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Impact of directionality and 
correlation on contagion
Xin-Jian Xu   1,2, Jia-Yan Li1, Xinchu Fu1 & Li-Jie Zhang3

The threshold model has been widely adopted for modelling contagion processes on social networks, 
where individuals are assumed to be in one of two states: inactive or active. This paper studies the 
model on directed networks where nodal inand out-degrees may be correlated. To understand how 
directionality and correlation affect the breakdown of the system, a theoretical framework based on 
generating function technology is developed. First, the effects of degree and threshold heterogeneities 
are identified. It is found that both heterogeneities always decrease systematic robustness. Then, 
the impact of the correlation between nodal in- and out-degrees is investigated. It turns out that the 
positive correlation increases the systematic robustness in a wide range of the average in-degree, while 
the negative correlation has an opposite effect. Finally, a comparison between undirected and directed 
networks shows that the presence of directionality and correlation always make the system more 
vulnerable.

Contagion processes arise broadly in biological, social, and information systems. Examples include the spread 
of infectious diseases1, the diffusion of cultural fads2, the outbreak of political unrest3 and the dissemination of 
rumor4. All these processes can be studied by contagion models, in which inactive (or susceptible) individuals 
are activated (or infected) by contacts with active neighbours. In general, the propagation of individual states is 
often characterized as either a simple contagion or a complex contagion5. A simple contagion is any process where 
the infection probability is assumed to be independent and identical across successive contacts, which is widely 
adopted in mathematical models of infectious diseases6,7. On the other hand, a complex contagion is a process 
where the infection probability is related to a certain critical number of exposures to infection an individual has, 
which usually exhibits cascade phenomena observed in social and economical systems5,8. Here, we are interested 
in complex contagion. One of the prototypes for studying such dynamics is the threshold model, which originated 
from the seminal work of Schelling9 on residential segregation, and subsequently was developed by Granovetter10 
in the study on social influences. According to the general definition of the threshold model, an individual adopts 
a new product or idea only if a critical fraction11 or number12 of her friends have already been activated. This 
required fraction/number of adopters in the neighbourhood is defined as threshold.

The threshold model has been studied on undirected networks profoundly11–21. Although the contagion rule 
is simple, it turns out that the model can exhibit complex behaviour when individual difference and interaction 
structure are considered. Watts11 first studied the model with one random initiator on complex networks to exam-
ine the effects of these factors on the cascade dynamics: it was shown that heterogeneous nodal degrees enhance 
systemic stability compared to that of homogeneous nodal degrees. Threshold heterogeneity, however, has a con-
trary effect. Gleeson and Cahalane14 extended Watts’ model to a finite number of initiators. They found that the 
varying seed size has a broad impact on the cascade transition as a function of the average degree z of nodes, even 
making the transition to be discontinuous for relatively small values of z. Singh et al.18 also demonstrated the 
effect of seed selection on the cascade condition and final prevalence, for instance, selecting seeds by their degrees 
(highest first) results in the largest (as well as fastest) spread in Erdös-Rényi (ER)22 networks.

However, most contagion processes are directed such as communication in email networks23, diffusion in 
financial networks24, information sharing in Twitter25 and opinion following in Microblog26. In directed net-
works, a node is connected to others via incoming and outgoing links. Each node receives information via 
incoming links and sends it via outgoing ones. The presence of directionality opens the door to features that are 
essentially different from those in undirected networks. Dodds and collaborators27,28 studied global spreading 
based on the propagation counts of edge-node pairs rather than just nodes. They constructed the gain ratio matrix 
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for contagion in generalized random networks with both directed and undirected edges and degree-degree corre-
lations, and obtained analytic expressions for the probability and expected size of global spreading events starting 
from a single seed or finite seeds. However, the calculation of the largest eigenvalue of the gain ratio matrix needs 
exact information of the combinations of in- and out-degrees of all the nodes. For complex directed networks, it 
is much difficult in obtaining the largest eigenvalue due to high dimension.

