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Evolution of Cooperation with 
Heterogeneous Conditional 
Cooperators
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Conditional cooperation declines over time if heterogeneous ideal conditional agents are involved 
in repeated interactions. With strict assumptions of rationality and a population consisting of 
ideal conditional agents who strictly follow a decision rule, cooperation is not expected. However, 
cooperation is commonly observed in human societies. Hence, we propose a novel evolutionary 
agent-based model where agents rely on social information. Each agent interacts only once either as a 
donor or as a receiver. In our model, the population consists of either non-ideal or ideal heterogeneous 
conditional agents. Their donation decisions are stochastically based on the comparison between the 
number of donations in the group and their conditional cooperative criterion value. Non-ideal agents 
occasionally cooperate even if the conditional rule of the agent is not satisfied. The stochastic decision 
and selection rules are controlled with decision intensity and selection intensity, respectively. The 
simulations show that high levels of cooperation (more than 90%) are established in the population with 
non-ideal agents for a particular range of parameter values. The emergence of cooperation needs non-
ideal agents and a heterogeneous population. The current model differs from existing models by relying 
on social information and not on individual agent’s prior history of cooperation.

According to classical economic theory, agents are selfish rational individuals who only care about their payoffs 
and gains in their economic transactions. In many social interactions, agents behave like conditional cooperators 
who cooperate if many other agents also cooperate1,2. The presence of conditional cooperation has been attributed 
to agents’ fairness concerns and inequality aversion2. In this view, no ideal conditional agent would contribute 
to the society or cooperate because an individual agent may get a best possible payoff by free riding on others 
agents’ cooperation2. Clearly, presence of few free riders in the group leads to the decline of contributions from 
other agents. However, in human societies significant amount of cooperation is observed in multiple situations. 
Agents often donate to charities and successfully govern commons3,4. Many of these situations mimic conditional 
cooperation3,5–8. The non-zero contributions of agents have been attributed to their psychological aspects such 
as “worm glow9”, which does not depend on the information of other agents’ contributions and “confusion8”. It is 
also possible that agents may commit mistakes due to their bounded rationality10 or when they operate with noisy 
social information11.

Apart from psychology based explanations, there have been physics or game theory inspired models to explain 
conditional cooperation5,11–20. These models have considered the heterogeneous nature of population of agents 
and proposed stochastic rules in modelling cooperative decisions and adapting successful strategies11,21. It is 
recognized that heterogeneity of population plays an important role explaining cooperation in well-mixed and 
structured populations21. In addition, social information influences agents’ cooperative adaptive strategies13,22.

Models based on game theory provide a stylistic description of static situations of phenomena, but they gener-
ally ignore dynamics aspects of social learning. In human societies, agents learn or imitate successful strategies of 
other agents. It is important to consider social learning in strategic interactions because social learning dramat-
ically changes the dynamic of social interactions of the agents. Further, in game theoretic models, it is assumed 
that agents are rational and are endowed with common knowledge (mutual knowledge) about types of agents 
with whom they interact. However, social information is noisy and it is hard to know about the types of agents 
present in social interactions. In evolutionary models of social behavior23, social learning is an integral part of 
explaining social behavior and there is no need to assume that agents are rational. It is recognized that agents are 
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bounded rational; agents do not follow rules strictly but commit mistakes, show biases in their decisions and learn 
from others with certain fidelity.

The notion of bounded rationality has already revolutionized the way we understand economic decisions24. 
Recent experimental studies and theoretical models have demonstrated that bounded rationality of agents leads 
to cooperation when they play repeated social dilemma games25–27. Further some models indicate that uncer-
tainty of social information is necessary to establish cooperation among agents11,22,28,29. Considering the bounded 
rationality of agents, we assume that agents use same stochastic rules for operationalizing their cooperative 
conditional decisions and imitating the successful behavior of other agents. We propose an evolutionary agent 
based model with heterogeneous conditional cooperators in a well-mixed population. The approach is in line 
with current research programs in which the psychological underpinnings of human behavior8,24,30,31 is com-
bined with evolutionary approaches9,11,23,25,26,32 to understand interdependencies of social interactions driven by 
noise11,22,29,33,34. While human societies are structured and these structures influence population behavior, the 
current model does not use a structured population since there is a need to first understand the emergence of 
cooperation without structural constraints13,35,36.

