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Whole transcriptome profiling of 
Late-Onset Alzheimer’s Disease 
patients provides insights into the 
molecular changes involved in the 
disease
Anita Annese1, Caterina Manzari1, Claudia Lionetti1, Ernesto Picardi   1,2, David S. Horner1,3, 
Matteo Chiara3, Mariano Francesco Caratozzolo1, Apollonia Tullo1, Bruno Fosso1,  
Graziano Pesole   1,2,4 & Anna Maria D’Erchia   1,2

Alzheimer’s Disease (AD) is the most common cause of dementia affecting the elderly population 
worldwide. We have performed a comprehensive transcriptome profiling of Late-Onset AD (LOAD) 
patients using second generation sequencing technologies, identifying 2,064 genes, 47 lncRNAs and 
4 miRNAs whose expression is specifically deregulated in the hippocampal region of LOAD patients. 
Moreover, analyzing the hippocampal, temporal and frontal regions from the same LOAD patients, 
we identify specific sets of deregulated miRNAs for each region, and we confirm that the miR-132/212 
cluster is deregulated in each of these regions in LOAD patients, consistent with these miRNAs playing 
a role in AD pathogenesis. Notably, a luciferase assay indicates that miR-184 is able to target the 
3’UTR NR4A2 - which is known to be involved in cognitive functions and long-term memory and whose 
expression levels are inversely correlated with those of miR-184 in the hippocampus. Finally, RNA 
editing analysis  reveals a general RNA editing decrease in LOAD hippocampus, with 14 recoding sites 
significantly and differentially edited in 11 genes. Our data underline specific transcriptional changes in 
LOAD brain and provide an important source of information for understanding the molecular changes 
characterizing LOAD progression.

Alzheimer’s Disease (AD) is the major chronic progressive form of senile dementia worldwide and is consid-
ered the prototypical neurodegenerative disease affecting the central nervous system (CNS). Characterized clin-
ically by memory loss and deficits in cognitive domains1, it is distinguished by a long asymptomatic period that 
evolves into mild cognitive impairment (MCI) and later to dementia2. The neuropathology of AD is charac-
terized by inflammation, oxidative stress and widespread neuronal loss. Pathological brain hallmarks are the 
presence of intraneuronal neurofibrillary tangles (NFTs) formed by twisted strands of hyperphosphorylated Tau, 
a microtubule-associated proteins (MAP), and of extracellular neuritic plaques containing β-Amyloid (Aβ) pep-
tides, derived from proteolytic cleavage of the transmembrane glycoprotein Amyloid Precursor Protein (APP)3. 
These neuropathological changes originate in the entorhinal cortex and hippocampal formations, spreading later 
into other temporal, parietal, and finally frontal association cortices4,5. Distinct forms of AD sharing certain 
pathological and biochemical aspects have been described. Early-onset familial AD (EOFAD) accounts for less 
than 5% of all AD cases and is associated with Mendelian autosomal dominant inheritance of APP, PSEN1 and 
PSEN2 variants, while late-onset AD (LOAD) occurs sporadically and without any clear familial origin6. While 
some risk factors linked to LOAD pathogenesis have been identified (age7, family history7, social and cognitive 
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engagement7, education7, history of traumatic brain injury (TBI)8,9, the ε4 allele of apolipoprotein E (APOE) 
gene7 and 16 other genomic loci identified through large-scale Whole Genome Association Studies (GWAS)10), 
the molecular mechanisms underlying neuronal dysfunction in LOAD remain elusive. Much effort has been 
focused on the “amyloid hypothesis” and devoted to finding molecular pathways involved in aberrant Aβ or 
Tau metabolism. Nevertheless, promising results from animal models tested with drugs that selectively targeted 
these pathways did not translate well in human clinical trials11–13. Increasing awareness of the complexity of 
gene expression regulation – including, but not restricted to - interactions between transcription factors, coding 
(mRNA) and non-coding (small and long) RNAs, and differential splicing patterns, led to proposals that changes 
in such mechanisms might be involved in the molecular pathogenesis of LOAD14,15. Here we present a compre-
hensive transcriptome profiling study, utilizing RNA-seq technology, that has allowed the identification of specific 
changes in the expression profiles of coding and non-coding RNAs (miRNA and lncRNAs) and in RNA editing 
levels in the hippocampus of LOAD patients, compared to cognitively normal controls and patients affected 
by Parkinson’s Disease (PD) - as neurodegenerative disease controls. Moreover, we have extended our miRNA 
profiling to the temporal and frontal areas of the brains of the same LOAD patients, identifying miRNAs whose 
deregulated expression could be related to LOAD progression. Our study thus sheds light on molecular mecha-
nisms deregulated in the final stages of LOAD - identifying processes that could be valuable both in explaining 
the progression of the disease and in the rational design of therapeutic approaches.

Results
Transcriptomic Profiling of Hippocampus of LOAD patients.  We used RNA-seq to examine the tran-
scriptomic profile of the hippocampal CA1 region of a cohort of six patients affected by LOAD (samples AD1-
6), six patients affected by PD (samples PD1–6 samples) and six cognitively normal controls (samples Ctrl1-6) 
(Table 1). All sampled individuals were Caucasian males with a comparable age of death, while LOAD patients 
had comparable dementia status (Braak V or VI). All frozen tissues preserved total RNA integrity as indicated by 
RIN values (5 to 8). PD patients were included as “disease-control patients”, to highlight transcriptomic changes 
that are LOAD specific, rather than common to general neurodegenerative processes. We chose the hippocampal 
region CA1 as the area of investigation for its relevance to memory processes and as this area is, together with the 
entorhinal cortex, the first affected by the pathogenic mechanisms associated with LOAD.

Directional RNA sequencing of rRNA-depleted total RNA generated an average of ∼140 million reads per 
sample, of which 88 to 92% could be aligned to the reference genome, suggesting excellent coverage and sequenc-
ing depth with low ribosomal RNA contamination (Supplementary Table S1). RNA-seq data analysis identified 
25,272 annotated genes as expressed in, at least, one of the sequenced samples. Principal Component Analysis 
(PCA) indicated anomalous behavior for Ctrl4 and AD2 samples, which were thus discarded from all further 
analyses (Supplementary Figure S1), while no outlier was observed among PD samples.

Case ID Gender Race
Expired 
age

PMI 
(hrs)