In this paper, we develop a theoretical framework based on generating function technology to calculate the 
condition and prevalence of global cascades. We study analytically and numerically the threshold model on 
directed Poisson and power-law networks. Similar to undirected networks11,14, a global cascade is not triggered in 
directed networks when the average in-degree zin of nodes is either too small or too large, however, large cascades 
are realized within an intermediate range of zin, which is referred to as the cascade window. In contrast to undi-
rected networks, both degree and threshold heterogeneities make directed networks more vulnerable. Moreover, 
if the correlations between nodal in- and out-degrees are considered, the system shows distinct behaviours in 
most regimes of zin: the positive correlation makes the system robust to contagion, while the negative correlation 
makes the system prone to failure.

Results
In the threshold model, each node i can only exist in one of two discrete states: inactive or active. The rationality 
of i can be represented by a random threshold ri ∈ (0, 1), which is a random variable drawn from the distribution 
f (r) with ∫ =f r r( )d 1

0

1 . Initially, one node is chosen randomly from the network to be active, and the others are 
inactive. In a directed network, a node can be influenced by its neighbours via incoming links (influenced neigh-
bours) and influences others via outgoing links (influencing neighbours). At each time step, an inactive node i will 
be activated if the active number of its influenced neighbours mi satisfies

≥
m
k

r ,
(1)

i

i
iin

where ki
in is the in-degree of i. Once the node is activated, it remains unchanged. If node i is an initial seed, it will 

first activate its influencing neighbours j whose thresholds satisfy

≥ .
k

r1

(2)j
jin

Due to their unstable characteristic in the one-step sense, we call these influencing neighbours vulnerable 
nodes11. In any sufficiently large network with a small number of seeds, the only way in which the seed can grow 
is that at least one of its influencing neighbours is vulnerable. If the network is undirected, the necessary condi-
tion for a global cascade is the existence of a connected cluster of vulnerable nodes occupying a finite fraction 
of the network; that is, there must exist a giant component of vulnerable nodes (GCVN). Whereas for the the 
directed network, the giant in-component (GINC), the giant strongly connected component (GSCC), and the 
giant out-component (GOUC) of vulnerable nodes appear or disappear simultaneously, any of which can be used 
to determine whether global cascades commence. Based on generating functions for directed networks with and 
without correlations between in- and out-degrees, we obtain analytic expressions for the possibility and expected 
size of the large cascade, as manifested in the method section.

Let us start from the simplest case that all the nodes have identical threshold and nodal in- and out-degrees 
follow Poisson distributions without correlation. According to the model definition, whether a node to be active 
or not depends heavily on its in-degree. For the whole network, we shall focus on the dependence of the GSCC of 
vulnerable nodes on the average in-degree zin. Figure 1(a) shows the size Sv of the GSCC of vulnerable nodes and 
the fraction ρ of active nodes as a function of zin in directed ER networks. Although ρ is larger than Sv in a wide 
range of zin, they occur and fade out simultaneously; that is, the cascade transition can happen either in the lower- 
or higher-connectivity regime. Nevertheless, the results of the transitions are distinct: in the lower-connectivity 
regime, the cascade propagation is limited by network sparsity. Any increase of zin will enhance the possibility of 
propagation, and finally causes the lower transition to occur which makes the system shift from a stable state to a 
vulnerable one; in the higher-connectivity regime, on the contrary, a node is surrounded by many inactive neigh-
bors due to high network density, any increase of zin gives rise to its local stability, and finally leads to the higher 
transition which makes the system shift from a vulnerable state to a stable one. Thus, only within an intermediate 
range of zin can a global cascade be triggered given a proper value of the threshold. As demonstrated in Fig. 1(b), 
the cascade condition (Eq. (13)) is expressed as a boundary in the (r, zin) plane (solid line). For comparison, 
simulation results of ρ (open squares) outline the window inside which large cascades occur, which are averaged 
over 100 realizations of the systems with the same parameter settings. Although the size of simulating networks is 
finite (N = 10000), analytical and actual boundaries agree well.