We operationalize a conditional agent with its conditional cooperative criterion (CCC) value, whose donation 
decision is based on the number of other agents’ donations in the last generation or round. A conditional agent 
donates to another agent, if sufficient number of cooperative actions took place in the population, i.e., more than 
the CCC value of the focal agent. For instance, if an agent’s CCC value is m and there are n donations in the past, 
an ideal agent (a strict conditional agent) donates to another agent if and only if n > m, otherwise the agent does 
not donate. However, the agents are not always ideal conditional agents and occasionally do not follow a strict 
conditional rule or commit mistakes. The mistakes could be either due to noisy social information or due to 
bounded rationality of agents24,30. We consider the mistakes of agents as due to bounded rationality; even perfect 
social information does not prevent mistakes of agents.

The view of a conditional agent as a non-ideal (due to bounded rationality) conditional agent could dramat-
ically change the dynamics of conditional cooperation. An ideal agent does not donate to another agent if the 
difference between the numbers of donations in the previous generation is less than its own CCC value, whereas 
for the same cooperative condition, a non-ideal agent can occasionally donate to the other agent. An ideal agent 
can operate strictly based on the conditional rule alone. The consideration of non-ideal conditional agents leads 
us away from a simple decision rule to a stochastic decision rule and strategy adaptation rule.

The current model with the proposed donation decision rules goes beyond the existing standard game the-
oretical models of conditional cooperation and is also different from the evolutionary models of human coop-
eration37 but in line with physics inspired models of conditional cooperation11. The standard mechanisms such 
as kin selection38, direct reciprocity39, indirect reciprocity40, spatial selection41, and group selection42 require 
either private or public information about the specific agents with whom they are going to interact in the future. 
Cooperation is achieved in these models through agents who retaliate against past defection towards them or 
towards others. Unlike prisoner’s dilemma, not cooperating with another agent is not the same like defection. In 
our model, an agent’s interaction depends on others’ actions, in general and not based on the actions of the agent 
with whom interaction occurs. The defection/cooperation in the conditional cooperation is based on agents’ fair-
ness concerns rather than retaliation/reciprocation towards co-agents past actions. In the proposed model agents 
do not require agent specific information. The agents’ social interactions are not constrained to channelize their 
cooperative actions towards preferred agents.

Here, we show that depending on the degree of non-ideal nature of the agent, a population consisting of het-
erogeneous conditional agents interacting with each other and adapting successful agents’ CCC value can reach 
higher levels of stable cooperation. We designate the parameter that controls agent’s non-ideal nature of agent as 
decision intensity, β and the parameter that influences imitation of the successful agents’ CCC value as selection 
intensity, η. We show that evolution of conditional cooperation crucially depends on these parameters apart from 
the heterogeneity of population.

Model. Agents interact within a well-mixed population and meet another agent randomly. At each time step, 
we pick two agents randomly; we randomly designate one of them as a potential donor and the other as a poten-
tial recipient. Each agent experiences several interactions in both roles but never with the same partner twice. In 
a given generation, we allow each agent to interact with each another agent either as a donor or as a receiver40,43. 
An agent’s payoff score is zero at birth and the score increases whenever the focal agent receives help from another 
agent and decreases whenever the focal agent offers help to another agent. After each generation, each agent 
reproduces an offspring relative to their fitness differences with randomly paired agents, simultaneously43.

