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Transient Radiation Imaging Based 
on a ZnO:Ga Single-Crystal Image 
Converter
Mengxuan Xu1, Liang Chen2, Zhiming Yao2, Shuqing Ren2, Yuying Zhang2, Feng Huang3,  
Xu Ji3, Chaohui He1, Leidang Zhou1, Jing Hu4, Shiyi He2,4, Kuo Zhao5 & Xiaoping Ouyang1,2

A ZnO:Ga single crystal with an applicable size of ϕ40 × 1 mm was prepared using the hydro-thermal 
method. The crystal exhibits good crystallinity and scintillation properties with a 63.94-arcsec full-width 
at half-maximum (FWHM) in the X-ray rocking curve (XRC) spectrum, 8% luminous non-uniformity, 
emission at 389 nm in the X-ray excited luminescence spectrum, fast response and 5.5% BGO luminous 
intensity. Furthermore, an X-ray pinhole imaging system of nanosecond temporal resolution with a 
ZnO:Ga single-crystal image converter was established to diagnose the cathode electron emission 
spatial distribution of an intense current diode. Results for shutter times of 4 μs and 5 ns were obtained, 
which directly represent the cathode electron spatial distribution throughout the entire pulse duration 
and during a certain moment of the pulse, respectively. The results demonstrate that the large ZnO:Ga 
single crystal can diagnose the spatial distribution of cathode electron emission in an intense current 
diode with high temporal resolution and provide new solutions for high-temporal-resolution diagnosis 
of a pulse radiation field.

X-ray transient radiation imaging1, which is a method for intuitively obtaining information on ultra-fast physical 
processes, has been considered for use in the fields of flash photography2, inertial confinement fusion (ICF)3 and 
high-energy-density physics (HEDP)4. In these fields, the duration of the X-ray pulse generated by the diagnosed 
object (diode, Z-pinch) is commonly tens of nanoseconds or less5,6. Therefore, it would be highly beneficial to 
establish an ultra-high-temporal-resolution X-ray diagnostic system. Generally, X-ray pinhole imaging7 is com-
monly used to diagnose a transient X-ray radiation field, and its temporal resolution, which is a key parameter 
of the imaging system, is directly influenced by the temporal resolution of the image converter. Consequently, a 
fast-response image converter is an indispensable part of an ultra-high-temporal-resolution X-ray pinhole imag-
ing system.

The commonly used image converters can be divided into two types: inorganic (such as LaBr3 and 
cerium-doped lutetium oxyorthosilicate (LSO)) and organic (such as BC-408). Inorganic image converters such 
as LaBr3 and LSO are not appropriate for ultra-fast physical processes because of their slow response time8,9. 
Organic image converters, such as BC-408, are not suitable for X-ray detection because of their low density and 
atomic number10,11. In contrast, ZnO has been considered a potential material for transient radiation imaging: 
it has been known as an ultra-fast semiconductor scintillator since the 1960s12 and has been used as phosphors 
in cathode ray tube (CRT) imaging13. However, there has been difficulty in obtaining high-quality ZnO single 
crystals because of their poor growth process, which restrains their application in radiation detection. With the 
development of the crystal growth processes in the 21st century, many studies have been reported on the theory 
research and application of ZnO to radiation detection. Ye et al.14 and Makino et al.15 reported the influence of 
Ga doping on optical properties of ZnO. Simpson et al.16 reported the 40% NaI luminous intensity of ZnO:In; 
Kano et al.17 studied the relationship between the luminescence intensity and the time response of different doped 
ZnO materials; Neal et al.18 reported the use of ZnO:Ga scintillators as alpha detectors; and Nakazato et al.19,20 
reported the potential use of ZnO as a high-spatial resolution imaging device. Meanwhile, high-quality, large-size 
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ZnO crystals have been successfully obtained: Ohshima et al.21 acquired 2-inch ZnO single crystals, and Tanaka 
et al.22 obtained 3-inch ZnO single crystals using the hydro-thermal method. These improvements render ZnO a 
promising candidate as an image converter.

