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Strong mechanical squeezing in an 
electromechanical system
Ling-Juan Feng, Gong-Wei Lin, Li Deng, Yue-Ping Niu & Shang-Qing Gong

The mechanical squeezing can be used to explore quantum behavior in macroscopic system and 
realize precision measurement. Here we present a potentially practical method for generating 
strong squeezing of the mechanical oscillator in an electromechanical system. Through the Coulomb 
interaction between a charged mechanical oscillator and two fixed charged bodies, we engineer a 
quadratic electromechanical Hamiltonian for the vibration mode of mechanical oscillator. We show that 
the strong position squeezing would be obtained on the currently available experimental technologies.

Nonclassical states1,2, as a very fundamental and practical application in quantum optics and quantum infor-
mation processing, have attracted extensive attention. One of the most essential quantum states is the squeezed 
state1,3,4, in a harmonic oscillator, which can be defined as the reduction of uncertainty in one quadrature below 
the standard quantum limit at the expense of the corresponding enhanced uncertainty in the other, such that 
the Heisenberg uncertainty relation is not violated5–8. Since then, the schemes for producing and performing 
squeezed states have been intensively investigated via theoretical proposals and experimental implementations9–34.

Following the development of laser cooling of mechanical oscillators35–38, the preparations of mechani-
cal squeezed states10 were widely used to study the applicability of quantum mechanics and the precision of 
quantum measurements11,12. In particular, the theoretical schemes for generation of the mechanical squeezing 
were proposed by amplitude-modulated driving field16–18, quantum measurement plus feedback19,20, two-tone 
driving21, injection of squeezed light22, or quadratic optomechanical coupling23–30. On the experimental side, 
the mechanical squeezing has been realized via reservoir engineering technique32, or parametric modulation33. 
The above-mentioned methods for preparation of the mechanical squeezing are based on optomechanical 
systems10–12,15–30,32–34, where via the radiation-pressure force, a laser-driven optical cavity is used to control a 
mechanical oscillator.

In this paper, we present an alternative scheme to effectively prepare strong mechanical squeezing in an elec-
tromechanical system, where via the Coulomb force, the coupling between a charged mechanical oscillator and 
two fixed charged bodies leads to the strong mechanical squeezing. Our proposed scheme in the electrome-
chanical system has an important advance: the adjustment of the voltage of the bias gate could produce the large 
Coulomb force sufficient for the realization of the strong mechanical squeezing. The present results are applica-
ble to generate the strong position squeezing of the mechanical oscillator, with presently available experimental 
capabilities.

Results
As shown schematically in Fig. 1, our model consists of a charged mechanical oscillator in the middle which is 
coupled to two fixed charged bodies on the left and right sides. The charged mechanical oscillator is subject to 
the Coulomb force due to the nearby charged bodies. The Hamiltonian describing the vibration of the charged 
mechanical oscillator is given by
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here, H0 is the free Hamiltonian with x̂ and p̂ being the position and momentum operators for the vibration of the 
charged mechanical oscillator, with frequency ωm and mass m, and H l

int
( ) describes the Coulomb interaction 

between the charged mechanical oscillator and the lth (l = 1, 2) charged body. C0U0 is the positive charge on the 
charged mechanical oscillator, with C0 and U0 being the equilibrium capacitance and the voltage of the bias gate. 
rl represents the equilibrium distance between the charged mechanical oscillator and the lth charged body.

In the case of x̂ r r,1 2, the Coulomb interaction Hamiltonian Hint
(1) and Hint

(2) can be expanded to the second 
order of x̂ r/ l as 
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45,46. Considering r1 = r2 = r0 and omitting the constant 

term, we then obtain a simple form = ˆH xC
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After defining dimensionless annihilation and creation operators for the vibration mode of mechanical oscil-

lator using the position and momentum operators of the oscillator,  ω= +ˆ ˆ ˆ†
x m b b[ /(2 )] ( )m

1/2  and 
ω= −ˆ ˆ ˆ†

p i m b b[ /2] ( )m
1/2 , we rewrite the Hamiltonian H as
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 is the effective mechanical coupling constant. In Eq. (4), we have neglected the zero-point 

energy from the first term. The second term is quadratic in position quadrature x̂ of mechanical oscillator, which 
can produce quadrature squeezing through a unitary evolution on any initial state of mechanical mode. Note that 
the quadratic Hamiltonian H′ is similar to that of optomechanical systems for generating squeezing of the 
mechanical oscillator23–30. However in the quadratic optomechanical systems, the optomechanical coupling 
depends on average photons in the optical cavity. As the large photon numbers in the cavity tend to faster decay 
out of the cavity, the squeezing of the mechanical oscillator in refs23–30 is limited by the cavity decay.