In the beginning of a generation, each agent enters with an arbitrary CCC value, which is drawn from the spec-
ified uniform distribution of interval [1, n] where n ≤ N (N is population size). We assume that agents are aware 
of their CCC values and the number of cooperative actions in each generation. The non-ideal aspect of agent is 
modeled by using decision intensity (β), which controls occasional mistakes in an agent’s conditional cooperative 
decisions and selection intensity (η), which controls occasional mistakes in copying successful agents’ behavior 
or CCC values. Suppose, in the current generation, an agent i with CCCi value donates to random met agent j with 
probability, pij. The probability of donation pij is given by the equation below.

× β= + − −p exp n CCC1/(1 ( ( ) )), (1)ij c i

where nc (0 ≤ nc ≤ N) is number of donations took place in the previous generation. The higher the β, the 
agent is highly sensitive to the conditional donation rule; the agent behaves like an ideal conditional agent. For 
lower β, the agent behaves like a non-ideal agent and occasionally donates even if the conditional rule is not 
satisfied. For (nc − CCCi) = 0 or β → 0, either an agent is confused or has lost complete information about the 



www.nature.com/scientificreports/

3SCIentIfIC REPORTS |  (2018) 8:4524  | DOI:10.1038/s41598-018-22593-2

number cooperative interactions in the previous generation. Therefore the agent cooperates randomly by chance 
(pij = 0.5).

A cooperative act incurs certain cost c (or reduces donor fitness); in turn, the receiver gains a benefit b (or 
improves its fitness) and we assume (b > c)44,45. Agents accumulate fitness in their cooperative interactions. After 
each generation, agents reproduce offspring to the next generation with some amount of mutations46. We use 
the following reproduction process: We compare each agent with another randomly chosen agent, and giving an 
offspring to the one with the higher payoff. We model selection based on a pair-wise comparison process47.

An agent i reproduces its offspring to the next generation by comparing a randomly chosen agent j’s fitness 
with a probability, qij

π η= + −Δ ×q exp1/(1 ( )), (2)ij ji

where Δπji = (πj − πi) is accumulated fitness difference of agent j and i in the previous generation, respectively. If 
η is high, then the high fit, medium fit, and least fit agents have 2, 1, and 0 offsprings respectively. For lower selec-
tion intensity (η < 1), a lower fit agent occasionally can have 2 offsprings. The process is similar to social learning 
with certain fidelity. An ideal agent with perfect social information copies agent jth CCC value, whenever Δπji > 0 
with η → ∞. With η → 0, agent i does not have access to fitness information of agent j, or with Δπji = 0, agent 
might be confused about copying the other agent’s CCC value. In such case, either of the two agents reproduces 
one offspring to the next generation. All the agents are updated simultaneously with occasional random muta-
tions as previously mentioned. In the updating process there is no change in the population size. Next generation 
starts with updated CCC values and we set each agent payoff value to zero after each generation. The whole pro-
cess is repeated after each generation for specified number of generations. We allow agents to copy a random CCC 
value, which is drawn from uniform distribution with range [1, n] with probability 0.1.

Results
To understand how the degree of non-ideal nature of conditional agents helps to develop cooperation, we var-
ied decision intensity and selection intensity and measured donation rates to quantify cooperation levels. The 
donation rates indicate percentage of population that cooperated in a given generation; the number of donations 
in a generation divided by the number of actions in the generation, and the fraction converted into percent-
age. Donation rates are proxy measures of amount of cooperation in population dynamics. In simulations, we 
observed evolution of donation rates and mean CCC values for 10000 generations. Simulations were performed 
30 times for each experimental condition and the results were averaged to reduce individual trial variations.

In simulations, we kept population size, N = 100, benefit value = 1 and cost value = 0.1; these are typical 
parameters used in agent based models of cooperation40. In the initial generation, before agents start interacting 
with other agents, each agent’s CCC value was drawn from a uniform distribution [1, n] (n = N − 5) rather than 
[1, N]. With [1, N], population was dominated by agents with high CCC values after a few generations; hence 
cooperation was not established in the population for all values of β and η (β > 0 and η > 0).