Braak 
stage

Brain 
Bank RIN

Ctrl1 5028 male Ca 68 18 ND NICHD 7.9

Ctrl2 5174 male Ca 61 21 ND NICHD 6.7

Ctrl3 5247 male Ca 65 22 ND NICHD 7.8

Ctrl4* 5352 male Ca 81 17 ND NICHD 6.1

Ctrl5 5533 male Ca 67 23 ND NICHD 5.5

Ctrl6 5362 male Ca 60 16 ND NICHD 5.5

AD1 1625 male Ca 70 1 V NICHD 5.2

AD2* 4737 male Ca 80 7 VI NICHD 7.6

AD3 5195 male Ca 81 9 VI NICHD 5.2

AD4 5198 male Ca 72 5 V NICHD 7.2

AD5 1946 male Ca 69 5 VI NICHD 5.8

AD6 A313/06 male Ca 76 22 VI LNDBB 5.7

PD1 1272 male Ca 79 14 ND NICHD 5.5

PD2 1741 male Ca 72 20 ND NICHD 7.1

PD3 1901 male Ca 75 3 ND NICHD 5.3

PD4 4526 male Ca 79 1 ND NICHD 6.8

PD5 5329 male Ca 82 18 ND NICHD 5.9

PD6 5520 male Ca 63 8 ND NICHD 5.7

Table 1.  Clinic-pathological information of the subjects analyzed by RNA-seq and miRNA-seq. Case: sample 
ID assigned in the present study; ID: sample ID in the original Bank; Ctrl: Non-Demented Control; AD: LOAD 
Patient; PD: Parkinson’s Disease Patient; race: Ca = Caucasian; PMI: Post-Mortem Interval expressed in hours; 
Braak stage: index used to classify the degree of AD pathology; ND: Not defined; NICHD: Brain and Tissue 
Bank for Developmental Disorders; LNDBB: London Neurodegenerative Diseases Brain Bank; RIN: RNA 
integrity number of total RNA preparation. (*) Outlier samples according to PCA analysis of gene expression 
data.
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CuffDiff216 identified a total of 2,122 genes as differentially expressed (p-value ≤ 0.05 after false discovery rate 
correction) between LOAD samples and controls, of which 2,075 were protein coding genes and 47 were lncR-
NAs (of which 23 lincRNAs). Of the 2,075 differentially expressed protein coding genes, 789 were upregulated 
and 1,286 were downregulated, and of the 47 differentially expressed lncRNAs, 19 were upregulated (of which 
11 lincRNAs) and 28 were downregulated (of which 12 lincRNAs) in LOAD samples. The complete list of dereg-
ulated genes is reported in Supplementary Table S2. Nineteen protein-coding genes were found to be differen-
tially expressed between hippocampal PD samples and controls (Supplementary Table S3). Eleven of these genes 
(ANKRD22, HAMP, HLA-DRA, HSPA6, CD14, FCGBP, HSPB1, HSPA7, BAG3, SERPINH1 and TNFRSF1B) 
were also present in the list of the 2,075 protein coding genes deregulated in LOAD patients. We analyzed these 
shared deregulated genes using the STRING tool17,18, and noted that they were involved in neurodegenerative and 
inflammatory pathways such as defense response, response to unfolded proteins, positive regulation of immune 
response and toll-like receptor (TLR) signaling. Accordingly, the common LOAD and PD differentially expressed 
protein coding genes were removed from the initial list of 2,075 LOAD deregulated genes and, in order to deter-
mine which pathways are affected in LOAD patients, the resulting 2,064 genes that were differentially expressed in 
a LOAD-specific manner, were analyzed using the IPA tool19. As shown in Table 2, we found that activities related 
to the regulation of important neurological functions, including synaptic long-term potentiation, neuronal sign-
aling, axonal guidance signaling and mitochondrial dysfunction, were significantly enriched among this differen-
tially expressed gene set. Interestingly, we noted that the products of several genes among this set are involved in 
pathways regulated by the miR-132/212 cluster, known to be down-regulated in AD20–26. In particular, we found 
the up-regulation of some direct targets of miR-132, such as ITPKB (log2FC: 1.33, padj: 0.0024), involved in Tau 
phosphorylation27, TLR6 (log2FC: 1.36, padj: 0.0024), IL6R (log2FC: 1.37, padj: 0.0014) and IRAK3 (log2FC: 1.33, 
padj: 0.0048), involved in inflammatory signaling28. Moreover, we found BDNF, a positive upstream regulator of 
miR-132/212 transcription29, to be down-regulated (log2FC: −2.6, padj: 0.0041) as was RASAL1, which regulates 
angiogenesis through mir-13230 (log2FC: −1.46, padj: 0.0014) (Supplementary Table S2).

Ingenuity Pathways −log(p-value)

Neuropathic Pain Signaling in Dorsal Horn Neurons 6.2E + 00

Synaptic Long Term Potentiation 5.8E + 00

nNOS Signaling in Neurons 5.6E + 00

Mitochondrial Dysfunction 5.6E + 00

GABA Receptor Signaling 5.4E + 00

Calcium Signaling 5.3E + 00

Dopamine-DARPP32 Feedback in cAMP Signaling 4.8E + 00

Role of Pattern Recognition Receptors in Recognition of Bacteria and Viruses 4.1E + 00

CREB Signaling in Neurons 3.4E + 00

Synaptic Long Term Depression 3.4E + 00

Axonal Guidance Signaling 3.2E + 00

Huntington’s Disease Signaling 2.2E + 00

Amyotrophic Lateral Sclerosis Signaling 1.7E + 00

ERK/MAPK Signaling 1.6E + 00

Neuroprotective Role of THOP1 in Alzheimer’s Disease 1.5E + 00

Induction of Apoptosis by HIV1 1.4E + 00

PI3K/AKT Signaling 1.3E + 00

Reelin Signaling in Neurons 1.3E + 00

Semaphorin Signaling in Neurons 1.0E + 00

Dopamine Receptor Signaling 1.0E + 00

Agrin Interactions at Neuromuscular Junction 8.6E-01

Apoptosis Signaling 6.8E-01

Dopamine Degradation 6.3E-01

Pathogenesis of Multiple Sclerosis 5.5E-01

Parkinson’s Signaling 4.6E-01

Neurotrophin/TRK Signaling 4.4E-01

Myc Mediated Apoptosis Signaling 4.4E-01

STAT3 Pathway 4.3E-01

Death Receptor Signaling 4.1E-01

Retinoic acid Mediated Apoptosis Signaling 3.4E-01

Noradrenaline and Adrenaline Degradation 2.8E-01

Melatonin Degradation I 2.7E-01

Serotonin Degradation 2.5E-01

Table 2.  IPA pathway analysis of the deregulated protein coding genes in LOAD hippocampus. The Fisher-
exact Test P-value is reported in each column.
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We validated the hippocampal RNA-seq differential expression data by RT-qPCR using an enlarged cohort of 
nine controls (five original controls plus four new controls) and nine LOAD patients (five original LOAD patients 
plus four new LOAD patients), chosen to fit criteria of selection of the original cohort used in the RNA-seq 
analysis. Given that the exclusion of Ctrl4 from RNA-seq analyses caused a reduction of the average age of con-
trol samples with respect to LOAD samples, we selected control samples with a higher average age than the 
original control groups (see Supplementary Table 4). From the list of deregulated genes, we selected 21 protein 

Figure 1.  RT-qPCR validation of the RNA-seq dataset in LOAD hippocampus. Validation of 8 selected 
upregulated genes (a) and 13 selected downregulated protein coding genes and 1 downregulated lncRNA (b) in 
the original (5 LOAD patients and 5 control subjects) and in the enlarged sample group (9 LOAD patients and 
9 control subjects). The data are expressed as the means of log2(ΔΔCt) ± SD. P-value was calculated by T-test. 
*p-value ≤ 0.05; **p value ≤ 0.01; ***p value ≤ 0.001; ****p value ≤ 0.0001. (c) Linear correlation between 
log2(FC) values computed by CuffDiff2 on RNA-seq data and log2(FC) values detected by qRT-PCR analysis for 
the 22 selected genes in the original (5 LOAD patients and 5 control subjects) sample group.
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coding genes, implicated in neurological functions and showing brain-predominant expression and 1 lncRNA 
(Supplementary Table S5). RT-qPCR analysis confirmed the differential expression levels for all 8 up-regulated 
genes (CPLX3, NR4A2, GRIK3, TESPA, SLCO4A1, SERPINA5, ADAM33, SERPINA1), both in the original and 
extended cohorts (p-value ≤ 0.05) (Fig. 1a and Supplementary Figure S2). Regarding the down-regulated genes, 
RT-qPCR analysis confirmed the expression trend resulting from RNA-seq data for all 14 genes (BHLHE22, 
PRSS12, NEUROD6, PCDH8, NRN1, DUSP4, CAMK1D, NEUROD1, GRIA1, SYTL5, PRKCG, ARC, SCN11A and 
LOC400891), in the original and/or in the extended cohort (p-value ≤ 0.05), although two genes (NEUROD1 and 
SCN11A) did not show a statistically significant reduction of expression in the RT-qPCR analyses (Fig. 1b and 
Supplementary Figure S3). In addition, for all 22 deregulated genes, a positive and highly significant correlation 
was also found between the estimates of fold change in expression level from RNA-seq data and RT-qPCR results 
(R2: 0.9187) (Fig. 1c).

