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African swine fever virus encodes 
for an E2-ubiquitin conjugating 
enzyme that is mono- and di-
ubiquitinated and required for viral 
replication cycle
Ferdinando B. Freitas, Gonçalo Frouco, Carlos Martins & Fernando Ferreira  

African swine fever virus is the etiological agent of a contagious and fatal acute haemorrhagic viral 
disease for which there are no vaccines or therapeutic options. The ASFV encodes for a putative 
E2 ubiquitin conjugating enzyme (ORF I215L) that shows sequence homology with eukaryotic 
counterparts. In the present study, we showed that pI215L acts as an E2-ubiquitin like enzyme in a large 
range of pH values and temperatures, after short incubation times. Further experiments revealed that 
pI215L is polyubiquitinated instead of multi-mono-ubiquitinated and Cys85 residue plays an essential 
role in the transthioesterification reaction. In infected cells, I215L gene is transcribed from 2 hours post 
infection and immunoblot analysis confirmed that pI215L is expressed from 4 hpi. Immunofluorescence 
studies revealed that pI215L is recruited to viral factories from 8 hpi and a diffuse distribution pattern 
throughout the nucleus and cytoplasm. siRNA studies suggested that pI215L plays a critical role in 
the transcription of late viral genes and viral DNA replication. Altogether, our results emphasize the 
potential use of this enzyme as target for drug and vaccine development against ASF.

African swine fever (ASF) is a contagious haemorrhagic disease of domestic and wild suids, associated with mor-
tality rates close to 100% and devastating socio-economic implications on affected regions1,2. Despite all the efforts 
applied to control the disease, the disease is solely controlled through the application of strict sanitary measures 
including among others, slaughtering of infected and exposed animals and trade restrictions1,3. Currently, ASF is 
endemic in most of sub-Saharan Africa, in Sardinia and since its introduction in Georgia via contaminated food 
in 2007, has been spreading through the Caucasus (Georgia, Armenia and Azerbaijan), Eastern Europe (Belarus, 
Moldova, Poland, Russia and Ukraine) and the Baltic countries (Estonia, Latvia and Lithuania)4. Caused by a 
large (≈200 nm) lipoprotein-enveloped, icosahedral, double-stranded DNA virus (170 to 190 kbp) and being the 
only member of Asfarviridae family, the African swine fever virus (ASFV) infects different species of soft ticks, 
wild and domestic pigs5. ASFV encodes for between 151 and 167 open reading frames (ORFs), with half of them 
lacking any known function3,5,6. As reported for other viruses7,8, ASFV must evade the cellular antiviral defenses 
and modulate gene expression to establish a productive infection, probably by disrupting the ubiquitination and 
SUMOylation status of host proteins. The ubiquitin pathway is a major cellular system consisting of enzymes that 
conjugate the 76-amino-acid protein tag ubiquitin to and deconjugate it from host target proteins for proteaso-
mal degradation, thereby regulating signaling cascades and cell cycle. Interestingly, ASFV encodes for a putative 
ubiquitin-conjugating E2-like enzyme (pI215L, ASFV-UBCv1)9 found within the virion, suggesting that pI215L 
may be involved in the early steps of infection10. As previously described, ASFV-infected cells tightly regulate 
ubiquitin mRNA levels when compared to mock-infected cells, strengthening the idea that ASFV perverts the 
ubiquitin pathway to its own benefit11.

Although the exploitation of ubiquitin system by viruses is emerging as a central theme and several stud-
ies highlight the use of ubiquitin inhibitors as an antiviral approach12, few data is available on the ASFV 
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ubiquitin-conjugating E2-like enzyme and its role during infection. Thus, this study aims to character-
ize the pI215L E2 ubiquitin-conjugating enzymatic activity in vitro and to evaluate the transcription pattern 
of the ASFV-I215L gene, as well as its expression and its distribution in infected cells. To better understand 
the importance of pI215L during infection, the transcription activity of early and late viral genes, the number 
of ASFV genomes and the viral progeny were analyzed and compared between I215L-knockdown cells and 
mock-transfected cells. Finally, the biological role of the pI215L in a cellular context was schematically illustrated, 
suggesting that pI215L can be a good candidate for the development of a vaccine against ASF or used as a target 
for antiviral therapy.