Next, we consider the mechanical squeezing in the different temperatures of the environment. The state of the 
mechanical oscillator in thermal equilibrium with an environmental temperature T is described by means of the 
density matrix ρ = ∑ | 〉〈 |p n nn n , where ω ω= − − −p k T n k T(1 exp[ / ])exp( / )n m B m B   represents the population in 
phonon number state |n〉 with kB being the Boltzmann constant. In order to extract the squeezing properties of the 
mechanical mode, we need to calculate the mean square fluctuations 〈ΔQ(t)〉2 and 〈ΔP(t)〉2 20,30 in the position and 
momentum of the mechanical oscillator. Let 〈ΔQ(t)〉2 = 〈Q(t)2〉 − 〈Q(t)〉2 and 〈ΔP(t)〉2 = 〈P(t)2〉 − 〈P(t)〉2, where 

= +ˆ ˆ†
Q b b1/ 2 ( ) and = −ˆ ˆ†

P i b b/ 2 ( ), satisfying the commutation relation [Q, P] = i. In Heisenberg picture, 
the operator b can evolve as the time-dependent operator30
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1 being the mean number of thermal excitation phonons. 
At qt = π/2, 〈ΔQ(t)〉2 and 〈ΔP(t)〉2 become minimum and maximum as ω

ω+
V

g2 4
m

m
 and ω

ω
+V g

2
4 m

m
, respectively. Note 

that the product of the mean square fluctuations (〈ΔQ(t)〉2)min and (〈ΔP(t)〉2)max is V 2/4. In the particular case of 

Figure 1. Schematic representation of the electromechanical system via the Coulomb force.
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the vacuum state, the position and momentum variances 〈Δ 〉Q vac
2  and 〈Δ 〉P vac

2  are 1/2. The degree of the squeezing 
S in units of decibel (dB) can be calculated by − = −
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47. Clearly, the squeezing 

is primarily controlled through the coupling constant g, the mechanical frequency ωm, and the temperature T.

Discussion
The degree of the squeezing S as functions of the mechanical frequency (ωm = 5 MHz–5 GHz) and the voltage of 
the bias gate (U0) for different temperatures of the environment T = 0 K, 1 mK, 0.1 K, 1 K when C0 = 5 nF, 
r0 = 4 μm, and the elastic coefficient ω= =k m 22m

2  N/m is shown in Fig. 2. It is observed that at low temperature, 
the adjustment of the voltage of the bias gate could yield the strong squeezing in the high frequency. For example, 
we choose the realistic parameters corresponding to the experiment ωm = 5.6 MHz and m = 0.7 ng44. Using 
C0 = 5 nF, U0 = 10 V, and r0 = 4 μm, we obtain S ≈ 14.8 dB at the equilibrium temperature T = 1 mK and the evo-
lution time t = π/(2q) ≈ 5.2 ns. According to ref.13, there exists a critical time γ=t n1/( )diss tot , here γ is the mechan-
ical damping rate and ξ≈ +n nsinh (2 )tot th

2  is the total phonon number with ξ being the squeeze parameter. 
Choosing the damping rate γ = 204 Hz44, we get tdiss ≈ 0.16 ms, which satisfies the condition t tdiss, and thus the 
decoherence of the mechanical oscillator could be negligible.

Conclusion
In summary, we have proposed an effective method to generate the mechanical squeezing in the electromechani-
cal system. This is realized through the Coulomb interaction acting on the charged mechanical oscillator and two 
charged bodies, implementing the strong squeezing of the mechanical oscillator. It is found that at low tempera-
ture, the squeezing can be enhanced by moderately increasing the voltage of the bias gate. Our proposed scheme 
would contribute to the experimental study of fundamental aspects in the macroscopic quantum effects and the 
precision of quantum measurements with mechanical oscillators.
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