MicroRNA Profiling in LOAD Brain regions.  To gain insights into the complexity and specificity of tran-
scriptomic changes in LOAD, we next extended our analysis to miRNA profiling. In order to identify miRNAs whose 
deregulation is related to the spatio-temporal progression of the disease, we analyzed three different vulnerable brain 
areas, the hippocampal region CA1, the middle temporal gyrus Brodmann’s Area 21 and the middle frontal gyrus 
Brodmann’s Area 46, in the same LOAD patients and controls used in the RNA-seq experiment. This choice was 
determined by existing evidence that these brain regions are involved in distinct stages of the neurodegenerative pro-
cess in terms of development of the pathology and functional outcome, with the hippocampus affected first, followed 
by the temporal lobe and, finally, the frontal lobe4,5. In the hippocampal analysis, we also included PD patients, in 
order to identify shared deregulated miRNAs between LOAD and PD hippocampal samples.

Small RNA-seq generated an average of ∼4.5 millions of reads per sample, with 90% of bases showing Q scores 
above 30 (Supplementary Table S6). Mapping of reads from hippocampal samples identified 1,018 annotated 
miRNAs expressed in, at least, one of the sequenced samples. Considering a coverage of at least 10 reads/miRNA, 
this number was reduced to 407. Differential expression analysis identified 4 miRNAs (miR-184, miR-34c-3p, 
miR-375 and miR-132-5p), that were differentially expressed (all down-regulated) in LOAD patients respect to 
control samples (padj ≤ 0.05) (Table 3). In addition, 40 miRNAs were differentially expressed in hippocampal 
PD samples with respect to controls (padj ≤ 0.05) (11 up-regulated and 29 down-regulated) (Supplementary 
Table S7), but none of these were present in the list of deregulated LOAD hippocampal miRNAs. PD deregu-
lated miRNA targets are enriched in some neuronal and inflammatory pathways also identified for LOAD miR-
NAs, consistent with the involvement of such pathways in general responses to brain injury (p-value ≤ 0.05) 
(Supplementary Table S8).

miRNA log2FC p-value padj

LOAD Hippocampus

miR-184 −4.26 1.1E-05 1.41E-03

miR-34c-3p −3.31 4.7E-05 4.48E-03

miR-375 −1.77 1.1E-03 4.91E-02

miR-132-5p* −1.04 8.8E-04 4.78E-02

LOAD Temporal gyrus

miR-501–3p 2.13 5.1E-13 1.31E-10

miR-10a-5p 1.23 2.3E-04 1.25E-02

miR-320a 0.76 5.5E-04 2.33E-02

miR-28–3p 0.61 1.8E-05 1.40E-03

miR-30a-3p 0.51 2.2E-04 1.25E-02

miR-539–5p −1.53 8.1E-05 2.64E-03

miR-132-5p* −1.77 5.9E-12 2.26E-09

miR-132-3p* −1.85 7.6E-11 1.16E-08

miR-212-5p* −1.85 1.5E-10 1.40E-08

miR-212-3p* −1.80 9.1E-11 1.16E-08

LOAD Frontal gyrus

miR-941 0.80 5.3E-06 4.75E-04

miR-582-5p −0.85 2.0E-03 4.41E-02

miR-889-3p −1.27 1.4E-04 6.08E-03

miR-132-5p* −0.91 4.8E-04 4.62E-02

miR-132-3p* −1.58 6.6E-06 4.75E-04

miR-212-5p* −1.34 1.0E-06 3.96E-04

miR-212-3p* −1.99 5.7E-09 1.24E-06

Table 3.  Deregulated miRNA in hippocampus, temporal gyrus and frontal gyrus of LOAD patients, as revealed 
by miRNA-seq. Expression levels are expressed as log2 fold change; P-value and the corresponding corrected 
P-value (padj) were calculated by DESeq2. (*) Members of miR-132/212 family, already known to be down-
regulated in AD20–26.
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Mapping of reads from middle temporal gyrus samples identified 1,205 annotated miRNAs as expressed in, at 
least, one of the sequenced samples. Considering a coverage of at least 10 reads/miRNA, this number was reduced 
to 442. Differential expression analysis identified 10 miRNAs deregulated (padj ≤ 0.005) in LOAD patients. Five 
of these (miR-501-3p, miR-10a-5p, miR-320a, miR-28-3p and miR-30a-3p) were upregulated and 5 (miR-539-5p, 
miR-132-5p, miR-212-3p, miR-132-3p and miR-212-5p) were downregulated (Table 3).

1,212 annotated miRNAs were detected in, at least, one of the middle frontal gyrus samples. Considering a 
coverage of at least 10 reads/miRNA, this number fell to 445. Differential expression analysis identified 7 miRNAs 
as deregulated in LOAD samples of which 1 (miR-941) was up-regulated and 6 (miR-582-5p, miR-889-3p, miR-
212-5p, miR-212-3p, miR-132-3p and miR-132-5p,) were down-regulated (padj ≤ 0.005) (Table 3).

KEGG pathway annotations using DIANA miRPath tool31 allowed us to identify 6 pathways that are enriched 
in genes with predicted targets for the miRNAs deregulated in every brain region studied (p-value ≤ 0.05). These 
pathways include MAPK and neurotrophin signaling, axon guidance, long-term potentiation, glutamatergic and 
cholinergic synapses (Table 4).

miRNA profiling confirmed the down-regulation of the miR-132/212 family - previously identified as 
down-regulated in LOAD20–26 - in each of the three different regions of studied LOAD brains, consistent with a 
role in LOAD pathogenesis for these miRNAs and supporting the consistency of our analyses. No other miRNA 
showed differential expression in all three regions of LOAD brains, although the identified deregulated miRNAs 
of each region affected common pathways, involved in the regulation of different aspects of neuronal cellular 
function.