Results
pI215L acts as an E2-ubiquitin conjugating enzyme, binding one or two ubiquitin molecules 
at the cysteine 85, in an ATP- and Mg2+-dependent manner. Considering the sequence homology 
(49% identity) between the ASFV-pI215L (accession number: AJZ77128.1) and human E2-ubiquitin conjugating 
enzyme G2 (accession number: CBW46807.1), we aimed to confirm previous results which have shown that 
pI215L has the ability to bind ubiquitin, to determine the optimal conditions required for the formation of the 
thioester bond, to identify the cysteine residue of pI215L essential for the formation of the Ub~conjugates and 
to analyze the pI215L-ubiquitin conjugates forms present in detergent insoluble/soluble protein fractions col-
lected from ASFV-infected cells. Immunoblot analysis showed that pI215L only binds to pre-activated ubiquitin 
(by an E1 enzyme, UBA1) and in the presence of ATP and Mg2+, similarly to the human E2-ubiquitin conju-
gating enzyme UbcH5b, used as control (Fig. 1A). Two distinct biotinylated-ubiquitin conjugates correspond-
ing to mono-ubiquitinated (≈36 KDa, pI215L-Ub1) and di-ubiquitinated (≈47 KDa, pI215L-Ub2) species were 
detected. Since the upper band (pI215L-Ub2) can result from multi-ubiquitinated pI215L forms (two monoubiq-
uitinations in two different cysteine residues) and/or from poly-ubiquitinated forms of pI215L (di-ubiquitination 
of one or more cysteine residues), the ubiquitin wild type was substituted by a commercial ubiquitin mutated in 
the seven acceptor lysine residues (UbNOK), thus preventing ubiquitin chain elongation (polyubiquitination). The 
results obtained show a loss of the upper band when the UbNOK mutant replaces the ubiquitin wild type (Fig. 1B), 
indicating that pI215L has oligoubiquitin chains that contain only two ubiquitin molecules, not being multi-ubiq-
uitinated. Taking in consideration these results, we next investigated if ubiquitin binds to pI215L using the same 
cysteine or not. Although cysteine residue at position 85 is conserved in all ASFV isolates and in eukaryotic 
E2-ubiquitin conjugating enzymes, and annotated as the putative catalytic residue of pI215L, its importance in 
ubiquitin ligation in unknown, as well as the Cys-162 and Cys-189 residues. In order to evaluate if these residues 
are responsible for the formation of mono- and di-ubiquitinated pI215L conjugates, three single point mutants 
were generated by site-directed mutagenesis: pI215LC85A, pI215LC162A and pI215LC189A. Immunoblot results 
showed that replacement of the sulfur containing cysteine at position 85 by a nonpolar amino acid (alanine) 
totally inhibits the formation of ubiquitin pI215L conjugates contrasting with the pI215Lwt and the single point 
mutants: pI215LC162A and pI215LC189A (Fig. 1C). To investigate if a transesterification reaction mediates the trans-
fer of ubiquitin between the E1-ubiquitin activating enzyme and cysteine-85 present at the active site of pI215L, 
reaction mixtures were incubated with the 2-mercaptoethanol (a reducing agent) and, as expected, the ubiquitin 
pI215L conjugates become lost after a short incubation period, indicating that ubiquitin binds to pI215L through 
a thioester bond (data not shown). Further experiments to characterize the binding activity of pI215L revealed 
that mono-ubiquitinated and di-ubiquitinated species were detectable in a wide range of temperatures, although 
their formation seems to be favored at 37 °C (Fig. 1D). When the reaction mixtures were incubated at different pH 
values, the E2-ubiquitin conjugating activity of pI215L was maximal at a pH value of 7.5, with the mono-ubiquit-
inated species not being detected at pH values below 4 or above 9. In addition, an upper band corresponding to 
poly-ubiquitinated forms was detected in acidic conditions and an almost complete absence of ubiquitin-conju-
gating activity was found at pH values of 14 (Fig. 1E). Interestingly, the formation of di-ubiquitinated conjugates 
was identified after short incubation times (e.g. 1 min), whereas mono-ubiquitinated pI215L forms were only 
detected at longer incubation times (Fig. 1F).

Finally, to better characterize the pI215L E2-ubiquitin conjugating activity, reaction mixtures were incubated 
with soluble and insoluble protein fractions prepared from mock infected and Ba71V-infected cells (6 and 16 
hpi). Results revealed that pI215L has two distribution pools, with three species of pI215L-ubiquitin conju-
gates being detectable in the detergent soluble protein fraction (Fig. 1G) and only a faint band corresponding to 
di-ubiquitinated forms was observed in insoluble protein fractions (Fig. 1G, asterisks).

ASFV-I215L gene encodes for a very early protein that localizes in viral factories and host cell 
nucleus. qPCR results revealed that ASFV-I215L gene is actively transcribed from 2hpi onwards (Fig. 2A), 
showing two transcription peaks at early and late infection time points (2 and 16 hpi), suggesting that pI215L 
is involved in different phases of viral life cycle. However, ASFV-I215L mRNA levels were much lower than the 
ones found in two viral genes that encode for structural proteins and were used as controls (the early CP204L 
viral gene and the late B646L viral gene). In order to ensure that normalized mRNA levels of three viral genes are 
comparable, only qPCR reactions with efficiency values ranged from 90 to 91% and showing R2 values > 0.987 
were considered.