In this paper, a ZnO:Ga single crystal with an applicable size of ϕ40 × 1 mm was prepared. Based on this 
crystal, an ultra-high-temporal-resolution X-ray pinhole imaging system was constructed. The cathode electron 
emission spatial distribution of an intense current diode was diagnosed, and favorable results were achieved.

Material and Scintillation Properties
In this work, a ZnO:Ga single crystal was obtained using the hydro-thermal method23,24, as shown in Fig. 1(a). 
The crystal has an applicable size of ϕ40 × 1 mm and appears pale blue and transparent. Figure 1(b) shows the 
luminescence distribution excited using DC X-rays. The luminous non-uniformity appears in two major regions 
(A and B), whereas the remaining region exhibits good uniformity. A comparison between Fig. 1(a,b) shows that 
the non-uniformity in region A may result from a surface defect caused by machining processes such as cutting 
and polishing, and the non-uniformity in region B may be related to the crystal growth, based on the lighter color 
in this zone than that of the surrounding region. We define the luminous non-uniformity N as N = σ/G × 100%, 
where σ and G are the standard deviation and average value of the surface gray scale, respectively; for this crystal, 
N = 8%.

Figure 1(c) shows the X-ray rocking curve (XRC) of the ZnO:Ga single crystal. An omega scan was per-
formed for the reflection from the (0002) surface. The full-width at half-maximum (FWHM) was measured to be 
63.94 arcsec, indicating the good crystallinity of the ZnO:Ga single crystal. The X-ray excitation spectrum (XEL) 
of the ZnO:Ga single crystal was measured at room temperature, and the results are shown in Fig. 1(d). The XEL 
peak of the ZnO:Ga single crystal at room temperature occurs at 399 nm. Figure 1(e) shows the time-response 
waveforms of the ZnO:Ga single crystal excited using the pulse γ-ray (FWHM of approximately 3 ps25–27 and 
average energy of approximately 10 MeV) which is generated by bombarding iron with the 60 MeV high energy 
pulse electron beam produced using the electron linear accelerator based on a photocathode RF gun. As shown 
in Fig. 1(e), the rise time, fall time and FWHM are 0.4 ns, 2.0 ns and 0.96 ns, respectively, indicating the fast 
response of the crystal. Using a pulsed X-ray source (GOLDEN XRS-4) to excite the BGO28 (bismuth germinate, 

Figure 1. (a) Photograph of a ZnO:Ga single crystal grown using the hydro-thermal method; (b) luminescence 
distribution of the ZnO:Ga single crystal excited using X-rays; (c) XRC of the ZnO:Ga single crystal; (d) X-ray 
excitation spectrum (XEL) of the ZnO:Ga single crystal at room temperature; (e) The time-response of a 
ZnO:Ga single crystal excited using the pulse γ-ray.
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standard reference scintillator, thickness: 1 mm; light yield: 8000 phs/MeV) and ZnO:Ga, and the luminescence 
was recorded using an intensified charge coupled device (ICCD) camera (Andor, DH34-18F-63). By comparing 
the grayscale recorded in the ICCD camera, the light output (or luminous intensity) of ZnO:Ga can be measured. 
The results are shown in Table 1. The net grayscale of BGO and ZnO:Ga are 12996.2 and 713.7, respectively, 
Therefore, the light output (or luminous intensity) of ZnO:Ga is approximately 5.5% (713.7/12996.2 × 100%) that 
of BGO.

Experimental Procedures. As an intense current electron accelerator, FLASH II29 can produce 
a large-region strong-pulse hard X-ray radiation field30, which is of great significance in the study of 
system-generated electromagnetic pulses (SGEMPs)31,32. By diagnosing the produced radiation field, the electron 
emission on the cathode surface can be obtained, from which the X-ray radiation field uniformity can be evalu-
ated. Therefore, the accelerator operation state can be analyzed, providing a basis for improving the stability of the 
large-region intense-pulse hard X-ray radiation field. Using the ZnO:Ga single crystal, we constructed a pinhole 
imaging system, diagnosed the large-region pulsed X-ray radiation field (FWHM of approximately 51 ns, average 
energy of approximately 86 keV, and average dose of approximately 296 rad(Si)32) generated using the FLASH II 
accelerator, and obtained the spatial distribution of the electron emission at the cathode surface.

