culms were larger than 20 cm from others belonging to the same 

Figure 1. Location of study area: the central Hunshandak Sandland in China, and samples location. Map 
created using ArcGIS 10.2 software (http://www.esri.com) by the first author.
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species. Canopy cover was visually estimated for all species with canopy cover within the subplot. Reliability 
of visual approximation was preserved by the assessment being done by the same person all over all plots. 
Completely, the vegetation parameters of 120 subplots were acquired.

Based on the collected data on the abundance of plant species, we calculated five widely-used indexes of bio-
diversity, namely the Shannon–Wiener index, the Simpson species evenness index, the Pielou index, the Margalef 
index and the Gleason index26, using the following formulas for each circle.

To estimate alpha diversity, we calculated the Shannon–Wiener index (H) (1).
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where H is the diversity in a circle of S species, ni is the number of individuals of the ith species, N is the total 
number of individuals of all the species, and ln is the natural logarithm. The higher value of H means higher spe-
cies richness and also signifying that different species in the quadrat or a community are nearly equally abundant. 
Shannon index is one of the most widely used measures of diversity based on the information theory.

The Simpson species evenness index (D) used in this study is given by Formula (2).
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D profits into justification both the number of species and the equilibrium among them. The value of D falls 
within the interval [0…1] if there is only one species, D is zero. As the number of species increases – and their 
contribution to overall abundance is equalized – D approaches 1. The index offers a good approximation of diver-
sity with a moderately small sample size, being less delicate near taxon fullness and netting the modification of 
the taxon abundance distribution26.

The Pielou species index (J) is calculated by the following formula (3).

=J H S/ln (3)

The Margalef index (dma) is calculated by: dma = (S − 1)/lnN.
J measures how evenly individuals are distributed among taxa in a community, dma reports the number of 

species corrected for sample abundance.
The Gleason index (dgl) is calculated by: dgl = −S/lnA. A is its area where field survey conducted (in this study 

is a circle with radius of 0.8 meter).

Hyperspectral data measurement and analysis. Ground-based hyperspectral measurements were 
recorded concurrently for each subplot (a circle with diameter of 0.8 m) using a Hand–Held ASD portable 
FieldSpec 2 spectrometer (Analytical Spectral Devices Inc., USA). The spectrometer has a spectral range extend-
ing from 325 to 1075 nm, and a 1 nm bandwidth (www.asdi.com), weight in 1.2 kg. Measurements were taken 
during 10:00–15:00 (Beijing Time) in a sunny windless day in July, 2016. The surveyors dressed in dark and didn’t 
block the sun when measuring in order to minimize environmental reflections. Given the surveyed circle diame-
ter of 80 cm, the canopy reflectance was measured by pointing the fibre optic with a field of view of 25 degrees in 
a nadir position, from about 200 cm above the centre of each surveyed circle (diameter 0.8 m), to ensure that only 
hyperspectral parameters within the surveyed circles were taken (Fig. 2). A white reference panel (spectralon) 
was used before each spectral measurement to convert spectral radiance into reflectance. Measuring followed the 
protocol used by e.g. Ramoelo et al. and Peng et al.27,28. Each quadrat (circle) was measured with 5 spectral repli-
cates were taken and averaged to account for illumination differences and bi-directional reflectance effects27. In 
the raw data, the marginal ranges 325–380 nm and 1025–1075 nm from each spectrum were removed due to noise 
effects29. The quadrats were divided randomly into two datasets: 90 as the training dataset and the remaining 30 
as the validation dataset for predicting plant diversity.

Spectral indices. In this study 37 spectral vegetation indices29,30 were employed to estimate the plant diver-
sity (Table 1). Based on the hypothesis of Gallardo-Cruz et al. (2012), the variation among primary reflectances at 
every band can be regarded as the proxy of species diversity14. Three indices were also established, as Hspec, Espec 
and VarH (Table 1) specifying the dissimilarity entropy and deviation among spectral reflectances, respectively, 
to estimate diversity of plant species. Other than these, the derivative values of reflectance are effective informa-
tion to detect the variation among primary reflectances and have already been commonly applied in vegetation 
parameters analysis31. The first-order derivative values (FD) were calculated by finite difference approximation. 
FD = [R(λ + Δλ)-Rλ]/Δλ, R is relative reflectance, λ is wavelength in nm, Δλ is the separation between adjacent 
bands.