We noticed that a population with homogeneous agents, in few generations, either reach high cooperation 
with lower CCC agents or reach zero cooperation with high CCC agents. However, cooperation is established in a 
heterogeneous population, with suitable β and η combinations in a gradual manner.

We observed that cooperation is not established in the population either with high β or with high η. In sim-
ulations, we arbitrarily fixed the maximum upper value of β and η to be 25. Moderate values of β indicate that 
agents behave like non-ideal agents; the agents occasionally cooperate even if the conditional rule is not satisfies 
and moderate values of η indicate that agents occasionally do not copy successful agents’ CCC values. Higher β 
indicates that agents cooperate if and only if the conditional rule is satisfies and high η indicates that the agents 
copy only successful agents’ CCC value. We tested evolution of donation rates for the parameters in the following 
range: 0 < β ≤ 25 and 0 < η ≤ 25; the range accounts for changes from a non-ideal conditional agent to a perfect 
conditional agent. In fact for β = 2, with (nc − CCCi) = 1, the probability of cooperation is 0.88 and probability 
of imitation of successful agent’s CCC value with η = 2 and △πji = 1 is the same. We observed that at the end of 
10000 generations the agents’ CCC values were close to population mean across various experimental conditions 
and remained similar.

Figure 1 depicts evolutionary dynamics of donation rates; each color-coded trajectory represents the donation 
rates across the generations for fixed β and η. In Fig. 1(A) donations rates are shown for fixed decision intensity 
(β) = 0.5 with different selection intensity (η) values. The results show that donation rates are high and stable for 
lower β and collapses to 0% for higher η values. Figure 1(B) shows evolution of donation rates for fixed η = 0.5 
with different β values. Donation rates are high with lower η and lower β values and the donation rates approaches 
0% for higher β values. We note that the evolutionary trajectories are qualitatively different for changes in β (see 
Fig. 1(B)) in comparison to changes in η (see Figure 1(A)).

With lower β and lower η values, the donation rates increase steadily in the first few hundred generations and 
remain fairly stable. With either high β or high η, the cooperation levels are lower. Specifically, if the agents behave 
like ideal conditional agents, donation rates drop to zero.

Figure 2 shows donation rate asymptotes obtained by averaging donation rates for last 25% of 10000 genera-
tions. The asymptotes provide information on steady state population dynamics. The asymptotes of donation rates 
steadily increases in the range of 0.01 < η ≤ 1and 0.01 < β ≤ 1. The donation rates collapse when agents behave 
like ideal conditional agents. The results clearly indicate that significant cooperation (more than 90% donation 
rate) emerges when agents behave as non-ideal conditional agents. It is interesting note that even when condi-
tional agents’ deviate slightly from the ideal, substantial conditional cooperation is established.
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We draw histograms of CCC values in various generations to understand composition of CCC values of popu-
lation in the high donation rates scenarios, i.e., β = 0.3 and η = 0.1 and lower donation rates scenarios, i.e. β = 10 
and η = 10.

Figure 3 depicts the distribution of agents’ CCC values for the 50th (Fig. 3A)and the 10,000th (Fig. 3B) gen-
erations with parameters η = 0.1and β = 0.3 (non-ideal conditional agents) and η = 10 and β = 10 (ideal condi-
tional agents). The blue bars represent number of non-ideal agents and white bars represents number of ideal 
agents with particular CCC values. With non-ideal agents, high donation rates were observed; with ideal agents, 
zero donation rates were observed. After 50th generation, there is no difference between median CCC values of 
agents; the median value for ideal agents is 49 (mean = 53.63) and median value for non-ideal agents is 48.50 
(mean = 43.23). After 10,000th generation the median values of CCC agents for ideal agents is 52 (mean = 67.37) 
and for non-ideal agents is 48.50 (mean = 60.64). If agents behave like non-ideal agents, the population consists of 
a majority of lower CCC value agents in the 10,000th generation than if the agents behave like ideal agents. There 
is not much difference in the variation (standard deviation) of CCC values of agents in both the cases. Further, 
we also simulated the model by selecting initial CCC values of agents from normal distributions with the same 
mean and different standard deviations. The donation rates with a normal distribution are similar with the same 