The impact of heterogeneity.  Previous studies have identified the effects of degree and threshold hetero-
geneities11,29 on systematic stability by varying the distributions of nodal degrees and thresholds, for instance, an 
undirected network with the heterogeneous degree distribution tends to be more robust to random attacks than 
an undirected homogeneous network. In the present paper, the degree heterogeneity is realized by the power-law 
distributions of the in-degree kin and out-degree kout, hence scale free (SF)30. Whereas for the threshold heteroge-
neity, we adopt the normal distribution with mean r and standard deviation σ. Figure 2(a) presents the cascade 
window in directed SF networks and compare it to directed ER networks. In both networks, nodal thresholds are 
identical. In contrast to the undirected situation, the directed SF network is more vulnerable than the directed 
ER network to random attacks. It results from the heavy dependence of the cascade condition on the average 
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in-degree zin. Different from the directed ER network which is sharply peaked around a well defined zin, the 
directed SF network is highly right-skewed; that is, the number of small in-degree nodes in the directed SF net-
work is larger than that in the directed ER network, which yields more vulnerable nodes in the directed SF net-
work according to Eq. (2), and therefore gives rise to cascading. Figure 2(b) shows the comparison of the cascade 
windows for identical (solid line) and normally distributed thresholds (dashed and dot lines). Meanwhile, the 
distributions of kin and kout are Poisson. As σ increases, the normal distribution becomes wide, and the fraction 
of nodes whose thresholds may be far from the mean. The nodes with thresholds below average will be easily 
activated while those with thresholds above average are difficult to be activated. When the seed fraction is very 
small, the nodes with thresholds below average plays an overwhelming role in contagion compared to those with 
thresholds above average20. Thus, the heterogeneity of nodal thresholds increases the likelihood of large cascades.

The impact of correlation.  In directed networks, the correlation between in- and out-degrees is an important 
characteristic and has been the focus of many studies including robustness31, controllability32 and synchronization33. In 
the present paper, the correlation between in-degree ki

in and out-degree ki
out of node i is assumed to take the form 

k k( )i i
out in∼ α, where α is a tunable constant34. α > 0 corresponds to the positive correlation between ki

out and ki
in, i.e., 

a node of high in-degree has high out-degree as well; α < 0 refers to the negative correlation between ki
out and ki

in, i.e., a 
node of high in-degree has small out-degree instead. Intuitively, the negative correlation between kout and kin could 

Figure 1.  Comparison between the size of vulnerable component Sv and active fraction ρ in directed ER 
networks without correlation. (a) Values of Sv from Eq. (14) and simulation results of ρ as a function of average 
in-degree zin for r = 0.18. (b) Cascade windows in the (r, zin) plane inside which the breakdown of the system 
is observed. In simulation, a global cascade is justified if a large value of ρ results from a small ρ0 with high 
possibility.

Figure 2.  Impacts of degree and threshold heterogeneities on the cascade windows. (a) The dashed line 
represents the cascade window in directed SF networks without correlation. All the nodes have identical 
threshold. (b) The dashed and dot lines represent the cascade windows in directed ER networks without 
correlation, but where nodal thresholds are normally distributed with mean r and different SD σ.
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weaken the robustness of the system, since the possibility for a node of small kin being vulnerable is high, meanwhile the 
large kout makes it having many influencing neighbours. Hence, it facilitates cascade propagation. Whereas for the pos-
itive correlation, even though a node of small kin may be vulnerable, the assortative small kout limits the number of 
influencing neighbours. It therefore has difficulty in propagating any influence and the systematic robustness is 
enhanced. Figure 3 demonstrates the effect of α on the cascade windows in directed ER and SF networks over a wide 
range of both r and zin. Compared to the directed ER network, the directed SF network is largely affected by the corre-
lation between in- and out-degrees. In particular, the larger the value of α is, the more robustness the system becomes, 
either for α > 0 or α < 0. The only exception is the interval zin ∈ (1.1, 1.5) where the positive correlation could decrease 
the robustness of the directed ER network. When zin is very small, the network is poorly connected and the cascade 
propagation is limited. Therefore, nodes of large degree are responsible for triggering large cascades. Compared to the 
uncorrelated ER network, the positive correlations between in- and out-degrees of these nodes increase the likelihood 
of propagation, hence the decrease of the robustness of the system.