Statistical analysis. The collected hyperspectral data were preprocessed by software ViewSpec Pro 6.0 
(Analytical Spectral Devices Inc., USA), and exported into SPSS 22 (Statistical Package for the Social Sciences 
22, Chicago, Illinois, USA) for correlation coefficients and stepwise regression analysis. The associations of FD 
at each band and the hyper spectral indices to plant species diversity was tested by correlation (Pearson correla-
tion coefficients) and stepwise linear progression inquiry to define the most profound indices in assessing plant 
diversity. Stepwise regression requires that the number of training subplots be equal to or greater than the number 
of spectral indices, therefore, only the values of sensitive wavebands remained after the correlation coefficient 
analysis. RMSE (Root Mean Square Error), R2 and cAIC (corrected Akaike’s Information Criterion) of the linear 
regressions were taken into account for the selection of the maximum appropriate hyperspectral indices. The 
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objective of cAIC is to select the best approximating model or set of models supported by the data. We selected 
the best fitting models using the following conditions: (1) the smallest cAIC and RMSE; (2) the largest r-square. 
The selected hyperspectral indices will be validated by field-survey data in another 30 quadrats.

Results
The spectral curves. We first examined the spectral curves (Fig. 3) of the quadrats in sandy grasslands in 
centre Hunshandak Sandland and estimated to what degree the spectral response distinguishes. It apparently 
the Shannon-wiener index was not closely associated to reflectance, as the black-blue curves (indicate a high 
Shannon-Wiener index) didn’t merge together (Fig. 3). The black-blue curves and light-blue curves (indicate a 
lower Shannon-Wiener index) were mixed, means that same color curves does not indicate same plant diversity. 
However, the FD curve obviously fluctuated more (either higher or lower than average) at some wavebands where 
indicated higher Shannon-Wiener index, representing a nearby connotation with plant diversity.

The correlation between the first-order derivative values and plant diversity indices. Based on 
statistical analysis, plant diversity indices were non-significantly related to reflectance; however, plant diversity 
was closely related to FD values (Fig. 3). Examining the FD curves, we see that the sensitive bands were violet light 
(380–420 nm), blue light (450–470 nm), red light (616–655 nm) and NIR (764–1037 nm) (Supplemental Materials 
Fig. A). For violet light, the FD was significant positively related to the Shannon-Wiener index (0.41 < R < 0.55). 
Wavelengths of 412 and 417 nm were closely related to the Simpson and Pielou indices (0.46 < R < 0.48), while 
those of 421, 422, and 479 nm were closely related to the Marglef and Gleason indices (0.52 < |R| < 0.66). For 
red light, the FD primarily had a positive correlation with the Shannon-Wiener index (0.41 < R < 0.63). A wave-
length of 623 nm was strongly negatively correlated with the Marglef and Gleason indices (R = −0.52), while 
those at 623, 654, and 655 nm were closely correlated with the Simpson and Pielou indices (0.43 < R < 0.71). 
For NIR light, the negative (764 to 769 nm) and positive (908 to 934 nm) correlations were observed between 
FD and Shannon-Wiener index and FD and the Simpson and Pielou indices, respectively. The Shannon-Wiener 
index was subtle to the first-order derivative value among the majority of bands within the ranges of violet light 
(380–420 nm), blue light (450–470 nm), red light (616–655 nm) and NIR (764–1037 nm). The Simpson and Pielou 
indices and Marglef and Gleason indices display comparable leanings to FD, respectively. Sensitive bands of 
412, 417, 623, 639, 654, 655, 807, 923, 924, 933, 934 and 1026 nm were significantly positively related to the 
Shannon-Wiener, Simpson, and Pielou indices; those of 415, 421, 422, 479, 623, 819, and 1026 nm were closely 
related to the Marglef and Gleason indices.