The immunoblot analysis showed that pI215L is detectable in ASFV-infected Vero cells from 4 hpi onwards 
(Fig. 2B), increasing its concentration throughout the infection, in accordance with I215L mRNA levels. As 
expected, pI215L was detected in whole extracts of infected cells exposed to cytosine arabinoside (AraC), an 
inhibitor of ASFV DNA replication and of late transcription phase, supporting that pI215L is an early viral pro-
tein (Fig. 2B). In parallel, immunostaining studies revealed that pI215L accumulates in viral cytoplasmic facto-
ries, colocalizes with other ASFV proteins and shows a diffuse nuclear pattern (Fig. 2C), from 8 hpi onwards.
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Figure 1. pI215l acts as an E2-ubiquitin conjugating enzyme. (A) Results from an in vitro ubiquitination assay 
showed that recombinant pI215L binds one or two ubiquitin molecules, in an ATP- and Mg2+-dependent manner, 
and in the presence of an E1 ubiquitin-activating enzyme (UBA1). Reaction mixtures were incubated 2 hours at 37 °C, 
quenched with a non-reducing protein loading buffer, and then subjected to polyacrylamide gel electrophoresis. (B) 
When the ubiquitination assay was performed using an ubiquitin that is mutated in all lysine residues (UbNoK), the 
di-ubiquitinated forms of pI215L were not detected. (C) The residue cysteine-85 is essential for the E2-like activity 
of pI215L. Site-directed mutagenesis revealed that replacement of Cys-85 by an alanine residue led to an absence of 
ubiquitinated species, whereas the substitution of the Cys-162 or Cys-189 residue does not hamper the formation 
of ubiquitinated forms of pI215L. (D) pI215L forms thioester bonds with ubiquitin in a wide range of temperatures, 
although mono-ubiquitinated forms of pI215L were less detectable at 4 °C and 24 °C. (E) pI215L binds ubiquitin in 
a broad range of pH values, with mono-ubiquitinated forms only found at a pH value of 7.5. (F) Poly-ubiquitinated 
forms of I215L were detected after a short incubation period of 1 min, whereas the mono-ubiquitinated forms were 
detected later (5 min), showing increased concentrations in longer incubation times (e.g. 30, 60 minutes). (G) Mono- 
and poly-ubiquitinated forms of pI215L were mainly found in the Triton X-100-soluble fractions harvested at 6 and 
16 hpi. In detergent-insoluble fractions, only the di-ubiquitinated form of pI215L was faintly detected (asterisks). 
Blots of Fig. 1(D to F) were cropped to improve clarity, full-length blots are presented in supplementary Figure S1. 
Fig. 1(G) is composed by two individual blots obtained from soluble and insoluble fractions.
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Figure 2. ORF I215L encodes an early viral protein that accumulates in viral factories. (A) I215L transcripts 
were detected from 2 hpi onwards showing a maximum peak at 16 hpi. The mRNA levels of CP204L (vp32) 
and B646L (vp72) were measured in parallel and used as controls of early and late viral gene expression, 
respectively. Results are shown as mean ± standard error by dividing the number of transcripts of each viral 
gene by the number of Cyclophilin A mRNA molecules (housekeeping gene), obtained from three independent 
experiments run in duplicate. (B) ASFV-I215L gene encodes for an early protein detectable from 4hpi onwards, 
with expressing levels unchanged by the AraC treatment. Vero cells infected with ASFV/Ba71V isolate (MOI 
of 5) and harvested at the indicated time points. The cytosine arabinoside treatment (AraC, 50 µg/ml) was 
performed after the initial viral adsorption period (1 hour) and cells were collected at 20 hpi. (C) Vero-infected 
cells (MOI = 2) were fixed (4, 8, 12 and 16 hpi), immunostained and analyzed by fluorescent microscopy. pI215L 
was detected from 8 hpi onwards, being recruited to viral factories, co-localizing with other viral proteins (e.g. 
pA104R and VP72, data not shown) and showing a faint distribution pattern in cell nucleus. In the merged 
images, pI215L, ASFV and DAPI staining is shown in green, red and blue, respectively. Representative images of 
at least three independent experiments are shown.
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Knockdown of pI215L impairs viral infection. Considering the in vitro results, and the evidences that 
ASFV-I215L expression occurs during infection, siRNAs experiments were conducted to further explore the role 
of pI215L during infection. In order to avoid off-target effects and ensure the biological significance of the results, 
two siRNAs targeting I215L were used, showing significant knockdown efficiency at 4, 8 and 16 hpi (from −23% 
to −40%, Fig. 3A). The qPCR analysis also revealed that I215L-knockdown cells showed reduced mRNA levels 
of the late B646L viral gene (up to −57.1%, Fig. 3C), when compared to control cells (transfected with siRNA 
against the housekeeping GAPDH gene), whereas the transcriptional activity of the early CP204L viral gene 
was unaltered (Fig. 3B). In addition, pI215L seems to be involved in ASFV DNA replication, with depleted cells 
showing lower number of viral genomes (−65.83% for siRNA_1, −64.87% for siRNA_2) and lower viral progeny 
(from −68.37% to −99.24%) when compared with Vero cells transfected with siRNA against GAPDH (p ≤ 0.05, 
Fig. 4A and B).

Figure 3. siRNAs targeting I215L disrupt late viral transcription. (A) siRNAs against I215L significantly 
reduced its mRNA levels at 4, 8 and 16 hpi in comparison to the infected control (p ≤ 0.05). I215L-depleted 
cells showed significantly lower mRNA levels of the ASFV B646L late gene (p ≤ 0.05) (C), although the mRNA 
levels of the early viral gene CP204L (vp32) remained similar to the levels detected in control group (B). Results 
are shown as average ± standard error (AVG ± S.E.), between the number of molecules of each viral transcript 
and the number of Cyclophilin A transcripts (housekeeping gene). Data were obtained from three independent 
experiments run in duplicate.
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Discussion
For more than 20 years, studies on ASFV have identified the presence of a putative E2 Ubiquitin-conjugating 
enzyme10,13–15, the first to be described in eukaryotic viruses14,15. Nowadays, it is well known that several viruses 
modulate the ubiquitin-proteasome system of cells, through different mechanisms, as encoding ubiquitin-related 
enzymes12,16. However, so far the role of the ubiquitination machinery in ASFV infection remains poorly under-
stood, in particular, regarding the function of the viral E2-like protein (pI215L). In this study, we showed that 
pI215L has the capacity to bind one or two ubiquitin molecules pre-activated by an E1 ubiquitin-activating 
enzyme, reinforcing the hypothesis that pI215L acts as an E2-like enzyme9. This scenario is further supported by 
the loss of a thioester bond between the carboxyl-terminal of ubiquitin molecules and the conserved catalytic resi-
due of pI215L identified by mutagenesis analysis (Cys 85), when the reducing agent 2-mercaptoethanol was added. 
In addition, the need of ATP and Mg2+ as cofactors, mimics the requirements of other E2 ubiquitin-conjugating 
enzymes17,18, strengthening the idea that pI215L acts as an E2 ubiquitin-conjugating enzyme.