The diagnostic system is shown in Fig. 2(a). The system consists of the FLASH II accelerator, a vacuum socket, 
a tungsten pinhole (ϕ = 1 mm), a ZnO:Ga image converter, a mirror, an ICCD camera (Andor, DH34-18F-63), 
a computer, a pulse generator (Agilent, 81110 A), an imaging plate (FUJI, FCR IR357) and an oscilloscope 
(Tektronix, DPO4104B). When the system operates, the trigger signal must simultaneously trigger the accelerator 
and the X-ray pinhole imaging system. Therefore, the trigger signal should be divided into two signals. One signal 
triggers the accelerator, passes through the Marx generator and water dielectric transmission line, and applies a 
high voltage to the graphite cathode. Then, the electrons are emitted from the cathode, bombard the 20-µm tan-
talum anode and produce X-rays. The produced X-ray excites the ZnO:Ga image converter after passing through 
the vacuum socket and tungsten pinhole. The other signal triggers the pulse generator and ICCD camera to 
record the luminescence of the ZnO:Ga image converter. The time relationship of the relevant signal is recorded 

Scintillator Net Grayscale

BGO 12996.2

ZnO:Ga 713.7

Table 1. The net grayscale of BGO and ZnO:Ga.

Figure 2. (a) Diagnostic system; (b) trigger timing of the experiment.
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using the oscilloscope. By adjusting the delay time of the pulse generator and the shutter time of the ICCD cam-
era, the spatial distribution of the graphite cathode electron emission can be evaluated for different time periods.

The trigger timing of the experiment is shown in Fig. 2(b). The time interval from the trigger signal to the 
X-ray signal is approximately 1.8 μs ± 200 ns, where 200 ns is the accelerator jitter caused by the complex structure 
of the FLASH II accelerator. When the shutter time is set to 5 ns, the ICCD camera may not able to record the 
luminescence of the ZnO:Ga image converter because the accelerator jitter is much longer than the 5-ns shutter 
time, whereas the signal jitter of the water dielectric transmission line is several nanoseconds. Therefore, using 
the signal from the water dielectric transmission line to trigger the pulse generator and ICCD camera, the lumi-
nescence of the ZnO:Ga image converter can be successfully recorded. The results show the time-resolved spatial 
distribution of the graphite cathode electron emission for the given time period. We also obtained the integrated 
result for a 4-μs shutter time. Because this shutter time is much longer than the system jitter, we can use the trig-
ger signal to trigger the pulse generator and ICCD camera. In this case, the entire luminescence process can be 
recorded, and the results show the integrated spatial distribution of the graphite cathode electron emission during 
the pulse duration.

Results and Discussion
Before the experiment, the spatial resolution of the diagnostic system was evaluated. A 10-mm-thick tungsten 
resolution card was placed in front of the ZnO:Ga image converter. The ZnO:Ga image converter was excited 
using the pulsed X-ray source (GOLDEN XRS-4), and the luminescence was recorded using the ICCD camera. 
The spatial resolution of the diagnostic system is shown in Fig. 3(a). A density strip of 1.5 lp/mm can be obtained. 
The concrete value of the spatial resolution can also be obtained by measuring the modulation transfer function 
(MTF) of the system33.The blue box in Fig. 3(b) shows the knife-edge area, and the MTF obtained is shown in 
Fig. 3(c), the spatial frequency corresponding to an MTF of 0.134 (MTF10) is equal to 1.12 lp/mm; therefore, 
the concrete value of the spatial resolution is 1.12 lp/mm, which indicate that the spatial resolution satisfies the 
requirement of the experiment.

