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Improved Graph Embedding for 
Robust Recognition with outliers
Peiyang Li   1,2, Weiwei Zhou1,2, Xiaoye Huang1,2, Xuyang Zhu1,2, Huan Liu2, Teng Ma1,2, 
Daqing Guo1,2, Dezhong Yao1,2 & Peng Xu1,2

Artifacts in biomedical signal recordings, such as gene expression, sonar image and 
electroencephalogram, have a great influence on the related research because the artifacts with large 
value usually break the neighbor structure in the datasets. However, the conventional graph embedding 
(GE) used for dimension reduction such as linear discriminant analysis, principle component analysis and 
locality preserving projections is essentially defined in the L2 norm space and is prone to the presence 
of artifacts, resulting in biased sub-structural features. In this work, we defined graph embedding in the 
L1 norm space and used the maximization strategy to solve this model with the aim of restricting the 
influence of outliers on the dimension reduction of signals. The quantitative evaluation with different 
outlier conditions demonstrates that an L1 norm-based GE structure can estimate hyperplanes, which 
are more stable than those of conventional GE-based methods. The applications to a variety of datasets 
also show that the proposed L1 GE is more robust to outlier influence with higher classification accuracy 
estimated. The proposed L1 GE may be helpful for capturing reliable mapping information from the 
datasets that have been contaminated with outliers.

The technological advances in data acquisition and storage result in a large number of high-dimensional and 
ultra-high-dimensional datasets in various biomedical applications1, such as electroencephalogram (EEG), gene 
expression, and sonar imaging. These datasets might be redundant and result in the curse of dimensionality 
or excessive computational consumption when they are utilized for model construction and pattern recogni-
tion, although they are certainly desirable for modeling biological processes2. This issue promotes the utilization 
of dimension reduction technologies such as principle component analysis (PCA), linear discriminant analysis 
(LDA), and locality preserving projections (LPP). In essence, these linear or nonlinear projection strategies can 
be unified in the structure of graph embedding (GE), which constructs a graph space based on the affinity infor-
mation between each pair of samples and represents each vertex of the graph with a low-dimensional vector that 
preserves similarities between the vertex pairs3. Since the establishment of this framework, there have been vari-
eties of successful applications in biomedical signal analysis4–6.

However, in data analysis, such as biomedical research, a great challenge exists, i.e., the inevitable artifacts in 
the signal recordings7,8, which are one of the major factors accounting for reduced signal quality. Artifacts can 
be caused by various factors such as the clinical image artifacts from illumination variations and dust particles, 
measurement errors in biochemistry8, independent scatters caused by biological tissues that are smaller than 
the acoustical wavelength9 and artifacts in EEG recordings due to blinks and eye movement, a large number of 
spontaneous brain activities, or spikes. Artifacts are usually characterized by several orders of magnitude larger 
than the signal of interest, which cannot be described by the standard Gaussian distribution. Thus, when using the 
conventional L2 norm-based approaches like maximum-likelihood (ML) and least squares to estimate the noise 
variance or to extract features, the results are usually inevitably biased by the components that express the outli-
ers9–11. To resist the noise influence, Cai et al.12 redefined kernel discriminant analysis with spectral graph analysis 
(SRKDA) and estimated the projections in a more efficient and robust way. Though a series of improvements13–15 
have been proposed to widen the applications of GE extensions in recent years, few of them have focused on 
artifact restriction.

The easiest way to depress the influence of artifacts for further analysis is to reject the contaminated samples. 
However, this is not favorable because it may lead to the loss of other useful information. A more favorable way 
is to detect the artifacts or outliers and then use approaches like regression, the blind source separation (BSS) 
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method for artifact removal. Although some methods have been proposed to find outliers, it is difficult to deter-
mine the extent to which the peculiarities would be outliers8. Even if the artifacts or the outliers are located, the 
process of eliminating the artifact component by using BSS methods such as independent component analysis 
(ICA) is not trivial and may result in the loss or distortion of useful information in the extracted features16. 
To avoid the loss of data while restricting the outlier influence for feature extraction, one of the most efficient 
ways is to extend the conventional L2 norm-based models to the Lp (p ≤ 1) norm space. For example, Kwak et 
al. translated the L2 norm structure of conventional PCA with the L1 norm to restrict the outlier influence for 
dimensional reduction17. Wang et al. proposed replacing the covariance matrix with the L1 norm structure in the 
Rayleigh quotient expression to improve the robustness of common spatial patterns (CSP) toward outliers for a 
motor imagery-based brain computer interface (BCI)11. In our previous conference work18, Zhou developed the 
spectral regression (SR) in the L1 norm space to obtain robust parameters under outlier conditions while neglect-
ing the possible outlier effects on the estimation of response vectors in graph embedding. Similar to Zhou’s work, 
Nie et al. measured the distance between any pair of projected vertices in the L1 norm space19. To facilitate the 
solution, they still restrained the denominator of the Laplacian embedding in the L2 norm space. Accordingly, 
this may also inevitably be influenced by outliers. In this work, we propose a novel graph-embedding framework 
based on the L1 norm maximization strategy to restrict the outlier influence in dimensionality reduction, which 
is usually encountered in biological signals.

Results
In recent years, graph embedding and its extensions have gained more and more attention and contributed to a 
series of relative reports. Among these, discriminant analysis-based extensions, such as RLDA, HLDA and NDA, 
and spectral regression-based extensions, such as SRDA, SRKDA and local preserving projection and its exten-
sions, are commonly mentioned and have been successfully applied to both engineering technology and neural 
science research12,20–25. These methods have their own superiorities when dealing with different data problems 
such as noise and heteroscedasticity in dimension reduction3,26. In addition to these GE extensions, other L1 
norm-based linear classifiers such as Lasso SRDA, L1 SR and L1 LDA have also been proposed to resist outlier 
influence in recent years. Thus, in this section, we will investigate the performance difference between our pro-
posed L1 GE algorithm and these popular classifiers for classification tasks. Classification accuracy is adopted as 
the performance index for evaluation. All of our experiments were performed on a Core i3 3.30-GHz Windows 
7 machine with 8 GB of memory.