Moreover, both ubiquitinated forms of pI215L were detected under a wide range of pH values (4 to 9), suggest-
ing that pI215L found in the viral particles10 may remain catalytically active during the cell entry process, which 
occurs via a low-pH-dependent endosomal pathway19,20. This catalytic feature may also contribute to ensure the 
E2-like activity of pI215L in the midgut epithelial cells of the tick Ornithodoros spp., where the pH levels are lower 
than 721. In parallel, pI215L-ubiquitin conjugates were also observed under a broad range of temperatures (4 °C 
to 42 °C), further suggesting that pI215L is active in the disease’s vector and in infected animals22. Interestingly, 
the di-ubiquitinated species were detected earlier (after 1 min of incubation) and in larger amounts than 
mono-ubiquitinated forms of pI215L (after 5–10 minutes). Although the monoubiquitination is well documented 
for E2 enzymes23,24, the formation of di-ubiquitinated forms was recently reported in E2 ubiquitin-conjugating 
enzymes25. In this last scenario, the ubiquitin chain pre-generated in the E2 active site may be transferred to a 
specific E3 ubiquitin ligase and then to the target protein26 or be related to a mechanism of E2 autoregulation that 
may lead to its degradation in the proteasome27. Moreover, the higher amounts of mono- and di-ubiquitinated 
forms detected with detergent-soluble protein fractions, as well as poly-ubiquitinated species, suggest that, in 
cellular context, pI215L may participate in distinct regulation mechanisms, since the ability to generate diverse 
substrate-ubiquitin structures is essential to target different host/viral proteins. Indeed, it is reported that 

Figure 4. Knockdown of I215L mRNA levels inhibits ASFV DNA replication and progeny production. (A) 
I215L-depleted cells showed a decreased number of ASFV genomes [1.01 × 109 genomes/ml for siRNA_I 
sequence (−65.83%) and 1.09 × 109 genomes/ml for siRNA_II (−64.87%)] when compared to the control 
group (2.98 × 109 genomes/ml, p ≤ 0.05). Results represent the mean of three independent experiments. 
(B) A statistically significant reduction in viral yield was observed in ASFV-infected Vero cells (MOI of 0.1) 
transfected with siRNAs against ASFV-I215L (100 nM), in comparison with the GAPDH siRNA-transfected 
infected cells (between −96.86% and −99.24%; 1 × 104.88 and 1 × 105.50 versus 1 × 107.00 viral particles/ml; 
p ≤ 0.05), at 72 hpi. The virus yield of each supernatant was calculated from the average of three independent 
experiments. Error bars represent standard error (SE) of the mean values.
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monoubiquitination of several nuclear proteins modulates DNA repair and cellular gene expression28,29, whereas 
the polyubiquitination of a target protein occurs via K48 of ubiquitin can lead to protein degradation through the 
26 S proteasome pathway or activated phosphatases30,31, or by endocytosis if polyubiquitination occurs via K63 
residue of ubiquitin. Also noticeable is the distinct pool of di-ubiquitinated forms detected in detergent-insoluble 
extracts, probably caused due to the pI215L binding affinity to host proteins containing an ARID DNA-binding 
domain11. In non-infected cells, a stronger band of pI215L polyubiquitinated forms was detected and this result 
may be due to the absence of other viral proteins, which are acceptors of ubiquitin via pI125L and/or host proteins 
that are ubiquitinated by pI215L during infection course. However, we cannot exclude that non-infected cells may 
recognize the pI215L as a foreign protein, promoting its degradation by the host ubiquitin proteasome pathway.

Results obtained from the ASFV-infected Vero cells revealed that I215L viral gene is transcribed throughout 
infection, showing two transcription peaks (at 2 and 16 hpi), suggesting that pI215L may be required at different 
stages of the viral life cycle (e.g. viral transcription, genome replication and viral egress), as reported for other 
viruses32. As expected, the pI215L was detected throughout infection (from 4 hpi to 20 hpi), even in the presence 
of AraC, proving that pI215L is an early viral protein and corroborating the idea that ubiquitin expression must 
be tightly regulated during ASFV infection33. Immunolocalization studies revealed that pI215L is recruited to 
viral factories, strengthening the hypothesis that this viral E2 ubiquitin-conjugating enzyme is involved in viral 
transcription and/or DNA replication, while its diffuse distribution throughout the cytoplasm may be related 
to its role in ubiquitination of viral proteins and/or host proteins involved in nuclear functions (e.g. antiviral 
responses, DNA damage responses). Finally, results from siRNA experiments disclosed that pI215L is involved 
in the late viral transcription with pI215L-knockdown cells showing a lower number of B646L transcripts, while 
the mRNA levels of the early viral gene CP204L remained unchanged in comparison with mock-transfected Vero 
cells. Additionally, a decreased number of ASFV genomes (between 64.87% to 65.83%) and a reduced viral prog-
eny (up to −99.24%) was detected also in pI215L-depleted cells, even though siRNAs targeting I215L transcripts 
exhibited a moderate gene-silencing efficiency (−23 to −40%). Altogether, these results strongly suggest that 
ASFV genome replication, viral late transcription and progeny production are mediated thought the ubiquitin 
pathway, as reported for other human and swine viruses34. These findings are schematically illustrated in the pro-
posed working model for ASFV-pI215L presented as Fig. 5.