The original results (Shot No. 16079) of the electron emission spatial distribution on the cathode surface 
for a 4-μs shutter time are shown in Fig. 4(a). The contour of the electron emission region is bicyclic, which is 
consistent with the shape of the cathode32; several pepper-and-salt-like noise spots are also present. Figure 4(b) 
shows the filtered results of Fig. 4(a). Most of the noise is filtered; some noise remains but it does not affect the 
result analysis. Figure 4(c) shows the time-integrated imaging results obtained using the imaging plate in Shot No. 
16079, which is the same shot shown in Fig. 4(a,b). The results in Fig. 4(b,c) are basically the same, because both 
of them had recorded the time integrated results in the same shot. The results illustrate that the ICCD camera 
recorded the time-integrated luminescence process of the ZnO:Ga image converter when the shutter time was 
set as 4 μs; these results demonstrate the uniformity of the cathode electron emission during the pulse. There are 
two intense spots in the results, indicating the extremely high intensity and non-uniform distribution of electron 
emission at the cathode, which negatively affect the X-ray distribution.

Figure 4(d) shows the original results of Shot No. 16084, which were obtained using the ZnO:Ga image con-
verter with a shutter time of 5 ns. The temporal relationship among the water dielectric transmission line signal, 
the ICCD camera shutter signal and the front-panel signal were measured, and the signal delay caused by the 
cable was removed. Among these signals, the front-panel signal reflects the time point at which the X-ray arrives 
at the front panel. We define the moment at which the water dielectric transmission line signal reaches the thresh-
old and triggers the pulse generator as 0 ns. With this reference, the ICCD camera began recording at 120 ns, and 
the front-panel signal began rising at 101.2 ns. Considering the flight time of the X-rays and the luminescence of 
the image converter, the time period recorded using the ICCD camera was 13.85–18.85 ns, which is on the rising 
edge of the X-ray pulse32. As a result, transient information regarding the cathode plasma on the rising edge of the 
pulse can be obtained, but this information cannot be obtained in the integral experiment.

Figure 4(a,d) show that high-gray-scale pepper-and-salt-like noise is always present regardless of the shutter 
time. The noise arises from two primary causes: the low light yield of ZnO:Ga (therefore the MCP gain of ICCD 
camera need to be enhanced and that causes more noise, the shutter time and MCP Gain are listed in Table 2) and 
the excessively high intensity of the X-ray pulse (some X-rays continued scattering into the ICCD camera despite 
radiation shielding)35. When the shutter time was set to 4 μs, the ICCD camera recorded all X-rays scattered 
during the pulse (about 100 ns32), which led to more high-gray-scale pepper-and-salt noise. Comparatively, when 

Figure 3. (a) The spatial resolution shown by the density strip; (b) the knife-edge area; (c) the MTF of the 
system.
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the shutter time was set to 5 ns, the amount of pepper-and-salt-like noise decreased because of the shorter shutter 
time, which allowed for less X-ray scattering and luminescence into the ICCD camera. Therefore, a higher gain 
is necessary to enhance the signal but results in more noise with a relatively lower grayscale superimposed on the 
results. As a consequence, the image quality can be improved by strengthening the radiation shielding to reduce 
the number of scattered X-rays and by enhancing the X-ray sensitivity of the ZnO:Ga image converter to increase 
the luminous intensity.

Figure 4(e) presents the filtered result of Fig. 4(d). The cathode plasma electron emission surface was formed 
during 13.85–18.85 ns in Shot No. 16084, and a non-uniform electron emission region appeared but is not 
obvious. In contrast to Fig. 4(b), a large region of extremely high-intensity electron emission did not appear. 
Figure 4(f) shows the time-integrated imaging results obtained using the imaging plate in Shot No. 16084, which 
is the same shot as Fig. 4(d,e). There are three obvious non-uniform regions (F, G and H) in Fig. 4(f). Comparing 
Fig. 4(f) with Fig. 4(c), we observe that the intense spot position and emission intensity in different shots vary 
under identical experimental conditions.