RT-qPCR assays were used to validate the deregulated miRNAs of each brain region. For the hippocam-
pal region, we used both the original and the enlarged cohorts, as employed for the RNA-seq data validation 
(Table 1 and Supplementary Table S4). We confirmed the downregulation of all miRNAs identified in miRNA-seq 

KEGG Pathway Hippocampus
Temporal 
Gyrus

Frontal 
Gyrus

Glutamatergic synapse 1.9E-07 2.7E-04 2.5E-07

MAPK signaling pathway 1.9E-07 5.9E-03 3.5E-05

Axon guidance 3.5E-04 4.4E-09 2.3E-05

Neurotrophin signaling pathway 1.7E-03 7.0E-09 2.5E-07

Long-term potentiation 1.9E-02 2.7E-08 4.2E-05

Cholinergic synapse 2.9E-02 1.8E-05 5.8E-03

Table 4.  Pathways identified by DIANA miRPath analysis, affected by the deregulated miRNAs from 
hippocampus, temporal and frontal gyrus of LOAD patients. The Fisher-exact test P-value is reported in each 
column.

Figure 2.  RT-qPCR validation of miRNAs expression in different LOAD brain regions. RT-qPCR assay 
confirmed miRNA deregulated expression in LOAD hippocampus (HIP) (a), middle temporal gyrus 
(GTM) and middle frontal gyrus (GFM) (b). In hippocampus, the deregulated expression of miR-184, miR-
34c-3p, miR-375 and miR-132/212 cluster was confirmed in both the original (5 LOAD patients and 5 control 
subjects) and in the enlarged sample group (9 LOAD patients and 9 control subjects). The data are expressed 
as the means of log2(ΔΔCt) ± SD. P-value was calculated by T-test. *p-value ≤ 0.05; **p value ≤ 0.01; ***p 
value ≤ 0.001; ****p value ≤ 0.0001.
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(miR-184, miR-34c-3p, miR-375 and miR-132-5p), and also of the other members of the 132/212 cluster 
(p-value ≤ 0.05) (Fig. 2a and Supplementary Figure S4). For the middle temporal gyrus and middle frontal gyrus, 
we used the original cohort of 5 controls and 5 LOAD samples. In both brain regions, for all deregulated miR-
NAs, RT-qPCR assay confirmed the expression trend identified in miRNA-seq (in the middle temporal gyrus: 
p-value ≤ 0.05 for miR-10a-5p, miR-28-3p miR-539-5p and miR-132/212 cluster members; in the middle frontal 
gyrus: p-value ≤ 0.001 for miR-132/212 cluster members) (Fig. 2b and Supplementary Figure S4).

miR-184 targets the 3’UTR of NR4A2 transcript.  We used the microRNA Target Filter, a microRNA 
target prioritization tool available within IPA19, the DIANA miRPath31 algorithm and Miranda32 to compare the 
deregulated miRNAs and transcripts identified in LOAD hippocampus. All tools predicted with high confidence, 
using TargetScan Human33 as source, the interaction between miR-184 and the NR4A2 and NRN1 transcripts. 
Interestingly, we found an inverse expression correlation for NR4A2 and miR-184, as NR4A2 was over-expressed 
(Fig. 1a and Supplementary Figure S2) and miR-184 was down-regulated (Fig. 2a and Supplementary Figure S4) 
in our RNA-seq data. We verified the predicted interaction miR-184/NR4A2 using a luciferase reporter assay. We 
cloned the 3’ untranslated region (UTR) of the NR4A2 transcript downstream of the luc2 firefly luciferase open 
reading frame in the pMIR-Reporter Luciferase miRNA Expression Vector (Fig. 3a). The recombinant vector was 
transfected into H1299 cells either with a negative control miRNA, with the miR-184 mimic alone or together 
with a miR-184 inhibitor (anti-miR-184). We found that miR-184 caused a significant reduction, of about 25%, of 
the normalized luciferase expression with respect to the control miRNA, while the co-transfection of equimolar 
quantity of the miR-184 mimic and the antimiR-184 didn’t produce any significant difference with respect to 
the control miRNA (Fig. 3b). These results indicate that NR4A2 transcript can be directly targeted by miR-184, 
consistent with the expression levels of NR4A2 that we found in LOAD hippocampus. On the contrary, NRN1 
was down-regulated (Fig. 1a and Supplementary Figure S2) in our RNA-seq data, as miR-184. We also tested the 
predicted interaction miR-184/NRN1 by luciferase reporter assay. We found that miR-184 did not produce any 
significant reduction in luciferase expression with respect to the control miRNA, thus excluding a NRN1 regula-
tion from miR-184 (Supplementary Figure S5b).

RNA editing analysis.  RNA editing is an important post-transcriptional process that alters the genetic blue-
print of an organism by specific modifications in primary RNAs. In human, it mainly involves the deamination 
of adenosines to inosines by the family of adenosine deaminase acting on RNA (ADAR) enzymes acting on 
double RNA strands and its deregulation has been linked to a variety of neurological and neurodegenerative 
disorders34,35. We investigated A-to-I RNA editing alterations in LOAD hippocampal tissues using RNA-seq data. 
First, for each sample, we calculated the global editing activity through the Alu editing index (AEI) as it represents 
the weighted average editing level across all expressed Alu sequences36. We found a slight, but non-significant, 

Figure 3.  Experimental validation of miR-184/NR4A2 interaction by luciferase assay. (a) Schematic 
representation of the 3’UTR of NR4A2 transcript (NM_006186.3) cloned in the pMIR-reporter luciferase 
miRNA expression vector, downstream the firefly luciferase gene. The sequence alignment between miR-184 
seed region and NR4A2 3’UTR is reported. (b) Luciferase assay. H1299 cells were transfected with a negative 
control miRNA mimic, miR-184 mimic alone and with anti-miR-184 along with pMIR luciferase reporter 
vectors containing NR4A2 3’UTR. Luciferase expression was normalized by Renilla expression and by 
calibrating the results data against the control sample (H1299 cells transfected with the control miRNA mimic). 
Data represent the means ± SD from the results of three independent experiments. P-value was calculated by 
T-test. *p-value ≤ 0.05; ****p-value < 0.0001.
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increase of editing activity in LOAD samples compared to controls (Fig. 4). Interestingly, the RNA editing activ-
ity at recoding sites, that have a functional role in brain, appeared decreased in LOAD hippocampal samples 
(p-value < 0.05), as attested by the Recoding Editing Index (REI) calculated as the weighted average of edit-
ing levels over all known recoding sites from the REDIportal database37 (Fig. 4). Focusing on recoding editing 
sites, we found that 14 out of 1,585 sites were significantly and differentially edited (t-test followed by 10% FDR 

Figure 4.  Average RNA editing levels expressed across Alu sequences and recoding sites. Global RNA editing 
activity calculated through the Alu Editing index and the Recoding Editing Index in LOAD hippocampus. 
Values for LOAD patients and controls are shown as box plots. P-value was calculated by t-test, followed by 
Benjamini-Hochberg procedure for multiple test p-values correction. *p-value ≤ 0.05. The box lower and 
upper limits correspond to the 25th and 75th percentile respectively and the line in the middle represents the 
median value (50th percentile). The whiskers lengths are inferred by using the following formula: (i) upper 
whisker = 75th percentile + 1.5*IQR; (ii) lower whisker = 25th percentile + 1.5*IQR, where IQR = 75th – 25th 
percentile. Dots correspond to outlier values.