Figure 5. Proposed working model of the role of pI215L during ASFV infection. Once ASFV enters the host 
cell, different host mechanisms are subverted in other to generate a productive infection. By encoding an E2 
ubiquitin-conjugating enzyme (pI215L), ASFV hijacks the cellular ubiquitin-proteasome system modulating 
the function and subcellular localization of host proteins and its own proteins. By controlling the ubiquitination 
status of the cellular proteins, viruses are able to evade host antiviral responses by targeting proteins to 
proteasomal degradation and to modulate the activity of viral proteins in different mechanisms. Our model 
suggests that by downregulating I215L expression, a reduction in the abundance of ubiquitin-tagged proteins 
occurs and consequently causes an inhibition of several crucial viral processes (e.g. genome replication, gene 
transcription, translation, egress), as well as host pathways (e.g. antiviral immune response, apoptosis).
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In summary, our results showed that pI215L plays a key role in ASFV infection, probably by interfering with 
the ubiquitin machinery and, therefore potentially modulating many viral mechanisms (e.g. transcription, rep-
lication and encapsidation) and cellular functions (e.g. antiviral responses, DNA damage responses, apoptosis), 
raising the hypothesis that an ASFV mutant lacking ORF I215L can be a good candidate for the development of 
an effective DISC vaccine, a novel vaccination strategy successfully used in other animal viral disease30. Indeed, 
an ASFV I215L-defective mutant is expected to enter host cell and to express the immediate-early genes products, 
providing enough antigens to induce a protective response in infected pigs and producing a noninfectious prog-
eny that undergo only one cycle of replication. As vaccines, these defective viral mutants are designed to combine 
the safety and advantages of inactivated vaccines with the immunogenic activity of live viral vaccines, requiring 
a complementary cell line that expresses pI215L in order to isolate and propagate the ASFV mutant obtained by 
homologous recombination.

Material and Methods
Viruses and cells. The Vero-adapted ASFV isolate Ba71V was used to infect cells and was propagated as 
described35. Infections were carried out at the indicated multiplicities of infection (MOI), and at the end of the 
adsorption period (1 h), the inoculum was removed and cells were washed twice with serum-free medium. 
The virus titration was performed on sub-confluent Vero cells grown in 96-well plates inoculated with ten-fold 
viral dilutions of viral suspensions. Viral infection was assessed by CPE observation and calculated by using the 
Spearman-Kärber method36. Experimental in vitro infections were performed using the non-pathogenic ASFV 
Ba71V strain37 and conducted in a BSL-2 facility using BSL-3 work practices.

Vero E6 cells (kidney epithelial cells of African green monkey Cholorocebus aethiops) were obtained from the 
European Cell Culture Collection (ECACC, Salisbury, UK) and maintained as previously reported38. All experi-
ments were conducted on actively replicating sub confluent cells.

Cloning, expression and purification of recombinant ASFV-pI215L. The complete ORF I215L, lack-
ing the stop codon, was PCR-amplified from Ba71V genomic DNA, using the 215Fw and 215Rv primers (Table 1), 
which include at their 5′ and 3′ ends, NheI and XhoI restriction endonuclease sites to facilitate vector insertion. 
The PCR reactions were performed as follow: 98 °C for 2 min., 30 cycles at 98 °C for 30 seconds, 65 °C for 30 sec-
onds, 72 °C for 30 seconds plus one extension step at 72 °C for 10 min. After confirmation of correct fragment 
size by electrophoresis on a 1% agarose gel, the DNA fragments were purified and quantified in the NanoDrop 
2000c. Then, these fragments were inserted in a cloning vector (pET24a, Novagen) to add a 6xHis-tag at the tag 
C-terminal, in order to facilitate the purification step. Two clones were sequenced to avoid mutations generated 
from Taq polymerase errors. Confirmed plasmids were then transformed into the E. coli strain BL21(DE3)-pLysS 
(Novagen) and grown in LB medium (10 g tryptone, 5 g yeast extract, 5 g NaCl, pH 7.2) supplemented with kan-
amycin (30 μg/ml) plus chloramphenicol (34 μg/ml), at 37 °C, with shaking at 200 rpm, until the OD600 reached 
0.1–0.2. Induction of protein expression was carried out by adding isopropyl-β-D-1-thiogalactopyranoside 
(IPTG) at a final concentration of 1 mM during 5 hours. After this step, bacterial cells were harvested by centrif-
ugation (10,000 g for 10 min, 4 °C), and washed with sterile water. The pellet was resuspended in binding buffer 
(20 mM sodium phosphate, 500 mM NaCl, 20 mM imidazole, pH 7.4) and cells were lysed by a lysis solution 
(0.2 mg/ml lysozyme, 20 µg/ml DNAse and 1 mM PMSF) and sonicated for 5 × 5 minutes on ice (5 cycles, 70% 

Target
Primer 
designation Sequence (5′-3′)