Figure 2. Illustration of the field measurement of spectral reflectance by ASD.The set up was adjusted until the 
sensor’s field-of-view (25°) was just within the circle.
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Multiple linear stepwise regression analysis was also used to spot the associations between spectral 
first-derivative values and plant diversity indices. The determining coefficients (Table 2) and the relative fit indi-
ces (Supplemental Materials Table A) indicated that the regression models fit well, plant diversity indices can be 
nearly fully predicted by FD values (R2 ≅ 0.90 and low AICc). The Simpson, Shannon-Wiener, and Pielou indices 
were significantly associated with FD values at the bands of 654, 976, 790, 822, 852 and 970 nm, mainly belonged 
to red and NIR bands. The Margalef and Gleason indices were primarily determined by the FD values at the bands 
of 421, 911, 859, 800 and 441 nm.

The correlation between hyperspectral indices and plant diversity indices. Supplemental 
Materials Fig. B grades the outcomes of the correlation investigation. All spectral indices have negative asso-
ciations with the Shannon-Wiener index, with the exception of VOG2, VOG3, and PRI (0.41 < R < 0.66). 
The most related indices were (Rg-Ro)/(Rg + Ro) (R = −0.71), VOG1 (R = −0.67), Rg/Ro (R = −0.64), FD730 
(R = −0.56). The Simpson and Pielou indices have the same tendency as Shannon-Wiener index. The Margalef 
and Gleason indices display negative relationship by means of all spectral indices. The closely associated spectral 
indices were Db (R = 0.75), FD730 (R = 0.74), Rg (R = 0.74), SDb (R = 0.74), SDr (R = 0.74), SDy (R = 0.74), Dy 

Spectral index Formula or definition

DVI R782 − R675

NDVI (R782 − R675)/(R782 + R675)

RVI R675/R782

SAVI ((R782-R675)/(R782 + R675 + 0.2)) (1.2)

TSAVI 0.5(R782 − 0.5R675−0.2)/(0.5R782 + 0.5R675−0.1)

MSAVI ∗ + − ∗ + − ∗ −R R R R2 1 (2 1) 8 ( )800 800
2

800 670
1
2

PVI − . − .R R( 0 2 0 6)800 670 /1.019

NDVI705 (R750 − R705)/(R750 + R705)

mNDVI705 (R750 − R705)/(R750 + R705 − 2 R445)

mSR705 (R750 − R445)/(R705 + R445)

REP R700 + 40[(R670 + R780)/2 − R700]/(R740 − R700)

VOG1 R740/R720

VOG2 (R734 − R747)/(R715 + R726)

VOG3 (R734 − R747)/(R715 + R720)

PRI (R531 − R570)/(R 531 + R570)

OSAVI (1 + 0.16)(R800 − R670)/(R800 + R670 + 0.16)

DVI R810 − R680

GREEN-NDVI (R750 − R550)/(R750 + R550)

FD730 The first derivative value at 730 nm

Db The highest first derivative value between 490–530 nm

λb The band at Db

Dy The highest first derivative value between 550–580 nm

λy The band at Dy

Dr The highest first derivative value between 680–780 nm

Λr The band at Dy

Rg The highest reflectance value between 510–580 nm

Λg The band at Rg

Ro The smallest reflectance value between 640–700 nm

Λo The band at Ro

SDb The sum of first derivative values between 490–530 nm

SDy The sum of first derivative values between 550–580 nm

SDr The sum of first derivative values between 680–780 nm

Rg/Ro Rg/Ro

(Rg-Ro)/(Rg + Ro) (Rg − Ro)/(Rg + Ro)

SDr/SDb SDr/SDb

SDr/SDy SDr/SDy

(SDr-SDb)/(SDr + SDb) (SDr-SDb)/(SDr + SDb)

Hspec* −∑ = p lnpi 1
n

i i

Espec* − ∑ =1 pi 1
n

i
2

VarH** ∑ = −R R

R

1
n i 1

n ( )2

Table 1. Hyperspectral indices used to estimate plant diversity. Note *pi: the ratio of R value at ith band to the 
sum R value; **R : the mean value of R.
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(R = 0.73~0.74), Dr (R = 0.73), Ro (R = 0.72), and (Rg-Ro)/(Rg + Ro) (R = 0.65~0.66). These correlation coeffi-
cients were higher than those in FD in Fig. 3, indicating that the hyperspectral indices based on multiple wave-
bands have greater potential for estimating plant diversity than does FD solely based on one waveband.