Comparison with undirected networks.  When comparing the robustness of directed networks with 
undirected networks, we consider two situations. One is that the average degree zd (=zin + zout) of the directed 
network equals the average degree zu of the undirected network, i.e., the total number of links of the directed 
network is same to that of the undirected network. The other is the equivalence of zin and zu, i.e., the total num-
ber of links of the directed network is twice of that of the undirected network. Figure 4 shows the comparison 
of cascade windows in directed and undirected networks for zd = zu. The lowest boundaries of large cascades for 
both directed ER and SF networks are zd = 2 (consistent with zin = 1). So long as zd > 2, the size of the window in 

Figure 3.  Impacts of in- and out-degree correlations on the cascade windows in directed ER (a) and SF (b) 
networks. The colored lines enclose the regions of the (r, zin) plane in which the cascade condition (Eq. (15)) is 
satisfied.

Figure 4.  Comparison of the cascade windows in directed networks with those in undirected networks for 
zd = zu. Nodal degree distribution of the undirected network and in- and out-degrees distributions of the 
directed network are simultaneously Poisson (a) and power-law (b), respectively.
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directed networks is larger than that in undirected networks; that is, a directed network is more vulnerable than 
a undirected one with respect to network connectivity. Given a proper value of the threshold r, whether a node 
in the undirected network is vulnerable depends on its degree zu, whereas for the directed network the nodal 
vulnerableness is dependent on its in-degree zin. In the case of zd = zu, one has zin = zu/2. According to Eq. (2), the 
directed network has a larger number of vulnerable nodes than the undirected one, hence the less stability of the 
system. Figure 5 shows the comparison of the cascade windows in directed and undirected networks for zin = zu. 
Again, one notices similar behaviour regardless of the nodal in- and out-degree distributions and correlations. 
In the case of zin = zu, the possibility for a node being vulnerable in the directed network is the same as that in the 
undirected network. Meanwhile, the extra amount of outgoing links (zout = zu) of the directed network enables it 
to influence more neighbours compared to the undirected network, hence the promotion of propagation.

Discussion
The investigation of structure and dynamics of social networks has attracted increasing attention from applied 
mathematicians, statistical physicists, and computer scientists over the past decades35. Of high interest is a broad 
range of contagion processes taking place over underline networks. In spite of its simplicity, the threshold model 
has attracted much attention with practical applications in viral marketing36, emotion transitivity37 and risk per-
ception38. However, very few studies have considered asymmetry of social interactions. In this paper, we extended 
the threshold model to directed ER and SF networks in which each node is connected to others via incoming and 
outgoing links with and without correlations.

Based on generating function technology, we have developed a theoretical framework for analyzing the 
threshold model on large directed networks. Through the calculation of the size of GSCC of vulnerable nodes, 
we obtained the condition and prevalence of large cascades in the directed network, which differ from those in 
the undirected network. For instance, both heterogeneities of nodal degrees and thresholds could decrease the 
systematic robustness. Moreover, the correlation between nodal in- and out-degrees has mixed effects on systemic 
stability: when directed networks are heterogeneous, the positive correlation increases the robustness, while the 
negative correlation decreases the robustness; when the directed networks are homogeneous, the above results 
hold when network connectivity is relatively high, nevertheless, the positive correlation decreases the systematic 
robustness when network connectivity is very low. Finally, by comparing the robustness of the threshold model 
on directed and undirected networks, it turns out that the presence of directionality always makes the system 
more vulnerable, regardless of the distributions of in- and out-degrees as well as correlations between them. These 
results complement previous studies27,28.