Regions A and B in Fig. 4(e) correspond to the same cathode positions as regions F and H in Fig. 4(f), but 
the emission zones are different, which indicates that the non-uniform emission varies over time. Region G in 
Fig. 4(f) was not recorded in Fig. 4(e) and shows a new electron emission zone outside the shutter time. Regions 
C, D and E in Fig. 4(e) are not shown in Fig. 4(f), illustrating that a non-uniform emission spot cannot always 
further develop into a non-uniform region, which can significantly affect the overall electron emission uniform-
ity. Therefore, non-uniform electron emission can be assumed to be a process, which may occur at any moment 
in each single pulse duration. In summary, the non-uniform distribution of overall electron emission during the 
pulse period does not indicate that the electron emission is non-uniform at any moment, and vice versa. Although 
the distribution of the cathode electron emission at a certain moment was obtained, the appearance and disap-
pearance of non-uniform electron emission occur as a series of changes over time. Thus, it is not sufficient to 
perform an in-depth study of such a changing process based solely on the result of a single time point. Hence, an 
ultra-high-temporal-resolution split imaging system is required for in-depth study.

It is generally believed that the process of plasma formation and the state of electron emission from the cath-
ode is highly related to the surface micro-topography of the cathode36. When applying the voltage, the electric 
field at impurities, microprotrusions and sharp edges is much larger than the externally applied electric field, 

Figure 4. (a) Original results of Shot No. 16079 diagnosed using the ZnO:Ga image converter at a 4-μs shutter 
time; (b) filtered results of (a); (c) time-integrated imaging recorded by the imaging plate (FUJI, FCR IR357) 
in Shot No. 16079; (d) original results of Shot No. 16084 diagnosed by the ZnO:Ga image converter at a 5-ns 
shutter time; (e) filtered results of (d); (f) time-integrated imaging recorded by the imaging plate (FUJI, FCR 
IR357) in Shot No. 16084;

Shot No. Shutter Time MCP Gain

16079 4 μs 150

16084 5 ns 255

Table 2. The shutter time and MCP Gain in Shot No. 16079 and 16084.
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which causes electron emission37. In addition, the desorption, vaporization and ionization of surface contam-
inants at high voltage38,39 will also affect the distribution of the electric field and the uniformity of the electron 
emission distribution. This leads to the degradation of the uniformity of the electron emission distribution. 
Therefore, one must consider the surface micro-topography and contaminants on the cathode to achieve good 
uniformity.

As mentioned above, the transient X-ray field produced using an accelerator is always uneven; therefore, a fast 
diagnostic method is required. Compared to the long-shutter-time integral result, the short-shutter-time differen-
tial result reflects the characteristics of the diagnostic object at a specified time of the pulse, which is much more 
meaningful in terms of diagnosis. We performed a differential diagnosis of pulsed X-rays generated using Flash II 
and obtained the spatial distribution of the electron emission on the graphite cathode surface at 13.85–18.85 ns. 
The result directly reflects the uniformity of the cathode electron emission during that time. In comparison, the 
traditional image converter is restricted by its slow response, and its long afterglow interferes with the diagnostic 
results. Such interference becomes particularly obvious for a relatively short shutter time and long response time. 
Because of the fast response of ZnO:Ga in this work, the interference of the afterglow is significantly reduced. 
Therefore, relative to a traditional image converter, the state of the diagnostic object during the short shutter time 
is reflected with higher accuracy.

In our work, a ZnO:Ga single crystal was first used as an image converter to diagnose a pulse X-ray radiation 
field and preliminary results were obtained. The potential for improving the crystal size, scintillation properties 
and diagnostic system remains. We expect to obtain more accurate and valuable diagnostic results using a larger, 
faster and higher-radiation-sensitivity crystal, improving the electromagnetic and radiation shielding of the diag-
nostic system, optimizing the trigger mode and using a split camera.

Conclusion
In this paper, we applied a single crystal with dimensions of ϕ40 mm × 1 mm was grown as an image converter 
to construct an ultra-high-temporal-resolution pinhole imaging system to diagnose the electron emission at the 
graphite cathode of the diode in FLASH II accelerator. Results were obtained for shutter times of 4 μs and 5 ns 
with good spatial resolution. The diode cathode electron emission was not absolutely uniform throughout the 
entire duration or at a given time point in the shot, which is related to the surface micro-topography and con-
taminants on the cathode. Our results confirm that a ZnO:Ga single crystal can satisfy the requirements of an 
image converter. More detailed information can be acquired by enlarging the image converter size, enhancing the 
radiation sensitivity, and constructing a split image system.
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