The results of regression analysis (Table 3, and Supplemental Materials Table B) indicate that (Rg-Ro)/
(Rg + Ro), λb and Rg/Ro can accurately reflect the Simpson (R2 = 0.71) and Shannon-Wiener indices (R2 = 0.67). 
The Margalef and Gleason indices can be accurately simulated by Db (R2 = 0.55~0.56).

Selection of hyperspectral indices and estimation of plant diversity. The optimal hyperspectral 
indices for estimating plant diversity were defined as the high R2 value, corresponding confident p-value, and 
low RMSE and cAIC. The first 10 best-performed hyperspectral indices were determined for each plant diversity 
index (Table 4).

Based on the 10 identified best hyperspectral indices, five plant diversity indices were calculated using the 
hyperspectral dataset collected at another 30 quadrates (Table 4). The linear correlation between the estimated 
diversity by hyperspectral indices and the field-survey plant diversity was analyzed at quadrat level (Fig. 4). By 
comparison of R2, the best estimated hyperspectral indices (R2 > 0.5) for the Simpson index was the stepwise 
linear regression of FD (R2 = 0.83); for the Pielou index, the stepwise linear regression of FD (R2 = 0.87); for the 
Shannon-Wiener index, the stepwise linear regression of FD (R2 = 0.88) and FD654 (R2 = 0.5014); for both the 
Margalef and Gleason indices, the stepwise linear regression of FD (R2 = 0.82), and stepwise linear regression of 
hyperspectral indices (R2 = 0.51, R2 = 0.58, respectively).

Discussion
The vegetation hyperspectral data delimited the spectral retorts from an assorted puddle of plant species, together 
with the durable gesture from the significant vital canopy of dominant species or young shoots with extra water 

Figure 3. Mean reflectance spectra (left curves) and FD (right curves) from 90 quadrats collected in sandy 
grasslands in Hunshandak Sandland, Northern China.

Diversity indices Regression equation R2
Adjusted 
R2 RMSE

Simpson Y = 2080.41FD654 − 60.515FD976 + 914.312FD790 + 504.106FD822 − 375.627FD852 + 0.247 0.894 0.863 0.011

Pielou Y = 3003.342FD654 − 77.729FD976 + 69.338FD966 + 938.853FD790 + 1.087 0.889 0.864 0.043

Shannon-Wiener Y = 321.434FD654 − 38.89FD976 + 31.274FD966 + 204.216FD847 + 122.714FD853 + 0.258 0.885 0.851 0.003

Margalef Y = 4809.25FD421 − 268.FD911 − 431.53FD859 + 585.59FD800 + 5.292 0.831 0.795 0.102

Gleason Y = 3718.52FD421 − 178.88FD911 − 225.22FD859 + 314.06FD800 + 51.163 0.843 0.809 3.031

Table 2. Regression equations for plant diversity based on the spectral first-derivative values in central 
Hunshandak Sandland, China.

Diversity indices Regression equation R2 Adjusted R2 RMSE

Simpson Y = −4.873(Rg − Ro)/(Rg + Ro) + 0.509λb + 1.026Rg/Ro − 270.43 0.710 0.677 0.024

Pielou Y = −0.699(Rg − Ro)/(Rg + Ro) + 0.244 0.403 0.382 0.013

Shannon-Wiener Y = −9.697(Rg − Ro)/(Rg + Ro) + 0.974λb + 2.06Rg/Ro − 517.113 0.665 0.626 0.113