We mainly investigate the performance difference between L1 GE and the 10 other popular classifiers (7 GE 
extensions and 3 L1 norm-based linear classifiers), i.e., LDA27, Regularized LDA (RLDA)28, Heteroscedastic LDA 
(HLDA)29, Non-parameter LDA (NDA)30, Spectral regression discriminant analysis (SRDA)31, LPP32, SRKDA12, 
Lasso SRDA31, L1 LDA33 and L1 SR18, for dimension reduction and feature extraction. In both simulation and real 
datasets experiments, we simply set the regularization parameter for RLDA and SRDAs (i.e., SRDA, SRKDA and 
Lasso SRDA) as 1.0 and 0.7 according to31. As the types of kernels were not what we considered in this work, we 
just used the Gaussian kernel for SRKDA as reported in12. In this work, we tuned the kernel width parameter σ 
in SVM to achieve the best testing performance for SVM. Then, the same kernel width parameter σ was used for 
SRKDA. The weights estimation for LPP is straightforward according to32. The 3 neighbors in NDA were used as 
reported in a previous study30.

Simulation studies.  In this section, two classes from a 2-D Gaussian distribution with different means are 
adopted34. Class 1 is from a Gaussian distribution with mean (3.00, 3.00) and variance (0.5, 0.5), and class 2 is 
from a Gaussian distribution with mean (1.85, 1.85) and variance (0.5, 0.5). Theoretically, the optimal hyperplane 
(i.e., decision boundary) for differentiating the two classes should be along 135 degrees. If the outliers are intro-
duced, the corresponding classification hyperplane may be biased. During simulation, the training set consisted 
of 220 samples, with each class being 110 samples, and the testing set contained the same label distribution as the 
training set, i.e., 110 samples for each class in the testing set.

Effect of outlier occurrence rate.  This simulation generates datasets contaminated by different numbers of outli-
ers. The outlier is generated from the Gaussian distribution with mean (13.65, 13.65) and variance (0.5, 0.5). The 
number of outliers is set as 0%, 3% and 8% of the sample number. In each outlier condition, the outliers are evenly 
assigned to the two classes and the procedure is repeated 100 times. The mean accuracies are reported in Table 1 
on the left side. The corresponding mean effect of the outlier number on the hyperplane is visually given in Fig. 1 
for all the linear classifiers. As SRKDA constructs the hyperplane in the kernel space that is essentially different 
from the original data space, the corresponding hyperplane of SRKDA is not presented in Fig. 1 under different 
outlier occurrence rates.

Effect of outlier strength.  This simulation generates datasets contaminated by outliers with different strengths. 
The outlier is generated from a Gaussian distribution with fixed variance (0.5, 0.5) and varied mean from (6.00 
6.00) to (8.60, 8.60), where the outlier strength ( . ×6 00 2  ~  . ×8 60 2) can be adjusted by the varied mean, 
aiming to reveal the effect of the outlier strength on the hyperplane. We fix the number of outliers as 5% of the 
total sample number. The procedure is repeated 100 times, and the mean accuracies are reported in Table 1 on the 
right side. The mean effect of the outlier strength on the hyperplane is also given in Fig. 1 for all the classifiers. In 
this simulation study, we also do not report the corresponding hyperplane of SRKDA under various outlier 
strengths, as in the first simulation study.

Actual Dataset.  Gene Datasets.  In real applications, gene data are usually contaminated by outliers due to 
measurement errors and random fluctuation at various manufacturing stages. Thus, in the following experiments, 
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we tested the classification performance of the eight GE extensions on two gene datasets: One is a colon cancer 
dataset35 and the other is a Leukemia dataset36.

The first colon cancer dataset contains the expression levels of 2000 genes taken in 62 different samples, i.e., a 
62 × 2000 data matrix. For each sample, the matrix indicates whether it is from a tumor biopsy. Forty samples are 
positive, and 22 samples are negative. In our experiment, a 5-fold CV is adopted and repeated 100 times. In each 
5-fold CV run, approximately 49 samples are included in the training set, and the 2000-length feature is reduced 
to a 49-length for each sample to serve as an input for classification according to previous studies37,38. The total 
time consumptions for the eight GE extensions to estimate the mapping information are 4.14 s, 1.08 s, 11.69 s, 
35.30 s, 14.93 s, 0.90 s, 2.51 s, 0.91 s, 69.92 s, 2.17 s and 618.65 s. The mean accuracies of 100 runs for the eleven 
classifiers are given in Fig. 2(a).

The second leukemia dataset is a collection of expression measurements reported by Golub et al. (1999). The 
data set contains 72 samples. These samples are divided into two variants of leukemia: 25 samples of acute mye-
loid leukemia (AML) and 47 samples of acute lymphoblastic leukemia (ALL). The source of the gene expression 
measurements is taken from 63 bone marrow samples and 9 peripheral blood samples. The gene expression levels 
in these 72 samples are measured using high-density oligonucleotide microarrays. The expression levels of 7129 
genes are reported. A 5-fold CV is used to evaluate the classification performance of the eight GE extensions on 
this dataset. In each 5-fold CV run, approximately 58 samples are included in the training set, and the 7129-length 
feature is reduced to a 58-length for each sample to serve as the input for classification. The times required for all 
the classifiers to estimate the mapping information are 5.25 s, 1.18 s, 14.84 s, 38.94 s, 17.91 s, 0.97 s, 3.12 s, 0.96 s, 
62.05 s, 1.93 s and 637.33 s. The corresponding recognition accuracies for the classifiers are shown in Fig. 2(b). 
Both Fig. 2(a) and (b) consistently indicate that L1 GE, L1 SR, L1 LDA and RLDA have markedly better recogni-
tion performance than the other seven classifiers.