Figure 1. (A) and (B) depicts donation rates as a function of number of generations for particular β and η 
values. Each colour-coded trajectory represents the evolution of donation rates over 10,000 generations for each 
experimental condition with a population size of 100. (A) Shows that when β = 0.5 and 0.01 < η < 5 high levels 
of cooperation are achieved and when η is high, the donation rates drop to 0%. (B) Shows that when η = 0.5 and 
0.01 < η < 2 high levels of cooperation are achieved and when β is high, the donation rates drop to 0%.

Figure 2. Asymptotic averaged donation rates as a function of β values (x-axis) and η values over 10000 
generations. Each colour-coded trajectory represents asymptotes of donation rates for particular β and η values.
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mean and SD values as that of the uniform distribution. However, when we sample CCC values from a lesser 
variance normal distribution, the donation rates are less and tend to 0% when the population becomes more 
homogeneous.

Discussion
Our results demonstrate that stable and high levels of cooperation are achieved in a heterogeneous population 
with non-ideal conditional agents. The results shows that for certain range of parameter values [β: (0.1 < β < 2) 
and η:(0.1 < η < 2)], high donation rates are observed in the population (see Figs 1 and 2). The non-ideal agents 
occasionally donate to another agent even if the conditional rule is not satisfied since the agents use a stochastic 
rule. The advantage of the stochastic rule is that it initiates cooperative actions whereas ideal conditional agents 
do not initiate cooperative actions.

In our model, when agents are non-ideal conditional agents, we observed a high level of cooperation. For 
instance, with β (0.1 < β < 2) and η (η < 5), more than 90% cooperation is achieved in the population (see Fig. 3). 
The combination of lower β and lower η allows the population maintains certain number of donation rates in each 
generation and these donation rates helps to achieve cooperation by non-ideal agents. However, with either very 
low values of β (β < 0.01) or low values of η (η < 0.01), no cooperation is observed because agents’ cooperative 
decisions governed by chance.

The simulations show that high donation rates emerge in a population consisting of heterogeneous non-ideal 
conditional agents (lower β and η values) in comparison to a population consisting of heterogeneous ideal con-
ditional agents (high β and η values). When population consists of non-ideal conditional agents, occasional 
mistakes in cooperative decisions and selection always maintains non-zero cooperative actions and slightly 
lower CCC agents in the population and these agents reinforces cooperation by positive feedback loops. When 
population consists of ideal agents, the strict conditional cooperative decisions and selection without mistakes 
always drive the population towards high CCC value agents. A few non-cooperative actions in the population 
can reinforce negative feedback loops and leads to no cooperation. We observed that cooperation is stable and 
occasional mutations do not destroy cooperation levels when agents are non-ideal agents. For instance, few high 
CCC non-ideal agents were selected into the population by chance; these agents cooperate even if the conditional 
rule is not satisfied.

An ideal conditional agent’s strict condition rule might be interpreted as that agent having fairness concerns. 
An agent with a strict fairness concern cooperates if only if certain number of agents cooperate in the population. 
Clearly, cooperation decreases in a population consisting of heterogeneous ideal agents. However, cooperation 
can be established in a homogeneous population consisting of ideal agents18. It appears that non-ideal conditional 
agents are concerned about generosity of other agents. A non-ideal agent cooperates even if some of the agents 
had not cooperated in the past. The occasional violation of conditional rule might be seen by other agents as 

Figure 3. Distribution of agents based on CCC values in the population. (A) Represents distribution of CCC 
values for the 50th generation and (B) represents distribution of CCC values after the 10000th generation. The 
white bars represent CCC values of agents when agents are non-ideal (β = 0.3 and η = 0.1). The blue bars 
represent CCC values of when agents are ideal agents (β = 10 and η = 10). In the simulations, the population 
size is set to 100 and initial CCC values of agents were drawn from uniform distribution with range [1, 95]. The 
simulations were performed 30 times and the averaged results are shown in the figure.
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agents being generous towards the social group. Perhaps the generosity of these agents may trigger further coop-
eration from other agents.