Margalef Y = 2.984SDb + 21.595(Rg − Ro)/(Rg + Ro) − 9.176 0.554 0.539 0.455

Gleason Y = 21.413SDb + 91.277(Rg − Ro)/(Rg + Ro) + 37.862 0.563 0.547 8.507

Table 3. Regression equations for plant diversity based on hyperspectral indices in central Hunshandak 
Sandland, Northern China.
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content, rather than one species. Diverse with soil surface in the case of sparse vegetation in arid areas, all of 
these aspects potentially increase output noise32. Additionally, the acquired mixed reflectance of various plant 
species is influenced by the leaf cellular structure, leaf thickness, mesophyll structure, water content, and canopy 
architecture32,33. Grasses with small canopies typically have a lower ratio of “pure” inner canopy vs “mixed” outer 
canopy, making their detection more difficult unless if they are spectrally distinct from any background effects. 
We showed the wavebands assortment at the pre-processing phase. The sensitive wavebands selection was not 
only based on the consideration of correlation with plant diversity, but also the consideration of whether they 
were influenced by water and air absorption. Much of the information in a hyperspectral dataset may be redun-
dant; nevertheless, important spectral information could be lost when only a small number of wavebands are used 
to predict species diversity indices20. Our selection of sensitive bands from 380–1025 nm has yielded desirable 
results than that based on empirical bands (Tables 2, 3, Fig. A1), or from a coarser scale (>4 m, r = 0.47~0.65)20, 
with moderately strong correlation coefficients ranging from 0.50 to 0.80 or even 0.90 in FD regression analyses.

The majority of plant species have their own unmatched reflectance curves23, and were especially different at 
the red and NIR bands34. The hyperspectral data collected from grass plots at a fine scale (0.8 m) reflected nearly 
all of the spectral information of every species fall in it, unlike the tree plots from which spectral data could not 
image the underlying shrub and herb layers22. Therefore, higher spectral variation is expected to be a good pre-
dictor for estimating species diversity at a fine scale. The FD is a significant indicator for the degree of deviation 
for reflectance across neighboring bands; it has been used to reduce the variation in spectral reflectance due to 
surface geometry, roughness, and the effects of water absorption feature on the spectrum35. Moreover, FD has the 
potential to eliminate background signals and overlapping spectral features31. In the current study, the FD models 
were greatly fruitful in approximating plant species diversity, particularly the linear stepwise regression model. 
This high estimation accuracy might be partially explained by the significant variation in the reflectance of sensi-
tive bands. FD was also extensively used in numerous models for estimating vegetation parameters with a signif-
icantly advanced accuracy31 than other indices36. It is substance declaring that the selection of sensitive bands by 
linear stepwise regression can greatly improve the predictive performance of FD on plant diversity. Based on the 
stepwise linear regression of FD, the values of the Simpson, Pielou, Shannon-Wiener, Margalef and Gleason indi-
ces can be successfully predicted (R2 = 0.83; R2 = 0.87; R2 = 0.88; R2 = 0.81, R2 = 0.82). Thus, we strongly suggest 
that FD should be used as an independent variable for plant diversity estimation.

Among the 37 hyperspectral indices in this study, more indices were significantly correlated with the Marglef 
and Gleason indices, than with the Simpson, Pielou or Shannon-Wiener indices. This difference might be due to 
the effect of dominant species on reflectance in complex grass communities, i.e., the strong signal from canopy 
species might not scale with the species abundance and richness22. The Margalef and Pielou indices are strongly 
influenced by dominant species26, this is one plausible reason that these indices can be well-simulated by more 
hyperspectral indices than other diversity indices. The significant negative correlations between reflectance and 
diversity in the NIR spectral bands (Supplemental Materials Fig. A) indicated that the species diversity increased 
as the above-ground coverage decreased; this result is consistent with those of other studies20. We found that, in 
some subplots where the diversity was higher while the coverage was lower, small herb species with little coverage 
likely contributed to the Shannon-Wiener and Simpson diversities. As for the Margalef and Gleason indices, 

Simpson Pielou Shannon-Wiener Margalef Gleason

y = 1585.5FD654 + 0.5873 y = 3486.4FD654 + 1.2107 y = 3486.4FD654 + 1.2107 y = 7385.2FD421 − 1.4331 y = 518107FD421 − 98.552

y = 930.19FD639 + 0.5832 y = 1871.5FD639 + 1.1802 y = 825.66FD417 + 0.6147 y = −2398.7FD911 + 5.1837 y = −168252FD911 + 365.61

y = 69.922FD924 + 0.4883 y = 1967.6FD655 + 1.241 y = 142.87FD924 + 0.9898 y = −965.31FD991 + 2.7834 y = −67543FD991 + 197.19