BCI Dataset.  EEG is often contaminated by the noise from eye blinks or head movement, which largely influ-
ence the performance of EEG-based brain computer interfaces. In this section, we compare the performance 
difference of the eight GE extensions on two motor imagery datasets. The datasets used here are Dataset IVa of 
BCI competition 3 and a dataset recorded in our lab.

Methods

Occurrence rate (%) Occurrence Strength

0% 3% 8% 0.00 . ×6 00 2 8 60 2. ×

LDA (Angle) 0.96 ± 0.01 
(135.10 ± 4.38)

0.91 ± 0.03 
(128.85 ± 32.27)

0.73 ± 0.06 
(79.89 ± 51.75)

0.96 ± 0.01 
(135.10 ± 4.38)

0.88 ± 0.04 
(113.72 ± 50.08)

0.78 ± 0.04 
(90.36 ± 57.35)

(Time/s) 0.62 0.64 0.61 0.62 0.61 0.63

R LDA (Angle) 0.96 ± 0.01 
(135.09 ± 4.31)

0.91 ± 0.03 
(128.93 ± 32.10)

0.73 ± 0.06 
(79.90 ± 51.79)

0.96 ± 0.01 
(135.09 ± 4.31)

0.88 ± 0.03 
(113.25 ± 38.82)

0.78 ± 0.05 
(92.08 ± 53.09)

(Time/s) 0.64 0.65 0.64 0.64 0.64 0.64

H LDA (Angle) 0.96 ± 0.02 
(134.43 ± 16.47)

0.53 ± 0.05 
(45.02 ± 1.54)

0.51 ± 0.04 
(44.63 ± 1.07)

0.96 ± 0.02 
(134.43 ± 16.47)

0.62 ± 0.14 
(52.53 ± 30.37)

0.53 ± 0.08 
(47.19 ± 16.78)

(Time/s) 2.80 2.83 2.82 2.80 2.83 2.84

NDA (Angle) 0.96 ± 0.01 
(135.15 ± 5.65)

0.94 ± 0.04 
(133.15 ± 28.20)

0.74 ± 0.05 
(85.12 ± 53.66)

0.96 ± 0.01 
(135.15 ± 5.65)

0.90 ± 0.04 
(125.07 ± 52.00)

0.79 ± 0.05 
(95.47 ± 52.32)

(Time/s) 4.56 4.58 4.56 4.56 4.56 4.58

SRDA (Angle) 0.96 ± 0.01 
(135.09 ± 4.33)

0.91 ± 0.06 
(128.23 ± 51.50)

0.73 ± 0.06 
(79.41 ± 54.41)

0.96 ± 0.01 
(135.09 ± 4.33)

0.88 ± 0.03 
(113.27 ± 38.85)

0.78 ± 0.05 
(92.87 ± 53.10)

(Time/s) 0.82 0.83 0.83 0.82 0.82 0.82

LPP (Angle) 0.96 ± 0.01 
(135.10 ± 4.38)

0.91 ± 0.08 
(128.33 ± 51.75)

0.73 ± 0.03 
(75.74 ± 53.71)

0.96 ± 0.01 
(135.10 ± 4.38)

0.88 ± 0.03 
(114.70 ± 42.09)

0.78 ± 0.05 
(90.16 ± 53.11)

(Time/s) 1.77 1.75 1.70 1.77 1.72 1.74

SRKDA 0.74 ± 0.20 0.73 ± 0.18 0.74 ± 0.19 0.74 ± 0.20 0.74 ± 0.19 0.74 ± 0.19

(Angle) — — — — — —

(Time/s) 0.97 1.00 0.95 0.82 0.96 0.94

L1 LDA (Angle) 0.96 ± 0.01 
(134.70 ± 5.11)

0.95 ± 0.02 
(134.03 ± 12.72)

0.79 ± 0.03 
(134.74 ± 13.65)

0.96 ± 0.01 
(134.70 ± 5.11)

0.92 ± 0.02 
(135.07 ± 9.04)

0.81 ± 0.03 
(136.45 ± 17.85)

(Time/s) 11.89 28.97 13.65 11.89 18.98 23.41

Lasso SRDA 0.96 ± 0.01 0.95 ± 0.02 0.79 ± 0.03 0.96 ± 0.01 0.92 ± 0.02 0.81 ± 0.03

(Angle) (135.17 ± 5.63) (134.96 ± 11.08) (135.10 ± 5.06) (135.17 ± 5.63) (134.64 ± 10.49) (133.39 ± 4.87)

(Time/s) 6.19 5.99 6.14 6.19 6.08 6.05

L1 SR (Angle) 0.96 ± 0.01 
(134.70 ± 5.11)

0.94 ± 0.04 
(130.72 ± 34.58)

0.79 ± 0.03 
(133.09 ± 4.98)

0.96 ± 0.01 
(134.70 ± 5.11)

0.92 ± 0.03 
(135.08 ± 10.12)

0.80 ± 0.05 
(134.39 ± 4.87)

(Time/s) 75.65 68.38 80.08 75.65 158.10 129.73

L1 GE (Angle) 0.96 ± 0.01 
(134.70 ± 5.11)

0.95 ± 0.02 
(135.07 ± 7.44)

0.79 ± 0.02 
(135.15 ± 20.87)

0.96 ± 0.01 
(134.70 ± 5.11)

0.92 ± 0.02 
(135.07 ± 9.04)

0.81 ± 0.03 
(133.45 ± 17.85)

(Time/s) 4.63 5.92 5.93 4.63 4.91 5.07

Table 1.  Classification accuracy and the projection direction in different outlier conditions.
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Figure 1.  The effect of outliers on decision boundaries. (a) LDA. (b) RLDA. (c) HLDA. (d) NDA. (e) L1 GE. (f) 
SRDA. (g) LPP. (h) L1 LDA. (i) Lasso SRDA. (j) L1 SR.