Gene 
name Edit site location AA change

Mean 
Ctrl

Mean 
LOAD

Edit difference 
(Ctrl-LOAD) p-value

BLCAP chr20:36147572 Y/C 0.122 0.181 −0.059 0.004

COPA chr1:160302244 I/V 0.160 0.283 −0.123 0.029

GRIA2 chr4:158257875 Q/R 0.972 0.918 0.054 0.022

GRIA3 chrX:122598962 R/G 0.906 0.764 0.142 0.017

GRIA4 chr11:105804694 R/G 0.524 0.290 0.234 0.021

GRIK1 chr21:30953750 Q/R 0.601 0.393 0.207 0.004

GRIK2 chr6:102337689 I/V 0.372 0.211 0.160 0.027

GRIK2 chr6:102337702 Y/C 0.637 0.465 0.172 0.033

VN1R1 chr19:57967115 Y/C 0.058 0.134 −0.076 0.013

ZNF235 chr19:44793030 I/M 0.127 0.254 −0.127 0.001

ZNF235 chr19:44793302 R/G 0.049 0.113 −0.064 0.018

ZNF397 chr18:32825609 K/E 0.051 0.185 −0.135 0.008

ZNF397 chr18:32825654 I/V 0.065 0.218 −0.153 0.014

ZNF582 chr19:56896203 N/D 0.109 0.273 −0.164 0.020

Table 5.  Recoding sites with significant differential RNA editing levels in LOAD hippocampus. P-value was 
calculated by T-test and corrected using Benjamini-Hochberg with FDR = 0.1.
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multiple-testing correction) in LOAD samples compared to controls (Table 5). In particular, we confirmed the 
deficient RNA editing at the glutamate receptor subunit B, GRIA2, Q/R site, previously described in LOAD hip-
pocampus38 and at other five sites (COPA I/V site, GRIK1 Q/R site, GRIK2 I/V site, GRIA3 R/G site, GRIA4 
R/G site), identified in a previous study that analyzed the editing levels at 180 recoding sites in different LOAD 
brain regions39. Finally, we evaluated the expression of ADAR genes in RNA-seq data. We found that ADAR1 
and ADAR2 were not significantly differentially expressed in LOAD samples respect to controls although the 
ADAR2 expression level appeared slightly decreased in LOAD (Fig. 5). Interestingly, we found that the ADAR3 
locus, encoding for an inactive adenosine deaminase protein, primarily expressed in the brain, was significantly 
over-expressed in LOAD samples (Fig. 5).

Discussion
LOAD is an age-related neurodegenerative disorder, for which whole transcriptome profiling represents an 
informative approach to characterize end-stage alterations resulting from interactions among multiple genetic, 
epigenetic and environmental factors. To date, several studies have investigated transcriptomic changes in LOAD, 
employing various technological platforms (RT-qPCR, microarray40–43, RNA-seq15,44–46), different tissue samples 
(transgenic AD models47,48, patient-derived cell lines47,48, post-mortem tissues49), different disease stages and 
brain areas, variable post-mortem interval (PMI) affecting RNA quality, and finally different bioinformatics pro-
tocols to analyze data. An accurate set of genes and pathways deregulated in LOAD is, thus, far from established. 
In an attempt to overcome these issues, we have performed, using NGS technology, a comprehensive transcrip-
tomic profiling, including coding and non-coding RNAs (lncRNAs and miRNAs) of post-mortem hippocam-
pal tissues from three cohorts, one consisting of LOAD patients, one consisting of cognitively normal controls 
and the last consisting of PD patients. To restrict the variability, samples were selected to minimize gender, eth-
nicity, age at death and disease stage differences between patients and controls and to have a PMI not longer 
than 23 hours. Indeed, it has been demonstrated that all categories of biomolecules remain stable up to 48 hours 
post-mortem50, consistent with RIN values of RNA obtained from all samples.

We used the ‘whole’ frozen brain tissue as laser-micro-dissection, targeting exclusively the neuronal 
soma, misses a variable proportion of transcripts that are transported for pre- or post-synaptic translation51. 
We used both grey and white matter since several studies, which examined grey and white matter separately, 
observed similar deregulated level of expression of genes involved in LOAD40. We included PD patients as 
“neuro-inflammatory disease” controls in order to identify LOAD specific transcriptomic changes, not shared 
with general neuro-inflammation processes. In fact, considering that affected regions also contain inflammatory 
cells, linked to neurodegeneration and not normally associated with healthy tissue (such as macrophages and 

Figure 5.  Expression of ADAR1, ADAR2 and ADAR3 genes. Expression levels of ADAR genes in LOAD 
hippocampal RNA-seq data calculated using CuffDiff2. FPKM values for LOAD patients and controls 
are shown as box plots. *p-value ≤ 0.05. The box lower and upper limits correspond to the 25th and 75th 
percentile respectively and the line in the middle represents the median value (50th percentile). The whiskers 
lengths are inferred by using the following formula: (i) upper whisker = 75th percentile + 1.5*IQR; (ii) lower 
whisker = 25th percentile + 1.5*IQR, where IQR = 75th – 25th percentile. Dots correspond to outlier values.
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T lymphocytes), the comparison involving the control group may involve tissues with a quite distinct cellular 
composition. Considering that our LOAD patients had high Braak score (advanced disease), to exclude that the 
differential expressed genes might be affected by an imbalance between the original cellular populations between 
LOAD and control samples, we analyzed also the expression level of some cell-type specific genes in our RNA-seq 
data. We did not find any statistically significant changes in the expression of neuronal markers: DCX (log2FC: 
−0.43, padj: 0.50), RBFOX3 (log2FC: −0.37, padj: 0.46) and TUB (log2FC: −0.43, padj: 0.43); astroglial markers: 
GFAP (log2FC: 0.23, padj: 0.94), AQP4 (log2FC: 0.74, padj: 0.52) and SLC1A3 (log2FC: 0.59, padj: 0.37); micro-
glial markers: AIF1 (log2FC: 1.21, padj: 1) and CX3CR1 (log2FC: −0.07, padj: 0.94). This observation indicates 
that LOAD tissues analyzed in our study preserved the original cellular population, and that the results of the 
differential analysis were not affected by differential expression of cell-type specific genes.

RNA-seq identified a set of 2,064 specific differentially expressed transcripts in the hippocampus of LOAD 
patients, which includes coding and long non-coding RNAs. The deregulated genes are enriched in roles related to 
the regulation of important neural processes, such as neurogenesis, synaptic vesicle trafficking, long-term poten-
tiation, neurite outgrowth and hyper-phosphorylation of Tau protein, consistent with their involvement in LOAD 
pathogenesis. For the data validation by RT-qPCR, we enlarged both the control and the LOAD sample groups, 
including control samples with a higher average age with respect to the original control groups (Supplementary 
Table S4), as we were aware that, with the exclusion of Ctrl4 in the RNA-seq analysis, the ages of control samples 
became slightly smaller than those of LOAD samples. The deregulated expression of the selected group of tran-
scripts was confirmed both in the original and in the enlarged cohorts, thus supporting the consistence of our 
bioinformatics analysis and suggesting that the difference of age between the two groups did not significantly 
affect our results.

In order to identify miRNAs differently expressed during LOAD neurodegenerative progression, with the aim 
of uncovering new diagnostic and prognostic markers for the disease as well as new potential drug targets, we 
extended the miRNA profiling from the hippocampus to the middle temporal gyrus (Brodmann’s Area 21) and 
middle frontal gyrus (Brodmann’s Area 46) of the same LOAD patients. These specific brain regions were chosen 
according to evidence that they are involved in distinct stages of the neurodegenerative process, with the hip-
pocampus affected first, followed by the temporal lobe and at last the frontal lobe4,5. Our data further sustain the 
role of the miR-132/212 cluster in AD pathogenesis52, as its expression was deregulated in all three brain regions 
of the LOAD patients. Additionally, sequencing and RT-qPCR analyses demonstrate the differential expression 
of other specific miRNAs in each of the three brain regions considered, three miRNAs in the hippocampus, six 
miRNAs in middle temporal gyrus and three miRNAs in middle frontal gyrus of the same LOAD patients. These 
results suggest that miRNA expression changes in LOAD might be brain area specific and could differently con-
tribute to disease progression.