Y = 2080.41FD654 − 60.51
5FD976 + 914.312FD790+
504.106FD822 − 375.627F
D852 + 0.247

Y = 3003.342FD654 − 7
7.729FD976 + 69.338
FD966 + 938.853FD79

0 + 1.087

Y = 321.434FD654 − 38.89
FD976 + 31.274FD966 + 20
4.216FD
847 + 122.714FD
853 + 0.258

Y = 4809.25FD421 − 26
8.FD911−431.53FD85

9 + 585.59FD800 + 5.29
2

Y = 3718.52FD421 − 
178.88FD911 − 225.
22FD859 + 314.06F
D800 + 51.163

y = 0.7492VOG1−0.5344 y = 0.4532VOG1–0.401 y = 1.6 VOG1–1.1906 y = 65.007Rg − 6.0662 y = 467.95Rg − 43.776

y = −3.8796VOG2 + 0.2024 y = −2.3513VOG2 + 0.0443 y = −8.1799VOG2 + 0.3899 y = 78.699Db − 6.2515 y = 565.51Db − 44.993

y = −3.4672VOG3 + 0.2153 y = −2.1128VOG3 + 0.0514 y = −7.3178VOG3 + 0.4167 y = 2.1002SDb − 5.3066 y = 15.093SDb − 38.21

y = 0.2924Rg/Ro + 0.111 y = 0.1743Rg/Ro − 0.0076 y = 0.6362Rg/Ro + 0.174 y = 0.3552SDr − 7.5404 y = 2.5622SDr − 54.554

y = 0.9824(Rg − Ro)/
(Rg + Ro) + 0.3973

y = 0.5662(Rg − Ro)/
(Rg + Ro) + 0.1643

y = 2.1298(Rg − Ro)/
(Rg + Ro) + 0.7972 y = 1.9632SDy − 5.8695 y = 14.123SDy − 42.32

y = −4.873(Rg − Ro)/
(Rg + Ro) + 0.509λb + 1.026Rg/
Ro − 270.43

y = −0.699(Rg − Ro)/
(Rg + Ro) + 0.244

y = −9.697(Rg − Ro)/
(Rg + Ro) + 0.974λb + 2.06Rg/
Ro − 517.113

Y = 2.984SDb + 21.595(Rg − Ro)/
(Rg + Ro) − 9.176

Y = 21.413SDb + 91.277(Rg − Ro)/
(Rg + Ro) + 37.862

Table 4. The best hyperspectral models identified for the estimation of plant diversity in central Hunshandak 
Sandland, Northern China. For the Simpson index, the sensitive indices were stepwise linear regression of 
FD (R2 = 0.90), followed by stepwise linear regression of spectral indices (R2 = 0.71), (Rg − Ro)/(Rg + Ro) 
(R2 = 0.531),and VOG1, VOG2, VOG3, Rg/Ro, FD654, FD639 and FD924. The seven most sensitive hyperspectral 
indices for the Pielou and Shannon-Wiener indices were the same as those of the Simpson index. The Margalef 
and Gleason indices shared the same mostly sensitive hyperspectral indices, such as the stepwise linear 
regression of FD (R2 = 0.90), Db, SDr, SDy, SDb, Rg, FD421, FD911, FD991, and the stepwise linear regression of 
spectral indices.
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the negative correlation with spectral indices might be attributed to the method of index calculation, which was 
influenced by the plot area and total number of species.

The calculation of species diversity over and done with the spectral indices by numerous combinations on NIR 
wavebands has been extensively documented32,37. Other than NIR bands, our study has demonstrated that the 
visible wavebands (blue, yellow, and red) might also contain important information pertaining to plant species 
diversity, especially for the Pielou and Gleason indices (Rg/Ro, Db). The positive correlation observed between 
the regression on (Rg-Ro)/(Rg + Ro), λb indices and the Shannon-Wiener and Simpson indices (Supplemental 

Figure 4. Linear regression of the field measured values (y-axis) and predicted values (x-axis) for plant species 
diversity indices in the central Hunshandak Sandland, Northern China. Predicted values were calculated based 
on the best hyperspectral indices in Table 4.
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Materials Fig. B) which might be due to the high variation in the chlorophyll absorption bands of the spectrum 
(blue and red)19,38.