Figure 2.  The gene dataset classification based on eight classifiers. (a) Colon cancer data. (b) Leukemia data.
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The first dataset consists of EEG signals recorded from five subjects using 118 electrodes. In each trial, a visual 
cue with respect to the motor imagery is shown for 3.5 s. Three types of images are presented, i.e., left hand, right 
hand and right foot. The tasks for the imagery of the right hand and the left hand are adopted to evaluate the algo-
rithm performance in the current work. For the two tasks, the total number of EEG trials for each subject is 280, 
and the data are bandpass filtered between 0.05 and 200 Hz and down-sampled to 100 Hz. Following the reported 
results in11,39,40, the time interval between 0.5 s and 2.5 s after the trial onset is selected for task recognition, and 
the training trial and testing trial numbers used in previous studies41 are also adopted in the current work.

The second dataset is from the MI BCI system developed in our group, which consists of EEG data from 19 
subjects. During the online experiment, the subjects were required to sit in a comfortable armchair in front of 
a computer screen, and they were asked to perform motor imagery with the left or right hand according to the 
instructions appearing on the screen. Motor imagery lasted for 5 s, followed by 5 s of rest. Fifteen Ag/AgCl elec-
trodes covering the sensorimotor area were used to record the EEG, and the signals were sampled using 1000 Hz 
and bandpass filtered between 0.5 Hz and 45 Hz. Four runs on the same day were recorded for each subject, 
with each run consisting of 50 trials (i.e., 25 trials for each class), and there was a 3-minute break between two 
consecutive runs. The time interval between 0.5 s to 5 s after trial onset was selected for task recognition. The 
50 trials in the first run were used for training classifiers, and the remaining 150 were used to test the perfor-
mance of the classifiers. The experiment was approved by the Ethical Committee of the University of Electronic 
Science and Technology of China (UESTC). Informed consent was obtained from all participants, according to 
the Declaration of Helsinki.

For both datasets, a common spatial pattern (CSP)42 is adopted to extract the MI rhythm related features, 
and the 6 features corresponding to the 6 most discriminative CSP filters43 are used for task recognition. The 
corresponding classification accuracies for the 23 subjects are illustrated in Table 2, where L1 GE shows better 
performance than the other classifiers.

UCI Dataset.  To evaluate the generalization performance of L1 GE on other applications, we use nine 
binary-class datasets in UCI machine learning repositories to evaluate the algorithm performance; details of 
these nine datasets can be found in44. Specifically, in these nine datasets, five are from a clinical environment, i.e., 
heart disease data, breast cancer data, liver disorder data, SPECT data and thrombin data, while the remaining 
four datasets are from other applications.

For the purpose of our experiments, all of the features in each dataset are used for classification. We adopt 
the 5-fold CV proposed in17 for comparison, and the mean accuracies for 100 repetitions of CVs are reported 

BCI Dataset

Algorithms

LDA R LDA HLDA NDA SRDA LPP SRKDA L1 LDA Lasso SRDA L1 SR L1 GE

S1 0.54 0.52 0.52 0.54 0.53 0.54 0.50 0.54 0.52 0.54 0.54

S2 0.90 0.90 0.83 0.90 0.90 0.90 0.93 0.88 0.92 0.89 0.88

S3 0.93 0.94 0.81 0.93 0.94 0.93 0.92 0.93 0.92 0.94 0.91

S4 0.57 0.53 0.57 0.57 0.54 0.57 0.62 0.60 0.53 0.53 0.58

S5 0.70 0.70 0.67 0.70 0.70 0.70 0.72 0.69 0.72 0.70 0.77

S6 0.78 0.77 0.57 0.78 0.78 0.78 0.77 0.79 0.74 0.78 0.68

S7 0.76 0.76 0.49 0.75 0.75 0.76 0.73 0.75 0.76 0.75 0.76

S8 0.60 0.61 0.80 0.59 0.61 0.60 0.57 0.63 0.60 0.59 0.60

S9 0.80 0.82 0.60 0.84 0.82 0.82 0.88 0.80 0.84 0.84 0.80

S10 0.60 0.62 0.52 0.58 0.64 0.58 0.74 0.80 0.62 0.79 0.80

S11 0.61 0.62 0.82 0.61 0.61 0.61 0.59 0.57 0.60 0.60 0.66

S12 0.71 0.70 0.71 0.73 0.70 0.71 0.63 0.82 0.87 0.87 0.82

S13 0.58 0.61 0.58 0.58 0.61 0.58 0.61 0.70 0.75 0.73 0.77

S14 0.57 0.59 0.75 0.56 0.59 0.57 0.54 0.58 0.60 0.58 0.60

S15 0.58 0.58 0.52 0.58 0.58 0.58 0.53 0.80 0.58 0.55 0.81

S16 0.66 0.67 0.77 0.66 0.67 0.66 0.68 0.68 0.69 0.79 0.73

S7 0.98 0.98 0.55 0.98 0.98 0.98 0.99 0.98 0.98 0.98 0.92

S18 0.50 0.51 0.71 0.50 0.51 0.50 0.53 0.94 0.50 0.92 0.98

S19 0.52 0.52 0.47 0.52 0.52 0.51 0.50 0.52 0.52 0.52 0.54

aa 0.68 0.68 0.70 0.68 0.68 0.68 0.68 0.68 0.68 0.69 0.68

al 0.98 0.98 1.00 0.98 0.98 0.98 1.00 0.98 0.98 0.98 0.98

av 0.68 0.69 0.49 0.68 0.68 0.68 0.66 0.70 0.68 0.72 0.72

aw 0.75 0.81 0.74 0.75 0.79 0.75 0.74 0.78 0.88 0.89 0.84

ay 0.81 0.83 0.82 0.81 0.81 0.81 0.70 0.78 0.80 0.82 0.81

Mean 0.70 ± 0.14 0.71 ± 0.14 0.67 ± 0.14 0.70 ± 0.14 0.71 ± 0.14 0.70 ± 0.14 0.70 ± 0.15 0.75 ± 0.13 0.72 ± 0.15 0.75 ± 0.15 0.76 ± 0.13

Highest Acc# 2/24 3/24 5/24 1/24 1/24 2/24 5/24 3/24 2/24 6/24 9/24

Table 2.  Classification accuracy for the two BCI datasets.
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in Table 3 for eleven different classification approaches. As shown in Table 3, L1 GE shows better performance 
on 5 datasets among the 9 tested datasets, giving the highest accuracy (84%) and approximately 1~5% accuracy 
improvement compared to the other approaches.