Interplay between LOAD hippocampal deregulated genes and miRNAs was supported by in silico predictive 
tools that revealed a possible interaction between the NR4A2 and NRN1 transcripts and miR-184. Both NRN1 and 
NR4A2 predicted miRNA target sites can be considered canonical (7-8 nucleotides that match perfectly with miR-
184 seed region) (Fig. 3a and Supplementary Figure S5a). Nevertheless, it is well known that many factors beyond 
pairing capacity determine functional interactions in vivo and, consequently, the presence of a putative miRNA 
binding site in a transcript is not sufficient to assert its functional relevance in the absence of experimental valida-
tion53,54. Accordingly, we performed luciferase assays that showed that miR-184 is able to target the 3’UTR of the 
NR4A2 transcript but not of the NRN1 transcript indicating that only NR4A2 expression is regulated by miR-184 
in vivo (Fig. 3b and Supplementary Figure S5b). In order to understand the different target specificity in the two 
transcripts, we considered the mammalian orthologs of NR4A2 and NRN1 genes. We observed higher conser-
vation of the seed-matching region in NR4A2 than in NRN1 binding site, consistent with the observation that 
the conservation level of the seed matched site in 3′UTRs of orthologous genes is a relevant feature in predicting 
miRNA interaction55. Notably, our sequencing data recover an inverse correlation of expression between NR4A2, 
that was over-expressed, and miR-184, that was down-regulated in LOAD patients, while NRN1, like miR-184, 
was strongly down-regulated in LOAD patients.

MiR-184 was previously shown to trigger neural stem cell (NSC) proliferation and inhibit differentiation by 
repressing the NSC fate-regulator Numblike56. Its deregulation could negatively affect ongoing neurogenesis in 
the hippocampal neurogenic niches of adult brains, and which are known to be compromised in AD57. Several 
gene targets for miR-184 have been described, including mediators of neurological development and apoptosis, 
such as E2F1 and DP58.

NR4A2, also known as Nurr1, encodes an orphan nuclear receptor, belonging to the nuclear receptor sub-
family 4A (NR4A), which also includes NR4A1 and NR4A359. It is expressed in several brain areas and plays 
important roles in various neural processes including cognitive functions and/or long-term memory in forebrain 
areas and hippocampal formation. Immune-fluorescence staining with a specific NR4A2 antibody in 5XFAD 
mice showed that the NR4A2 protein was prominently localized in brain areas with Aβ plaque accumulation, 
highlighting a possible involvement of this protein in AD pathology60. The potential regulation of NR4A2 by miR-
184 requires further functional testing but leads us to suggest that the loss of expression of miR-184 in LOAD 
hippocampus may contribute to NR4A2 accumulation in Aβ plaques.

While the down-regulation of miR-132/212 cluster in AD is well established by the current study (Table 3 
and Fig. 2) and by other published studies21,22, we also identified deregulation of several genes whose prod-
ucts are involved in miR-132/212 related pathways. BDNF (brain derived neurotrophic factor), which posi-
tively regulates miRNA-132/212 cluster transcription via the ERK1/2-dependent (but CREB-independent) 
pathway29 was down-regulated in LOAD brains. MiR-132 regulates Tau phosphorylation by targeting ITPKB 
(inositol-trisphosphate3-kinase B), which is recovered as up-regulated in LOAD brains in the current study. 
ITPKB is known to enhance both ERK1/2 kinases and BACE1 activity, and to be elevated in LOAD brains27. 
Finally, miR-132 is a negative regulator of inflammation28, and a positive regulator of vasculogenesis30. In our 
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study, miR-132 down-regulation is correlated with the up-regulation of inflammatory signals (such as TLR6, IL6R 
and IRAK3) and the down-regulation of RASAL1, a positive effector of angiogenesis.

Finally, we investigated RNA editing levels in the LOAD hippocampus since alterations in RNA editing have 
been implicated in AD39 and in other neurodegenerative diseases34,35. We found a general decrease of RNA edit-
ing activity at recoding sites (Fig. 4), in agreement with a previous study that reported decreased editing levels in 
different regions of AD patients’ brains, analyzing 180 recoding sites by a targeted resequencing approach supple-
mented by a microfluidic-based high-throughput PCR coupled with next-generation sequencing31. We identified 
14 recoding sites with significant and differential editing levels in LOAD hippocampal tissues compared to con-
trols (Table 5). Among these sites, we found down-regulation of RNA editing levels in several glutamate receptors: 
GRIA2, GRIA3, GRIA4, GRIK1, GRIK2. Regarding the Q/R site of GRIA2, it has been demonstrated that editing 
of this site is essential in neurons, as incorporation of unedited GRIA2 subunits results in an increase in glutamate 
receptors that are permeable to calcium, leading to excitotoxicity and cell death of neurons61. Our finding of low 
RNA editing levels at the Q/R site of GRIA2 is in line with previous findings that reported this deficiency in the 
hippocampus of AD patients, suggesting that it may be an early event that precedes neuronal demise38. Three 
ADAR enzymes are present in mammals: ADAR (ADAR1), ADARB1 (ADAR2) and ADARB2 (ADAR3). ADAR1 
and ADAR2 are the main catalytic enzymes, accountable for all A-to-I editing events, while ADAR3 has not 
been shown to have deaminase activity in vitro and has no known in vivo target62. Interestingly, while changes in 
ADAR1 and ADAR2 expression levels were not observed in our RNA-seq data, we recovered a significant increase 
of ADAR3 transcript levels in LOAD hippocampal tissues (Fig. 5). Recently, it has been reported that ADAR3 is 
able to bind directly to GRIA2 pre-mRNA transcripts, thus competing with ADAR2 activity and inhibiting the 
RNA editing at the Q/R site of GRIA2. This mechanism could explain the reduced editing levels at the Q/R site 
of GRIA2 observed in human glioblastoma, where ADAR2 is normally expressed while ADAR3 expression is 
increased63. Analogously, we can suggest that the inhibition of ADAR2 activity by ADAR3 may be responsible for 
decreased RNA editing levels at the Q/R site of GRIA2 as well at other recoding sites in the LOAD brain.

In conclusion, post-mortem samples do not permit the study of transcriptomic changes during early stages of 
LOAD and can only evaluate the transcriptome alterations that characterize the final stages of neurodegeneration. 
Furthermore, the use of bulk RNA does not allow the identification of cell specific transcriptional deregulation, 
but currently, single-cell transcriptome analysis is not feasible on frozen post-mortem tissues. Despite these lim-
itations, we believe that our study, providing a list of transcriptomics alterations in LOAD hippocampus, may 
represent an important resource for further molecular investigations aimed at better understanding the molecular 
mechanisms involved in LOAD and for the potential identification of novel therapeutic targets in LOAD.