Target 
coordinates* Orientation

ASFV-I215L 215FwE AGACACCTGATAGAGAACCC 157562–157581 Forward

ASFV-I215L 215FwI TCCAATGTTCCACCAATACCC 157069–157089 Forward

ASFV-I215L 215RvI TCATCCATCTCTTCATCCTCCTC 156971–156993 Reverse

Cyclophilin A CycloFw1 AGACAAGGTTCCAAAGACAGCAG — Forward

Cyclophilin A CycloRev AGACTGAGTGGTTGGATGGCA — Reverse

Cyclophilin A CycloFw2 TGCCATCCAACCACTCAGTCT — Forward

VP72 VP72Fw ACGGCGCCCTCTAAAGGT 88273–88290 Forward

VP72 VP72Rev CATGGTCAGCTTCAAACGTTTC 88322–88343 Reverse

VP32 VP32Rev TCTTTTGTGCAAGCATATACAGCTT 108162–108186 Forward

VP32 VP32Fw TGCACATCCTCCTTTGAAACAT 108228–108249 Reverse

ASFV-I215L 215Fw ACTAGCTAGCATGGTTTCCAGGTTTTTAATAGCAGAG 157562–157581 Forward

ASFV-I215L 215Rv TCCGCTCGAGCTCATCATCCATCTCTTCATCCTC 157069–157089 Reverse

ASFV-I215L C85AFW TATTTACCCTGATGGAAGACTAGCTATCTCTATCTTACACGGAGAC 157336–157381 Forward

ASFV-I215L C85ARV GTCTCCGTGTAAGATAGAGATAGCTAGTCTTCCATCAGGGTAAATA 157336–157381 Reverse

ASFV-I215L C162AFW ATTTTTAAAATATTCTATGTCTTCTGGTGAAGCCTCATCTAATGATTTTTTGACAGTCTTTTTA 157336–157381 Forward

ASFV-I215L C162ARV TAAAAAGACTGTCAAAAAATCATTAGATGAGGCTTCACCAGAAGACATAGAATATTTTAAAAAT 157096–157159 Reverse

ASFV-I215L C189AFW ATACCCAGTGATGCTTATGAAGATGAAGCTGAAGAAATGGAGGATG 157029–157029 Forward

ASFV-I215L C189ARV CATCCTCCATTTCTTCAGCTTCATCTTCATAAGCATCACTGGGTAT 157029–157029 Reverse

Table 1. Primers used in the present study. *Primer coordinates are relative to Ba71V sequence used has 
template for primer design.
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amplitude). Lysates were then centrifuged at 3000 g for 15 minutes and pellets were discarded. The extracts were 
thereafter filtered (0.45 µm syringe filter Rotilabo®, CarlRoth) and incubated with Ni Sepharose 6 Fast Flow slurry 
(GE Healthcare) for 1 hour. The mixture was loaded onto a PD-10 column (GE Healthcare), washed with bind-
ing buffer solution (20 mM sodium phosphate, 500 mM NaCl, pH 7.4) containing increasing concentrations of 
imidazole (40, 60 and 80 mM), and the recombinant pI215L was eluted with an elution buffer (20 mM sodium 
phosphate, 500 mM NaCl, 500 mM imidazole, pH 7.4). Fractions were collected in low-binding tubes (Maxymum 
Recovery® TM tubes, Axygen, Corning Life Sciences, Amsterdam, The Netherlands), analyzed by SDS-PAGE and 
the recombinant pI215L, purified under native conditions, was stored at −80 °C until further use. The three single 
point mutants (pI215LC85A, pI215LC162A, pI215LC189A) were generated using the QuikChange II XL Site-Directed 
Mutagenesis Kit (Agilent Technologies), following the manufacturer’s instructions and using the primers indi-
cated in Table 1.

In vitro ubiquitination assay. To determine if the ASFV-pI215L has a catalytic activity similar to an E2 
ubiquitin conjugating enzyme, a commercial kit was used (E2-Ubiquitin Conjugation Kit, ab139472, Abcam) 
and the manufacturer’s instructions were followed. Reactions were performed in a 50 µl mixture containing 5 µl 
of ubiquitination buffer (50 mM Tris-HCl, pH 7.4, 5 mM MgCl2, 15 μM ZnCl2, 0.3 mM DTT, 0.006% DTT, 2 mM 
ATP, 10 U creatine phosphokinase, and 10 mM phosphocreatine), 2.5 µl of biotinylated ubiquitin (2.5 µM) or with 
a mutant biotinylated ubiquitin lacking the seven acceptor lysine residues (UbNOK, Boston Biochem), 2.5 µl of an 
E1-enzyme (recombinant UBA1 at 100 nM), 5 µl of an E2-enzyme at 2.5 µM (recombinant pI215L or recombinant 
UbcH5b provided by the kit) and 10 µl of an inorganic pyrophosphatase solution (IPP, 100 U/mL). To investigate 
whether pI215L-ubiquitin conjugates were mediated by thioester bond formation, samples were incubated at 
95 °C with 5% 2-mercaptoethanol (Sigma) during 10 min. Additionally, the reactions were performed in the pres-
ence and absence of ATP-Mg2+ (2.5 µl at 5 mM) and incubated at 37 °C during 120 min, except when indicated. 
To further characterize the E2-ubiquitin conjugating activity of pI215L, the assay was also performed at different 
incubation temperatures (4, 24, 37 and 42 °C) and pH values (4, 7.5, 9 and 14), and different incubation times (1, 
5, 15, 30 and 120 min).

Soluble and insoluble protein fractions were prepared from mock infected and Ba71V-infected Vero cells, 
harvested at 6 and 16 hpi. Initially, cells were washed with PBS and incubated with a buffer containing 50 mM 
HEPES (pH 7.6), 100 mM NaCl, 2 mM EDTA, 250 mM sucrose, 0.1% Tx-100, supplemented with protease (cOm-
plete, Mini, EDTA-free from Roche) and phosphatase inhibitors (PhosStop, Roche). After a centrifugation step 
(10000 × g for 10 min, 4 °C), the supernatant was collected (soluble fraction) and the pellet containing insoluble 
proteins was lysed in RIPA buffer [25 mM Tris, 150 mM NaCl, 0.5% (v/v) NP40, 0.5% (w/v) sodium deoxycolate, 
0.1% (w/v) SDS, pH 8.2] supplemented with protease-inhibitor cocktail (cOmplete, Mini, EDTA-free, Roche) 
and phosphatase-inhibitor cocktail (PhosStop, Roche). pI215L activity in protein fractions was investigated 
by incubating the reaction mixtures at 37 °C during 120 min. Reactions were quenched by adding 50 µl of 2x 
non-reducing gel loading buffer. Reaction products were resolved by SDS-PAGE using 8–16% (w/v) polyacryla-
mide separating gels and transferred to a 0.2 μm pore diameter nitrocellulose membrane (Whatman Schleider & 
Schuell) by electroblotting. Finally, membranes were incubated with a streptavidin-HRP antibody (RPM 1231, 
GE Heathcare, 1:10,000 dilution in 3% TBST-BSA solution) or with the anti-pI215L antibody.