Discussion
The simulation study quantitatively evaluates the possible influence of outliers on the performances of GE exten-
sions when they are applied to pattern recognition. In the first experiment, we studied the influence of the ratios 
between samples and outliers on the hyperplane estimation with the mentioned eleven classifiers. As shown in 
Table 1 on the left side, when the occurrence rate of an outlier is increased from 0% to 8%, the performances of 
ten linear classifiers are all lowered. But in terms of classification accuracies, L1 GE and the other L1 norm-based 
classifiers consistently show the better performance compared with the L2 norm-based GE extensions. In essence, 
the accuracy difference among the eleven classifiers is determinative by the hyperplane estimated for classifica-
tion, and the hyperplane angle in Table 1 also confirmed that the hyperplanes estimated in the L1 norm space 
are less influenced by the introduced outliers and that their angles are closest to the theoretical 135 degrees. 
Specifically, Fig. 1 visually reveals the different effects of outlier occurrence rates on the eleven classifiers, where 
the hyperplane of all the classifiers are deflected under noise conditions. However, the hyperplanes estimated in 
the L1 norm space are more robust to outlier influence with less deflection than the other six linear classifiers. As 
for the non-outlier case (i.e., 0% occurrence rate), the eleven classifiers expected for SRKDA can find the bound-
aries to discriminate the two classes well. However, if a dataset is contaminated with outliers, the corresponding 
hyperplanes estimated in the L2 norm space are obviously biased toward the outliers, resulting in the misclassifi-
cation of some samples. Compared to the classifiers estimated in the L2 norm space, although L1 GE and other L1 
norm-based classifiers are influenced by outliers, their hyperplanes can still provide good discrimination ability 
(i.e., close to the diagonal 135 degree direction) for the two classes.

In the second experiment, we studied the influence of various outlier strengths on the classification hyper-
plane. Similar to the results in the first experiment, all the linear classifiers used in this experiment were influ-
enced by outlier strength. As shown in Table 1 on the right side, when the value of the outlier varied from 
6 00 2. ×  to . ×8 60 2 , their performances decreased. However, in terms of classification accuracy, L1 
norm-based classifiers consistently show better performance than the traditional GE extensions. Similar to the 
results on the left side, the hyperplane angles in Table 1 on the right side confirm that L1 norm-based classifiers 
are robust toward the influence of outlier strength and that the angles of their estimated hyperplanes are closest to 
the theoretical value of 135 degrees. Specifically, the hyperplanes estimated from different outlier-strength condi-
tions in Fig. 1 also reveal the robustness of L1 norm-based classifiers. Another point to note is that even a small 
outlier, e.g., . ×6 00 2 , will lead to a biased hyperplane estimated by the L2 norm-based GE extensions. 
Compared to the traditional GE extensions, although L1 norm-based classifiers are also influenced by the outli-
ers, their hyperplanes can still provide good discrimination ability (i.e., close to the diagonal 135 degrees direc-
tion) for these two classes.

Considering the results in Fig. 1, we can see that the hyperplanes estimated by HLDA under outlier conditions 
show much more bias toward the ideal boundary compared to the other nine classifiers, which accounts for the 

UCI Dataset

Algorithm

LDA R LDA HLDA NDA SRDA LPP SRKDA L1 LDA Lasso SRDA L1 SR L1 GE

Australian 0.85 ± 0.03 0.85 ± 0.03 0.68 ± 0.05 0.85 ± 0.03 0.85 ± 0.03 0.66 ± 0.03 0.56 ± 0.03 0.72 ± 0.06 0.68 ± 0.03 0.85 ± 0.03 0.85 ± 0.03

Time 0.30 0.08 6.80 1.12 0.12 1.80 2.96 50.75 0.27 436.02 4.68

BreastC 0.95 ± 0.02 0.94 ± 0.02 0.59 ± 0.05 0.95 ± 0.02 0.94 ± 0.07 0.89 ± 0.03 0.67 ± 0.02 0.87 ± 0.03 0.92 ± 0.02 0.95 ± 0.02 0.95 ± 0.02

Time 0.35 0.10 7.06 1.47 0.13 1.37 2.34 64.82 0.23 347.54 8.50

HeartD 0.83 ± 0.04 0.80 ± 0.05 0.57 ± 0.07 0.82 ± 0.05 0.80 ± 0.05 0.84 ± 0.05 0.82 ± 0.05 0.83 ± 0.05 0.83 ± 0.05 0.83 ± 0.05 0.84 ± 0.05

Time 0.13 0.07 2.13 0.61 0.09 0.36 0.37 18.20 0.22 126.06 1.76

IonoS 0.83 ± 0.05 0.83 ± 0.04 0.70 ± 0.06 0.83 ± 0.04 0.83 ± 0.04 0.83 ± 0.04 0.72 ± 0.04 0.83 ± 0.04 0.90 ± 0.03 0.83 ± 0.04 0.83 ± 0.04

Time 0.28 0.10 4.11 1.34 0.11 0.50 0.69 56.84 0.31 297.69 3.46

Liver 0.65 ± 0.05 0.65 ± 0.05 0.61 ± 0.07 0.66 ± 0.06 0.65 ± 0.06 0.57 ± 0.05 0.59 ± 0.06 0.66 ± 0.05 0.66 ± 0.06 0.66 ± 0.05 0.67 ± 0.04