Methods
Brain Samples.  Frozen post-mortem brain tissue samples from cognitively normal controls, LOAD 
patients and PD patients were obtained from several non-profit brain banks: the NICHD Brain and Tissue 
Bank for Developmental Disorders (University of Maryland School of Medicine, Baltimore, USA), the London 
Neurodegenerative Diseases Brain Bank (King’s College Hospital, London, UK) and the Parkinson’s UK Brain 
Bank (Imperial College London, UK) (Table 1 and Supplementary Table S4). All patients provided their informed 
consent to the brain bank. All methods were carried out in accordance with relevant guidelines and regulations 
and the study was approved by the Institutional Review Board of the Institute of Biomembranes, Bioenergetics 
and Molecular Biotechnologies, National Research Council. Three brain regions, hippocampus (CA1 region), 
middle temporal gyrus (Brodmann’s Area 21) and middle frontal gyrus (Brodmann’s Area 46) were used in this 
study. All tissues contained both grey and white matter. Control subjects did not have a history of neurological 
disease or indications of brain abnormalities at tissue level, as determined at autopsy. LOAD patients were posi-
tive for Aβ plaques and NFTs and were selected according to dementia status (Braak V or VI). PD patients were 
positive for Lewy bodies in the substantia nigra.

RNA Extraction.  Total RNA and small RNA fractions were selectively extracted using the mirVana™ miRNA 
Isolation Kit (Thermo Fisher Scientific, Waltham, MA, USA) according to the manufacturer’s instructions. RNA 
was quantitatively and qualitatively evaluated using NanoDrop 2000c (Thermo Fisher Scientific) and Agilent 
Bioanalyzer 2100 (Agilent, Santa Clara, CA, USA), respectively. For total RNA, a RNA Integrity Number (RIN) 
ranging from 5.2 to 7.9 was obtained, which was considered acceptable as deriving from post-mortem tissues.

RNA-seq.  RNA-seq libraries were prepared from 1 µg of total hippocampal RNA, using the Illumina’s TruSeq 
Stranded Total RNA Sample Preparation Kit (Illumina, San Diego, CA, USA), according to the manufactur-
er’s protocol. cDNA libraries were checked on the Bioanalyzer 2100 and quantified by fluorimetry using the 
Quant-iTTM PicoGreen® dsDNA Assay Kit (Thermo Fisher Scientific) on NanoDrop™ 3300 Fluorospectrometer 
(Thermo Fisher Scientific). Sequencing was performed on NextSeq 500 platform, generating for each sample 
almost 100 millions of 100 bp paired-end reads. RNA-seq statistics are reported in Supplementary Table S1.

Preprocessing and analysis of RNA-seq data.  Reads with a Phred quality score (Q) > 20, a length 
higher of 50 nt and homopolymeric tract lower of the 50% of the total read length, were selected. In detail, 
reads in FASTQ format were inspected using FASTQC program (http://www.bioinformatics.babraham.ac.uk/
projects/fastqc/) whereas adaptors and low quality regions were trimmed using Trim Galore (http://www.bioin-
formatics.babraham.ac.uk/projects/trim_galore/). Cleaned reads were aligned onto the complete latest human 
genome (assembly hg19) by means of GSNAP64 version 2013-11-27 (using as parameters: -B 5 -d hg19 -t5 -s 
splicesites -E1000 -N1 -n1 -Q -O–nofails -A sam–force-xs-dir -a paired) providing a list of exon-exon junctions 
from Ensembl, UCSC and RefSeq databases. Unique and concordant alignments in SAM format were converted 

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
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in the binary BAM format by SAMtools65 and basic statistics were calculated using Picard tools (CollectRnaSeq 
Metrics.jar) (http://picard.sourceforge.net/).

Transcriptome quantification and differential expression of coding and non-coding RNA was performed 
using CuffDiff2 (http://cufflinks.cbcb.umd.edu/)16 software version 2.1.1 (using as main parameters:–library-type 
fr-secondstrand–labels Ctl,Als -u -b hg19.fa -M rRNA.gtf refgenes.gtf). The Principal Component Analysis 
(PCA) was conducted by ClustVis (http://biit.cs.ut.ee/clustvis/)66 on gene expression values obtained by CuffDiff2 
on RNA-seq aligned reads. After the exclusion of outlier samples (Ctrl4 and AD2), CuffDiff2 analysis was 
repeated on the remaining samples. Reference human transcriptome was obtained from iGenomes repository 
(http://cole-trapnell-lab.github.io/cufflinks/igenometable/) and annotations for rRNA genes were downloaded 
from UCSC genome browser selecting the RepeatMask table. Differentially expressed genes were selected if 
|log2(FC)| > 1 and corrected P value < 0.05.

Differentially expressed coding RNAs were used as input to perform pathway enrichment analysis by IPA 
system (Ingenuity® Systems, www.ingenuity.com), STRING tool (http://string-db.org)17 and Genatlas (http://
genatlas.medecine.univ-paris5.fr/)67, to select transcripts for RT-qPCR validation.

miRNA-seq.  miRNA-seq libraries were prepared from 100 ng of small RNA fraction isolated from middle 
temporal gyrus, middle frontal gyrus and hippocampal samples, using the Illumina’s TruSeq Small RNA Sample 
Preparation Protocol, according to the manufacturer’s protocol. Libraries were checked on the Bioanalyzer 
2100, quantified by fluorimetry using the Quant-iTTM PicoGreen® dsDNA Assay Kit on NanoDrop™ 3300 
Fluorospectrometer and pooled in equomolar ratios to be sequenced on the Illumina MiSeq platform, generating 
for each sample approximately from 3 to 7 millions of 50 bp long reads. miRNA-seq statistics are reported in 
Supplementary Table S6.

Preprocessing and analysis of miRNA-seq data.  Adapter sequences were trimmed from raw reads 
using a custom Python script. Trimmed reads were mapped to human mature miRNA sequences, downloaded 
from miRBase (v21), using another ad hoc Python script, which required a best alignment with overlap of at 
least 17 bp, without mismatches, with an annotated mature miRNA sequence to assign miRNA identity. Only 
miRNAs with a read count higher than 10 were considered in the differential expression analysis. To assess the 
coherence of miRNA expression profiles, miRNA hierarchical cluster analysis was carried out using the R pack-
age pvclust (https://CRAN.R-project.org/package=pvclust)68 and computing pairwise-distances among samples. 
Differentially expressed miRNAs were identified using both DESeq269 and in-house script methodologies, which 
generated substantially congruent conclusions. The in-house script method, although based on the log2 of fold 
change of expression levels, differs from DESeq2 method since: it does not use mathematical models to estimate 
the variance associated with the level of expression, it uses the upper quartile normalization system, it compares 
the log2 of fold change of expression levels intra- and inter-conditions, and it applies the T test (instead of the 
Wald test).

Potential miRNA-targeted genes and their impact on the biological pathways were assessed using 
DIANA-mirPath v2.0 (http://diana.imis.athena-innovation.gr)70.