RNA extraction and cDNA synthesis. Total RNA was extracted using the RNeasy Mini Kit (Qiagen, 
Courtaboeuf, France) and treated with DNAse I (Qiagen) to remove contaminant genomic DNA. RNA con-
centrations and purity were measured using a spectrophotometer (NanoDrop 2000c, Thermo Fisher Scientific, 
Waltham, USA). 200 ng of each RNA sample was reverse transcribed into cDNA using the Transcriptor First 
Strand cDNA Synthesis Kit (Roche, Basel, Switzerland). The obtained cDNA was diluted (1/20) in ultra-pure 
water and stored at −20 °C until further use.

Recombinant plasmids and standard curves. The amplified fragments corresponding to the viral genes 
(ASFV-I215L, B646L, and CP204L) and the housekeeping gene (Cyclophilin A) were cloned into a pGEM-T 
Easy Vector System II (Promega, Madison, USA). Each plasmid was used to transform E. coli DH5α compe-
tent cells, followed by an incubation step at 37 °C, under selective antibiotic pressure. Recombinant plasmids 
were isolated from bacteria using the Roche High Pure Plasmid Isolation Kit (Roche Applied Science, Germany) 
and quantified by spectrophotometric absorbance (NanoDrop 2000c). Their corresponding copy number 
was calculated using the equation: pmol (dsDNA) = μg (dsDNA) × 1515/DNA length in pb (pmol = pico-
moles, dsDNA = double-strand DNA, DNA length in pb = number of base pairs from the amplified fragment; 
1 mol = 6,022 × 1023 molecules). Finally, the cloned fragments were amplified by PCR and the sequence con-
firmed by DNA sequencing. For each amplification plate, a standard calibration curve was obtained for viral genes 
and for Cyclophilin A to insure the accuracy of the results. Standart curves were plotted by following a previously 
described protocol39.

Quantitative PCR. Quantification of ASFV-I215L, B646L and CP204L transcripts was performed by qPCR 
using Maxima SYBR Green PCR Master Mix (Thermo Fisher) according to the manufacturer’s instructions 
[12.5 µl of master mix, 2.5 µl of forward and reverse primers (50 nM each), 5 µl of Milli-Q water and 2.5 µl of 
cDNA)]. All qPCR reactions were performed in the Applied Biosystems 7300 Real Time PCR system (Thermo 
Fisher), and with the following thermal profile: initial denaturation at 95 °C for 10 min followed by 40 cycles of 
15 s at 95 °C, 60 °C for 60 s, and a final denaturation step at 65 °C for 5 s with a 20 °C/s ramp rate and subsequent 
heating of the samples at 95 °C with a ramp rate of 0.1 °C/s. Quantification of ASFV-I215L, B646L, CP204L and 
Cyclophilin A mRNA levels was determined by the intersection between the fluorescence amplification curve and 
the threshold line. The crossing point values of each plasmid obtained from different known concentrations were 
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plotted in a standard curve used to determine the copy number of each transcript. The values were determined 
using the comparative threshold cycle method, which compares the expression of a viral gene normalized to the 
housekeeping gene (Cyclophilin A). The validation of the housekeeping gene was confirmed using the ANOVA 
test, whereas the specificity of the qPCR assays was confirmed by the melting curve analysis. The sequences of all 
primers used in this study are shown in Table 1. To quantify viral gene expression, Vero cells seeded onto 30 mm 
dishes were infected with a MOI of 1,5. After 1 hour of adsorption, the virus inoculum was washed off with 
DMEM, and every 2 hours (from 0 to 20 hpi), total RNA extraction was performed from one culture dish. Results 
were expressed as the mean standard error of the mean and were obtained from three independent experiments 
performed in different days, to ensure the biological relevance of the results.

Antibodies. The purified recombinant pI215L was used to produce a mouse polyclonal antiserum. Briefly, 
young female mice (BALB/c, 4 to 6-week-old) were injected subcutaneously with 100 μg of purified pI215L in a 
mixture with Freund’s complete adjuvant. Following the primary injection, two booster injections were administered 
at 2-week intervals. Finally, the total blood was collected 10 days after the second booster injection and sera were ali-
quoted and stored at −20 °C until further use for immunoblotting and immunofluorescence studies. The specificity 
of the polyclonal antiserum was tested against purified recombinant ASFV-pI215L and whole infected-cells extracts. 
The immunostaining of pI215L and ASFV-infected cells was achieved by incubation with two in-house primary 
antibodies: mouse anti-pI215L [1:10 in PBST (Phosphate Buffered Saline with Tween 20 0.01% v/v), overnight at 
4 °C] and swine anti-ASFV polyclonal antibody (1:100, 1 h, RT). Two secondary fluorescent-conjugated antibodies 
were used as follows: anti-mouse FITC (1:300, sc-2099, Santa Cruz Biotechnology) and anti-swine Texas Red (1:500, 
ab6775, Abcam). Between each antibody incubation, cells were wash twice with PBS (5 min) and once with PBST 
(0.1% v/v, 5 min). All incubations were performed in a dark humidified chamber to prevent fluorochrome fading 
and a mounting medium with DAPI (4′,6-diamidino-2-phenylindole) was used to detect the cell nucleus and viral 
factories (Vectashield, Vector Laboratories, Peterborough, UK).