Time 0.13 0.06 2.33 0.60 0.09 0.45 0.57 17.11 0.23 218.45 2.05

Sonar 0.89 ± 0.05 0.93 ± 0.04 0.53 ± 0.09 0.87 ± 0.05 0.94 ± 0.04 0.89 ± 0.05 0.98 ± 0.05 0.88 ± 0.05 0.73 ± 0.07 0.87 ± 0.05 0.93 ± 0.05

Time 0.53 0.15 4.20 2.38 0.10 0.52 0.49 20.50 0.30 371.93 6.57

SPECT 0.72 ± 0.06 0.73 ± 0.05 0.52 ± 0.07 0.69 ± 0.06 0.73 ± 0.05 0.73 ± 0.06 0.79 ± 0.06 0.71 ± 0.06 0.73 ± 0.06 0.72 ± 0.05 0.72 ± 0.06

Time 0.36 0.13 4.00 1.93 0.13 0.53 0.37 40.11 0.30 156.61 5.36

'Winequality' 0.89 ± 0.01 0.82 ± 0.01 0.79 ± 0.01 0.93 ± 0.01 0.82 ± 0.01 0.83 ± 0.01 0.93 ± 0.01 0.84 ± 0.01 0.77 ± 0.77 0.86 ± 0.03 0.93 ± 0.01

Time 1.85 0.16 194.81 6.15 0.22 585.56 264.16 321.20 1.31 1008.39 78.36

'Thrombin 0.84 ± 0.08 0.88 ± 0.20 0.80 ± 0.12 0.78 ± 0.12 0.51 ± 0.24 0.48 ± 0.04 0.68 ± 0.01 0.78 ± 0.15 0.50 ± 0.23 0.87 ± 0.05 0.86 ± 0.08

Time 0.54 0.35 1.02 7.00 0.23 0.35 1.17 5.71 0.71 41.94 2.16

Mean_Result 0.83 ± 0.03 0.83 ± 0.04 0.64 ± 0.07 0.82 ± 0.07 0.79 ± 0.09 0.78 ± 0.04 0.75 ± 0.04 0.79 ± 0.06 0.75 ± 0.06 0.83 ± 0.04 0.84 ± 0.04

Highest Acc# 2/9 3/9 0/9 2/9 2/9 1/9 2/9 0/9 2/9 2/9 5/9

Table 3.  The classification for the UCI dataset.
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relatively lower accuracies for this classifier in the simulation studies. Among the existing LDA variants, HLDA 
aims to extend LDA toward problems with more complex distribution other than the homoscedasticity distribu-
tion with equivalent variance29,30,45. The motivation of HLDA is to address heteroscedastic situations where the 
classes may have a distribution with differences in both the variance and mean, which indicates that this method 
needs to estimate these two parameters from the training samples29. However, when the training sample is con-
taminated by outliers, both the mean and variance are inaccurately estimated to fit a false sample distribution, 
which will finally induce the biased hyperplane. Similar to HLDA, NDA is also designed to solve the problems 
with unequal variance distribution. For NDA the critical step is to estimate the distance between samples in one 
class and their nearest neighbor centers from another class30. When the training samples are contaminated with 
outliers, the distance between the noised samples and their neighbor centers is usually larger than that of other 
original samples, which plays a dominant role in the between-class scatter estimation. Consequently, more outlier 
numbers will lead to a more biased hyperplane estimated by NDA. RLDA is developed to address the possible 
singular problem existing in the covariance matrix31, and SRDA combined with regularization operators can 
decrease the time and memory consumption by the Eigen decomposition of dense matrices. For this simula-
tion study, the covariance matrix has relatively larger coefficients in the diagonal direction, thus indicating the 
non-singularity of the covariance matrix. Therefore, when small regularization parameters (α = 1.0 or α = 0.70) 
are added to the diagonal coefficients in RLDA and SRDA, they will have little effect on the covariance proper-
ties, resulting in the similar results observed for LDA, RLDA and SRDA in the simulation study. Nevertheless, 
the effect of different regularization strategies used in RLDA and SRDA on the classification performance can 
be revealed by the actual datasets when the covariance matrix may be close to singularity. As SRKDA estimated 
hyperplanes in the kernel space whose dimension is usually more than 2, they cannot be illustrated in Fig. 1 as 
other linear GE extensions. However, Table 1 showed that SRKDA performs similarly in resisting outlier influ-
ence. In essence, SRKDA and SRDA share the same parameter estimation strategy, which indicates that when the 
outlier influence cannot be restricted by the kernel space, SRKDA will also be influenced. It is worth noting that 
the Gaussian kernel seems to be less sensitive than the other LS-based GE extensions when both the strength and 
occurrence of the outlier increases, which may be attributed to the Gaussian space used for kernel construction. 
In fact, the kernel space reflects the interactions between different samples. For a Gaussian kernel, the weights of 
the outliers tend to be small values. When the outlier ratio is small, it will not influence the real neighbor relation-
ship in the kernel space. However, when the outlier ratio increases, more kernel-components will tend toward 
small values, which will greatly influence the stability of the kernel matrix. In addition, the types and parameters 
of kernels will also have an effect on the performance of related methods. Thus, it might be cumbersome to find 
proper kernels and the corresponding parameters for different applications. LPP is proposed to yield a nearest 
neighbor structure in low-dimensional space similar to that in high-dimensional space by preserving the local 
structure32. When the value of the outlier is small, it will have less influence on the main neighbor structure, 
resulting in a relatively robust hyperplane as illustrated by the red line in Fig. 1(g). However, when the outliers are 
stronger, the neighbor structure measured by the Euclidean distance will be destroyed, and the biased mapping 
information as illustrated in Fig. 1(g) will be estimated. Evidently, these linear GE extensions are not inferred in 
the outlier problem. As a result, they are all sensitive to the outliers in our simulation studies. It is worth noting 
that both L1 norm-based classifiers and SRKDA consistently show good ability to compress the outlier effect. 
Compared with SRKDA, L1 GE, L1 LDA and L1 SR are nonparametric methods, which indicates their conveni-
ence in real applications.