We note, however, social dynamics is more complex39. To study contagion in realistic networks, one needs to 
generalize the present framework by incorporating more physical and structural properties. The comprehensive 
investigation of the frequency and size of large cascades through theoretical and empirical approaches is of sig-
nificant interest.

Methods
Given a directed network, the joint probability distribution of a node of in-degree kin and out-degree kout is 
defined by p(kin, kout). According to Eq. (2), a node of in-degree kin is vulnerable with probability 

( )k P r( )
k

in 1
inρ = ≤ . Therefore, the generating function for the joint degree distribution of vulnerable nodes is 

g x y( , )00 = ρ∑ k p k k x y( ) ( , )k k
k k

,
in in out

in out
in out

, based on which one has two generating functions for in- and 
out-degree distributions of vulnerable nodes,

Figure 5.  Comparison of the cascade windows in directed networks with those in undirected networks for 
zin = zu. Nodal degree distribution of the undirected network and in- and out-degrees distributions of the 
directed network are simultaneously Poisson (a) and power-law (b), respectively.
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respectively. To describe propagation from one node to another, one also requires generating functions for the 
joint excess degree of vulnerable nodes either approaching a random node or originated from the node,

g x y k k p k k
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respectively, where = ∑z k p k k( , )k kin ,
in in out

in out  is the average in-degree of nodes and z k p k k( , )k kout ,
out in out

in out= ∑  
is the average out-degree, hence zin = zout = zd/2. Based on g01(x, y) and g10(x, y), one has generating functions for 
the excess in- and out-degree distributions of vulnerable nodes,

∑ ∑ρ ρ
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respectively. To analyze the properties of vulnerable clusters, we introduce analogous generating functions for size 
distributions of in- and out-components of vulnerable nodes,

x g x k p k k x g xg x( ) 1 (1, 1) ( ) ( , ) [ ( )] 1 (1, 1) ( ( ), 1)
(7)k k
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respectively. φ1(x) and ϕ1(y) are corresponding generating functions for the sizes of the in-component of vulner-
able nodes arriving at a random node and the out-component leaving from the node, defined by

x g x k k p k k
z

x g xg x( ) 1 (1, 1) ( ) ( , ) [ ( )] 1 (1, 1) ( ( ), 1)
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respectively.

Condition for global cascades without correlation.  In the directed network, the GINC, GSCC and 
GOUC of vulnerable nodes appear or disappear simultaneously31. Being interested in propagation along directed 
links, we shall investigate the GOUC of vulnerable nodes. From Eq. (8), it follows that ϕ′ =(1)0  

ϕ ϕ+ ′
ϕ∂

∂
g (1, (1)) (1)

g

y00 1
(1, (1))

1
00 1 , which is the average size of the GOUC of vulnerable nodes. Noting that 

ϕ1(1) = 1, one obtains
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∂
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g
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g
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In analogy to undirected networks11, the above equation determines whether global cascades commence. To 
calculate the size of the GSCC of vulnerable nodes, we randomly choose a node of in-degree kin and out-degree 
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kout. The probability that there is at least one path from the GSCC of vulnerable nodes to the node via any incom-
ing link is φ−1 [ (1)]k

1
in

. Meanwhile, the probability that there is at least one path from the node to the GSCC of 
vulnerable nodes via any outgoing link is ϕ−1 [ (1)]k

1
out

. Therefore, the size of the GSCC of vulnerable nodes is
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Condition for global cascades with correlation.  In the case that the in-degree kin and out-degree kout of 
a node are correlated, we adopt the form kout = c(kin)α 34. According to the normalization one obtains 
c z k p k/[ ( ) ( )]kin

in in
in= ∑ α  with p k p k k( ) ( , )k

in in out
out= ∑ . Thereby, the cascade condition can be rewritten as
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and the corresponding size of the GSCC of vulnerable nodes is
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