It is to be noted that the notion of generosity discussed elsewhere48 is different from the generosity notion 
considered here. For instance, a generous agent using tit for tat strategy occasionally cooperates with the agent 
who defected in the past and the generosity is directed towards the agent who defected in the past. In the current 
model generosity is directed towards the social group; agents occasionally cooperate even if a number of agents 
have not cooperated in the past. In the former context, the agents’ action is directed towards a particular agent 
with whom interactions may have occurred and in the later case generosity is directed towards a social group. It 
seems breaking the social dilemma requires non-ideal agents and establishment of cooperation in social interac-
tions requires heterogeneous non-ideal agents.

The simulation results indicate that only certain levels of decision intensity and selection intensity together 
create conditions for emergence of cooperation. Cooperation is not built in a population when the agents are 
strict with their conditional cooperation rule (the agents do not commit occasional mistakes in their conditional 
cooperation decisions, high β) and when agents occasionally do not copy successful agents’ CCC values (low 
η). While this condition creates few lower CCC agents, the strict conditional rule results in not creating enough 
number of cooperative actions. Cooperation also does not develop when agents occasionally do not follow a strict 
conditional rule (low β) and when they copy successful agents’ CCC values without mistakes (high η). In this 
condition, even though agents commit occasional mistakes, selection only prefers high CCC value agents.

The current modelling approach is inspired by stochastic rules based cooperation mechanisms proposed in 
physics11. Cooperation is established in a population when population consists of heterogeneous agents and these 
agents operate with stochastic cooperative rules. The internal operation of feedback loops in the model seems 
to provide appropriate conditions to establish cooperation33. The substantial number of donations observed in 
public good games have been attributed to agents’ confusion8 (confusion in understanding instructions of public 
good game) perhaps due to limited cognitive resources or kindness of agents7. These explanations mainly focused 
on an agent’s inability to make perfect conditional decisions; they reasoned that agents are notable to understand 
the instructions of game or agents are inherently endowed with altruistic preferences. The standard explanation 
ignores important aspects of social learning and interdependent interactions that operate in the form of nested 
feedback loops49. The mechanisms that underlie conditional cooperation described in our model potentially can 
help us to understand the conditional cooperation in public good games28,29.

The current model is implemented using a well-mixed population and no spatial structure was considered. It 
is well known that social structure plays an important role in explaining patterns observed in social interactions 
and provide natural set up for conditional strategies12,22. It is possible that some agents might not participate in all 
the repeated interactions if they obtained a poor payoff score12. The population might divide into groups based 
on their success14 and the identity of agents play an important role50. It is worthwhile to extend the current model 
incorporating spatial structure of populations with the above mentioned contexts.

In summary, our model provides generic explanations of conditional cooperation and can provide insight 
into a wide range of cooperation phenomena based on conditional cooperation. One outcome of the model is 
that cooperation does not develop in the population when conditional agents are ideal agents, who are strictly 
concerned with fairness, and population requires heterogeneity of agents. The presence of non-ideal conditional 
agents and heterogeneity in a population not only help in the development of cooperation but also provide stabil-
ity. Perhaps evolution prefers non-ideal conditional agents than ideal conditional agents, which provide flexibility 
to deal with ever changing noisy social environments. In addition to contributing to the literature on conditional 
cooperation the model contributes to ongoing active research programs in physics and game theory11,21 that com-
bine heterogeneity and stochastic nature of social interactions to understand cooperation. It is important to note 
that the current model does not use standard mechanisms discussed in other models51. In the standard models 
of cooperation, agents retaliate against the agent who defected with them or others in the past. Agents prefer to 
cooperate with agents who cooperated with them or others. The proposed model establishes cooperation based 
on feedback loops, which are present in complex systems and the complexity is hall mark of social interactions33.
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