Compared with the L2 norm-based GE extensions, all the L1 norm-based classifiers mentioned in this work 
performed better, as illustrated in Fig. 1(e),(h–j), which could be attributed to the robustness of the L1 norm space 
to outlier influence. In addition to the better performance, we also observe that the differences in the objective 
function will have an influence on the hyperplanes, although the four mentioned L1 norm classifiers estimated 
the parameters in the same norm space. Through Fig. 1, we can see that the hyperplanes estimated by L1 SR and 
L1 SRDA are almost the same as shown in Fig. 1(i) and (j), which may be attributed to the spectral regression 
model utilized in their objective function. Meanwhile, the hyperplanes estimated by L1 GE and L1 LDA also hold 
some similarity in different outlier conditions as shown in Fig. 1(e) and (h). In fact, with the coding matrix H 
defined for supervised learning in the current work, (11) can be transformed into an L1 norm-based DA struc-
ture that is similar to L1 LDA, and this similarity can account for their close performance as outlier restriction 
methods in the simulation study. Although L1 GE and L1 LDA have a similar DA structure under supervised con-
ditions, there are some differences in the definition of the scatter matrix in the DA denominator, which accounts 
for the different classification results when applied to the actual datasets. In essence, our proposed L1 GE can be 
flexibly transformed into other L1 norm-based GE extensions (i.e., L1 LDA, L1 LPP, L1 PCA, etc.), with a variety 
of coding matrices H. We will explore this in further work.

In biomedical engineering, gene data are usually measured for cancer diagnosis. However, gene expression 
data sets usually have a large number of variables but with a small number of samples46 that require robust clas-
sifiers for the clinical diagnosis of diseases. RLDA is one of the popular methods for such a situation20,28, and the 
classification results for these two datasets demonstrate the efficiency of RLDA for gene recognition. For a gene 
dataset, specific problems are encountered such as information redundancy or a low signal-to-noise ratio (i.e., 
strong noise artifacts)36,37,47. The conducted comparison of the two gene datasets confirmed that L1 GE may also 
have a stable ability to address these problems and has the closest performance to RLDA. In gene datasets, we 
also observe that Lasso SRDA performs worse than the other L1 norm-based classifiers. This may be due to the 
objective function used in Lasso SRDA. In essence, the distance measurement of Lasso SRDA is still designed in 
L2 norm space although it imposed the L1 norm constraint on the parameter, which may indicate that when the 
dataset suffers from the curse of dimensionality and strong noise artifacts, the Lasso SRDA will be influenced, 
regardless of how strong the constraints that are imposed on the parameters.
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In BCI applications, artifacts are the main cause of reduced signal quality. Artifacts can be caused by various 
factors, such as electrode wire movement in the signal recordings and measurement errors in biochemistry. These 
artifacts usually hold a strength that is several orders of magnitude larger than the signal of interest and appear 
as spike-like waveforms of very short periods. Such artifacts can usually be treated as outliers and must be elim-
inated before further study. In studies based on biomedical signals, the easiest way is to reject the contaminated 
samples. However, this is not preferable because it may lead to the loss of other useful information. Other favora-
ble methods such as BSS can also be applied for artifact rejection. However, it is difficult to determine the extent to 
which the samples may be contaminated by outliers, and it is also not trivial to eliminate the artifact components 
by the BSS methods. In addition, there is a rare report about the application of graph embedding analysis in scalp 
EEG BCI. To investigate the feasibility of L1 GE in the EEG BCI application, we evaluate the performance on two 
independent BCI datasets (total 24 subjects). Table 2 shows that 9 of 24 subjects can obtain the highest accuracy 
when L1 GE is used, which is the highest ratio among the eleven classifiers. Moreover, L1 GE shows 1~9% accu-
racy improvement compared to the other ten classifiers. The results in Table 2 show the potential of L1 GE for 
actual BCI application.

The presence of outliers is encountered not only in biomedical signal recording or gene expression data but 
also in a variety of other clinical applications. To evaluate the generalization performance of L1 GE, we used 9 
UCI datasets with 6 datasets from the clinical application. The results for the UCI dataset presented in Table 3 
reveal that L1 GE has the highest recognition accuracy (84%). Table 3 also demonstrates that no classifier con-
sistently shows the best performance across the 9 different UCI datasets and that L1 GE achieves the best perfor-
mance for 5 of the 9 datasets, hence outperforming the ten other classifiers. In contrast to the conventional L2 
norm-based GE and its extensions, L1 norm-based classifiers will utilize an iterative procedure, which results in 
the relatively higher complexity and also accounts for more time consumption.

The applications to various datasets demonstrate that the L1 norm-based GE extensions are robust in dealing 
with the artifact-influenced classification. Compared to conventional graph embedding based on the L2 norm 
structure, the developed L1 norm GE maximizes the dispersion in the L1 norm space, which can provide a more 
powerful ability to suppress artifact effects. In this work, we mainly evaluated the performance of L1 GE in super-
vised learning. For unsupervised learning, one crucial step is to estimate the symmetric factor H, which holds 
the structure information in similarity matrix W48,49. In essence, our proposed L1 GE can be flexibly transformed 
into other L1 norm-based GE extensions, with a variety of coding matrices H. In future work, we will explore the 
efficiency of L1 GE when it is transformed into other L1 norm-based GE extensions, and we will also do further 
analysis on its efficiency in unsupervised and semi-supervised learning.