Conflicting to our anticipation, the entropy (Hspec, Espec) of spectral evidence was not suggestively linked 
to plant diversity and the deviation of spectral difference (VarH) displayed a significant positive relationship 
with plant diversity (Supplemental Materials Fig. B). Similar results have been testified by another case study at 
a scale of 4 m20. A study on North American plant species richness described that the spectral diversity clarified 
a slight quantity of the dissimilarity in plant diversity, while the spatial extent of the sampling unit explained 
a large amount of the variation3. The failure to detect a significant relationship between spectral variation and 
species diversity in our study might be due to the entropy index being calculated by all selected bands through 
380–1025 nm rather than red, NIR bands separately39. Thus, the spectral entropy primarily reflected the informa-
tion of entire objects (vegetation and non-vegetation) within subplots, rather than the variation among various 
plant species.

In the present study, the mosaic grass canopy of the quadrats almost includes all shoots of every species within 
it, unlike the tree canopy which cannot image the spectral characteristics of the underlying shrub and herb lay-
ers22. This grantee the diverse hyperspectral parameters can provide the mostly information of all grass species29. 
Some case studies demonstrated that the best spectral indices to explain variation in plant species were conducted 
at lower levels of biomass40. Concerning the sparse vegetation on the sandy dunes in Hunshandak Sandland, the 
high accuracy in estimating plant diversity might also be attributed to the fine scale and lower biomass from 
which hyperspectral data were obtained.

Through background noise elimination, sensitive bands selection, first-order derivative value calculation at 
the pre-processing stage, and stepwise regression on sensitive bands and spectral vegetation indices, plant species 
diversity of grasslands at a fine scale can be predicted accurately. Compared to airborne hyperspectral imagery, 
the hyperspectral data gained by hand-held portable parameters have the advantages of low labor cost and high 
spatial resolution, and they are less influenced by atmosphere layer and background environment; therefore they 
might be a better option for quick estimation of plant diversity. These characteristics are important when carrying 
out repeat monitoring on fine-habitat species diversity over large areas, especially for grasslands since they cover 
nearly a third of the continents on earth41.

Except for plant diversity estimation, the methodology used in the present study can help in recovering esti-
mates made through remote sensing data for other ecological applications41,42. Ecological condition evaluations, 
such as riparian condition43, vegetation eco-restoration44 and forest cover mapping45, all of which are variables 
derived from satellite or airborne imageries at a grain of 30 m or coarser, might be improved by hyperspectral data 
and stepwise linear regression on narrower sensitive wavebands. To improve airborne imagery, hyperspectral data 
tends to average a very large number of fine-plots to provide reflectance at a coarser scale3,23,39. The combination 
of hyperspectral indices and satellite/airborne imageries through scale conversion can extend the scope of using 
remote sensing. Directing on desert undergrowth, grassland, and pasture habitats, future efforts will explore the 
relationships of spatial and spectral resolutions on the performance of each hyperspectral model. Such research 
will help us to better recognize the trustworthiness of hyperspectral models and the degree of the scope of its 
application.

Conclusion
Based on a correlation analysis between numerous plant diversity indices and reflectance characteristics, the 
capability of hyperspectral reflectances to estimate plant diversity was evaluated through background noise elim-
ination, sensitive bands selection, first-order derivative value calculation, and subsequent stepwise regression. 
Based on these processes, plant diversity at a fine scale was accurately predicted by hyperspectral indices.

This research reinforces the growth of approaches for estimating plant diversity based on hyperspectral data. 
Future work will encompass results from multiple hyperspectral sources other than ASD, as LiDAR and aerial 
multispectral data, to make accurate comparisons when estimating plant diversity and other ecological observes. 
This will put onward more specific and public execution by hyperspectral data.
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