For immunoblot analysis, two primary antibodies (anti-pI215L, 1:100; anti-α-tubulin, 1:1250, #2125, Cell 
Signalling Technology) and two HRP-conjugated secondary antibodies were used (anti-rabbit IgG, 1:10000, 4010-
05; anti-mouse IgG, 1:30000, 1010–05; both from SouthernBiotech). All antibody dilutions were performed in 
blocking solution and incubated according to the manufacturers’ recommendations.

Immunoblot analysis. Vero cells grown in 30 mm dishes were infected with ASFV-Ba71V isolate (MOI of 
5) and when indicated, exposed to cytosine arabinoside (50 µg/ml, AraC; Sigma-Aldrich), after the adsorption 
period (1 h). Cells were washed twice with PBS and then lysed in ice-cold modified RIPA buffer supplemented with 
protease-inhibitor cocktail (cOmplete, Mini, EDTA-free, Roche) and phosphatase-inhibitor cocktail (PhosStop, Roche). 
Clarified whole-cell lysates harvested at 4, 8, 12, 14, 16, 18 and 20 hpi, were then analyzed by western blot technique as 
previous described38, using the above mentioned antibodies. α–Tubulin was used as a loading control.

Immunofluorescence and microscopy analysis. Vero cells seeded on glass coverslips (1 × 105/cm2) 
were infected with the ASFV Ba71V isolate (MOI of 10). At 4, 8, 12, and 16 hpi, cells were fixed and subsequently 
processed as previously described38. Fluorescence images were acquired using an epifluorescence microscope 
equipped with a 40x objective (Leica DMR HC model, Wetzlar, Germany) and data sets were acquired with the 
Adobe Photoshop CS5 software (Adobe Systems, Inc., San Jose, USA).

siRNA assays. Two double-stranded siRNAs (I215L siRNA_I and I215L siRNA_II; ON-TARGETplus, 
Thermo Fisher Scientific, USA) targeting different regions of ASFV-I215L mRNA were designed (siDESIGN 
Center, Thermo Fisher Scientific, USA), based on the full genome sequence of ASFV Ba71V isolate (GenBank/
EMBL, accession number: ASU18466). One siRNA against the GAPDH gene (siRNA-GAPDH; Silencer™ 
GAPDH siRNA human control number 4605; Ambion/Thermo Fisher Scientific) was used as a control. The 
siRNA sequences targeting ASFV-I215L are shown in Table 2. All siRNAs duplexes were diluted at different final 
concentrations (10, 50 and 100 nM) in serum-free Opti-MEM (Gibco, Life Technology, Karlsruhe, Germany) 
and using 8 μl HiPerfect Transfection reagent (Qiagen, Courtaboeuf, France). Mixtures were incubated at room 
temperature for 20 min to allow the formation of transfection complexes, and thereafter, 100 μl of the transfection 
solution was incubated with 2 × 104 Vero cells cultured in 500 μl of DMEM supplemented with 10% FBS (24-well 
plate) for 8 h at 37 °C. One hour after infection, the culture medium was removed and fresh medium was added to 
allow recovery of the cells. Next, cells were infected with ASFV Ba71V (MOI = 0.1). Then, the virus inoculum was 
removed one hour after and cells maintained at 37 °C for 72 h. The viability of transfected cells was assessed every 
8 hours, until 72 hours, by phase-contrast microscopy. The two different siRNAs were used individually and their 
antiviral effects were evaluated by the quantification of CP204L and B646L mRNA levels, titration of the ASFV 
genomes and viral progeny, at 4, 8 and 16 hpi. To ensure high RNA concentrations for qPCR measurements, the 
siRNA assays were performed in quadruplicated.

Target
siRNA 
designation Sequence (5′-3′)

Target 
coordinates* Orientation

ASFV-I215L I215L_I GUGAAGAAAUGGAGGAUGAUU 565–584 Sense

ASFV-I215L I215L_II GCUAAAAGCUACCGUAAAUUU 394–412 Sense

Table 2. siRNA sequences to knockdown ASFV-I215L transcripts. *siRNA coordinates according to the 
relative position in gene nucleotide sequence (start at position 1, ATG).
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Quantification of ASFV genomes by qPCR. Viral DNA was extracted from Ba71V-infected Vero cells 
(MOI of 0.1) transfected separately with two siRNAs targeting I215L, at 72 hours post infection (hpi), using the 
High Pure Viral Nucleic Acid Kit (Roche). The number of viral genomes was determined by quantitative PCR 
as described by King et al.40. Mock-infected and infected cells transfected with siRNA-GAPDH were used as 
controls.

Statistical analysis. The Kolmogorov-Smirnov test was used to check the normal distribution of the results 
from the RNAi assays (mRNA expression, ASFV genome copy number and virus titre). Differences between 
experimental groups were assessed using the non-parametric Wilcoxon-Mann-Whitney test, because a normal 
distribution was not obatained. p-values less than 0.05 were considered significant and the GraphPad Prism soft-
ware (version 7.02) was used to perform statistical analysis.
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