Reverse Transcription Quantitative PCR Analysis.  Coding and non-coding RNA Expression 
Analysis.  1 µg and 4 µg of total hippocampal RNA were used in the reverse transcription reaction (RT) for coding 
and non-coding RNA expression levels analysis, respectively, using the iScript™ Advanced cDNA Synthesis Kit 
(Bio-Rad Laboratories Ltd, Berkeley, California, USA), according to the manufacturer’s instructions. Quantitative 
PCR (qPCR) reactions were performed using 1 µl of the diluted cDNA (1:4) as input, specific TaqMan Gene 
Expression Assays and following the TaqMan Fast Advanced Master Mix Protocol (Thermo Fisher Scientific). 
IDs of the TaqMan Gene Expression Assays used are listed in Supplementary Table S5. RT-qPCR experiments 
were performed in triplicate for each sample on StepOnePlus Real-Time PCR System (Thermo Fisher Scientific). 
The expression of five housekeeping genes, CYC1, EIF4A2, GAPDH, HPRT1 and β-actin was also analyzed using 
two software applet for Microsoft Excel, named GeNorm71 and NormFinder72 in order to define the most stable 
housekeeping genes among samples, that resulted in selecting CYC1, EIF4A2 GAPDH genes. To normalize the 
data, the arithmetic Ct mean of housekeeping genes was evaluated for each sample; then, the transcript expres-
sion levels were calculated according to the ΔΔCt method, setting the arithmetic ΔCt mean of control group, as 
calibrator. The resulting data were represented as log2(ΔΔCt) and were expressed as the mean ± SD. Two-tailed 
Student’s T tests were performed to assess the statistical significance of gene expression levels differences observed 
between normal and LOAD samples. A p-value < 0.05 was considered statistically significant.

miRNA Expression Analysis.  10 ng of small RNA fraction isolated from middle temporal gyrus, middle frontal 
gyrus and hippocampal samples were used to perform RT reactions using the TaqMan™ Advanced miRNA cDNA 
Synthesis Kit (Thermo Fisher Scientific), according to the manufacturer’s instructions. The resulting cDNA, 
diluted 1:10, was used as input for qPCR using specific TaqMan Advanced miRNA Assays and the TaqMan Fast 
Advanced Master Mix Protocol (Thermo Fisher Scientific). IDs of the TaqMan Advanced miRNA Assays used are 
listed in Supplementary Table S9. GeNorm and NormFinder tools were used to define the most stable miRNAs to 
be used as endogenous controls, that resulted to be: miR-423-3p (478327_mir), miR-181b-5p (478583_mir) and 
miR-191-5p (477952_mir). To normalize the data, the arithmetic Ct mean of the three stable miRNAs was evalu-
ated for each sample; then, the miRNA expression levels were calculated according to the ΔΔCt method, setting 
the arithmetic ΔCt mean of control group as calibrator. The resulting data were represented as log2(ΔΔCt) and 
were expressed as the mean ± SD. Two-tailed Student’s T tests were performed to assess the statistical significance 
of miRNA expression levels differences observed between normal and LOAD samples. A p-value < 0.05 was 
considered statistically significant.

http://picard.sourceforge.net/
http://cufflinks.cbcb.umd.edu/
http://biit.cs.ut.ee/clustvis/
http://cole-trapnell-lab.github.io/cufflinks/igenometable/
http://www.ingenuity.com
http://string-db.org
http://genatlas.medecine.univ-paris5.fr/
http://genatlas.medecine.univ-paris5.fr/
https://CRAN.R-project.org/package=pvclust
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Luciferase Reporter Assay.  In silico evaluation of miRNA target genes was performed by using IPA’s 
microRNA Target Filter (www.ingenuity.com/products/IPA/micro RNA.html)19, that exploits TargetScan 
Human as source (http://www.targetscan.org/vert_50/)73, DIANA miRPath algorithm (http://diana.imis.
athena-innovation.gr/DianaTools/index.php?r=mirpath/index)31 and Miranda (http://www.microrna.org/
microrna/getGeneForm.do)32. To assessed miR184/NR4A2 and miR184/NRN1 interaction, the NR4A2 and 
NRN1 3’UTRs, containing the miR-184 putative binding site, were amplified by PCR using the DreamTaq DNA 
Polymerase (Thermo Fisher Scientific) and cloned in the TA cloning vector pGEM-T Easy (Promega, Madison, 
WI, USA). Primers (5′ to 3′) used for cloning NR4A2 were: Forward ACTAGTGCACAAGTATTACACATCAG 
and Reverse AAGCTTACGGTACATACAACACTTAC (SpeI and HindIII restriction sites are underlined). 
Primers (5′ to 3′) used for cloning NRN1 were: Forward ACTAGTGCTTCCAGAAGACATGCTGC and Reverse 
AAGCTTGGTATTACTGTGTGTGTAACAGC. The recombinant vectors were then digested with SpeI and 
HindIII restriction enzymes and the isolated inserts were cloned in the SpeI and HindIII sites of the pMIR-REPORT 
luciferase reporter vector (Thermo Fisher Scientific), downstream the luc2 firefly luciferase reporter gene, that is 
in turn under the control of a cytomegalovirus (CMV) promoter/termination system. Plasmid construct sequence 
was verified by Sanger sequencing. About 24 h before transfection, H1299 cells were plated at a density of 4 × 105 
cells/well in 6-well plates. Transfections of 1 µg of the recombinant Luciferase vector and 100 ng of the Renilla 
Luciferase Control Reporter vector pRL-SV40 (Thermo Fisher Scientific), used to normalize the transfection effi-
ciency, as well as co-transfections of 30 pmol of control miRNA (Negative Control #1, Thermo Fisher Scientific) 
or mimic hsa-miR-184 (Thermo Fisher Scientific) and/or anti-miR-184 (Thermo Fisher Scientific), were per-
formed using Lipofectamine 2000 (Thermo Fisher Scientific) in 80-90% confluent H1299 cells. About 48 h after 
transfection, firefly and Renilla luciferase activity were evaluated by using the Dual-luciferase Reporter Assay Kit 
(Promega), following the manufacturer’s instructions, and the Turner Designs Luminometer Model TD-20/20 
(Promega). Firefly luciferase activity was normalized to Renilla expression for each sample and calibrated respected 
to the normalized value of the control sample (H1299 cells transfected with control miRNA). Data represent the 
means ± SDs from the results of three independent experiments. Statistical analysis was performed by Two-tailed 
Student’s T tests and a p-value < 0.05 was considered statistically significant.

RNA editing analysis.  RNA editing candidates were detected using REDItools74. The Alu editing index, 
the weighted average editing level across all expressed Alu sequences, was calculated using custom scripts and 
according to the methodology described in Bazak et al.75. RNA editing levels in recoding sites were assessed using 
REDItools and providing a list of 1585 known positions from REDIportal database37 in which RNA editing causes 
amino acid change. Only positions supported by RNAseq reads in at least three samples per group and showing a 
median editing level higher than 0.1 were used to calculate dysregulated RNA editing. A t-test was used to assess 
editing dysregulation for each RNA site. P-values were corrected using Benjamini-Hochberg with FDR = 0.1. 
ADAR expressions in LOAD and control samples were calculated using CuffDiff216.

Statistics.  Differentially expressed genes in RNA-seq analysis were defined by using CuffDiff2. miRNA-seq 
data were statistically analyzed by applying DESeq2 both for data normalization and comparison (Wald test) 
and in-house procedure relying in the upper quartile normalization and T test for comparisons. For RT-qPCR 
and luciferase analyses, the statistical significance was assessed by Two-tailed Student’s T tests and results were 
expressed as the means ± SD. For RNA editing analyses, the statistical significance was assessed by using T test 
followed by Benjamini-Hochberg procedure for multiple test p-values correction. P-values less than 0.05 were 
considered to indicate statistical significance.
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