Methods
Graph embedding.  Define m samples X x x R R{ , }i i

n
i
m n m1

1= ⊂ ⊂×
=

×  from C classes. In general graph 
embedding, each sample point can be treated as a vertex in an adjacency graph G Rm m∈ × , where n denotes the 
sample dimension. The corresponding edges in G represent a statistical relationship between each pair of these 
sample points. The motive of graph embedding is to represent each vertex of G in a lower dimensional space and 
preserve the original edge information between vertex pairs. Essentially, graph embedding estimates the response 
vector y Rm 1∈ × , which maximizes the following function:

J y y Wy
y Dy

( )
(1)

T

T=

where T denotes the transpose and W Rm m∈ ×  is a sparse symmetric matrix reflecting the weight of the joining 
edge between vertices i and j as

W
m x

k
1/ , if and x both
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0, otherwise (2)
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k i j
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and mk is the sample number of the k-th class. D is a diagonal matrix whose entries are column or row sums of 
W31. Note that the scaling of the projection y will have no effect on the objective value. Thus, maximizing J(y) is 
tantamount to the following constrained optimization problem as

y Wy

subject to y Dy

arg max

1 (3)
w

T

T







 =

By introducing the Lagrange multiplier, the objective function can be rewritten as

λ λ= − − .L y y Wy y Dy( ; ) ( 1) (4)T T

Taking the derivative of (4) with respect to y under the condition of ∂ ∂ =L y/ 0, response vector y can be esti-
mated by using the generalized eigenvalue equation as

Wy Dy (5)λ=

where λ denotes the eigenvalue of the generalized eigenproblem, and y is the corresponding eigenvector. For 
multiple response vectors, the above equation (5) can be solved as
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= Σ−D WY Y (6)1

where Y is the matrix consisting of the eigenvectors of D W1− , and diag( , , )m1 2λ λ λΣ = ...  is a diagonal matrix 
consisting of the eigenvalues of −D W1 . For classification purposes, there are only −C( 1) eigenvectors corre-
sponding to the maximum C( 1)−  eigenvalues. However, the response vectors ⊂=

− × −y R{ }i i
C m C

1
1 ( 1) inferred from 

(6) only provide mapping information in the training set. To expand the mapping information for the testing 
sample, a simple way is to estimate some projections between the response vector and sample points. By replacing 
y with XTα, the objective function in (1) could be rewritten as

α α α
α α

=
α α

J XWX
XDX

arg max ( ) arg max
(7)

T T

T T

where Rn 1α ⊂ ×  is the mapping projection between the defined graph and samples. Therefore, the optimal solu-
tion of equation (7) is a mapping α ⊂ ×Rn 1, which can transform samples X to Y by preserving the manifold 
structure defined in W as much as possible. More details about graph embedding can be found in Appendix B.

L1 Graph embedding.  Noting that W is a symmetrical matrix and D is a diagonal matrix, equation (7) can 
be formatted as

α α α
α α

α α

α α

α

α

=

= =

α α

α

J XWX
XDX

XHH X

X D D X

XH

X D

arg max ( ) arg max

arg max
(8)

T T

T T

T T T

T T T

T

T
2
2

2
2

where • 2 denotes L2 norm, W HHT=  and D Wii j
m

ij1= ∑ = . Because W is a symmetric matrix, there are several 
effective strategies to implement symmetric factorization so that we can easily estimate H48,49. As revealed in 
equation (8), the graph embedding is essentially derived from the L2 norm structure. However, the L2 norm has 
been proven to be prone to the presence of outliers17, which indicates that in practical applications, outliers will 
cause an unexpected effect on related analyses such as signal processing and feature extraction. To improve the 
robustness of parameter estimation in this framework, some schemes like sparse constraint with an L1 norm are 
proposed to alleviate the outlier effect50,51. However, most of these schemes are mainly focused on imposing 
restrictions on parameters but still leave the main structure of the objective function in the L2 norm space, which 
will inevitably exaggerate the outlier effect, regardless of how much these parameters are emphasized. Motivated 
by the merit of the L1 norm in suppressing the outlier effect, we proposed estimating the mapping denoted in (7) 
and (8) with the L1 norm space instead of the L2 norm as

 α
α

α
=

α α
J

XH

X D
arg max ( ) arg max

(9)

T

T
1

1

where 1•  denotes the L1 norm. We refer to (9) as L1 Graph embedding (L1 GE). For pattern recognition, when 
all the training samples are labeled, we have m mk

C
k1∑ == . Suppose that all of the data points in X are ordered 

according to their labels as X = [X(1), X(2),…, X(C),…, X(k)], where = 
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feature vector for the kth class; then, the weight matrix W can be defined as a c-block diagonal matrix31, with each 
block being a symmetric matrix as
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where W k( ) is an m mk k×  matrix with all of the elements as m1/ k and ∈ ×D Rm m is a unit matrix. Let = −
∼X X X

; we can rewrite (10) as
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where X  is the mean of X , and X HbΦ =
∼ . H Rm c∈ ×  is a coding matrix with columns indicating the class types 

and rows indicating the samples. The values in each column of H are defined as
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In essence, by using the logarithm transformation, equation (12) is formatted as
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α α= || Φ || − || || .
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By introducing the sign function R and Q, we define the iterative direction for (14) as
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where R(t), and Q(t) are defined as
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In the above equations, i(:, )bΦ  and X i(:, )∼  denote the ith column of matrices Φb and X∼, respectively.
Based on the gradient in (14), the objective function in (11) can be solved by the iterations below:

	(1)	 Initialization. Set t = 0; Set the stop tolerance error ε1 and ε2 with a small positive number. Initialize α(0)  
with N random numbers and normalize it as (0) (0)/ (0) 2α α α= || || .

	(2)	 Updating. Update the projection vector as t t d t( 1) ( ) ( ( ))α α η α+ = +  with η being a small number 
accounting for the learning rate of iteration.

	(3)	 Convergence criterion. If α α ε+ − || <J t J t( ( 1)) ( ( )) 1, or t t( 1) ( ) 2 2α α ε+ − < , set 
α α α= + || + ||t t( 1)/ ( 1) 2 and stop iteration; else, t = t + 1, and go to Step 2.

Using the above steps, the optimal α can be estimated. The computational complexity of L1 GE parameter 
estimation for a single iteration is ο × + +n m c mc( (2 2 )).

With the gradient in equation (14) and the iteration steps, the proposed objective function J(α(t)) is a 
non-decreasing function at each step of iteration t, which have been proved in Appendix A.
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