Abstract
We experimentally study nanoscale normalmetal–insulator–superconductor junctions coupled to a superconducting microwave resonator. We observe that biasvoltagecontrollable singleelectron tunneling through the junctions gives rise to a direct conversion between the electrostatic energy and that of microwave photons. The measured power spectral density of the microwave radiation emitted by the resonator exceeds at high bias voltages that of an equivalent singlemode radiation source at 2.5 K although the phonon and electron reservoirs are at subkelvin temperatures. Measurements of the generated power quantitatively agree with a theoretical model in a wide range of bias voltages. Thus, we have developed a microwave source which is compatible with lowtemperature electronics and offers convenient insitu electrical control of the incoherent photon emission rate with a predetermined frequency, without relying on intrinsic voltage fluctuations of heated normalmetal components or suffering from unwanted losses in room temperature cables. Importantly, our observation of negative generated power at relatively low bias voltages provides a novel type of verification of the working principles of the recently discovered quantumcircuit refrigerator.
Introduction
Superconducting circuits provide a promising platform for quantum technological applications^{1}, such as quantum information processing^{2,3,4,5,6,7,8}, sensing^{9,10,11}, and refrigeration of electric components^{12,13,14,15}. In particular, microwave photons constitute a fundamental and controllable medium^{16} for energy and information transport between quantum electric components. For example, quantumlimited heat conduction mediated by microwave photons has been measured^{13,17}, even through coplanar waveguides (CPW) across macroscopic distances^{18}.
In this framework, both incoherent and coherent microwave sources on the same chip with their target are highly desirable since they minimize unwanted and difficulttocalibrate losses which typically occur in microwave cables and connectors. Such an incoherent source with high dynamic range can provide reference power with a given frequency for calibration of cryogenic devices^{19} such as microwave photon detectors^{10} and for experiments on photon statistics^{20}, thermal transport^{15}, and quantumlimited amplifiers^{21}. A coherent onchip source^{22,23} on the other hand, can potentially be used to drive qubits in the emerging largescale quantum computers without detrimental heat loads from microwave lines between different temperature stages of the cryostat. Thus, onchip creation of microwave photons^{24,25,26} and improvement of the dynamic range of the sources are of great interest to electric quantum circuits.
It is well known that tunneling of electrons across a nanoscale barrier can lead to simultaneous energy exchange with the coupled electromagnetic environment such as a resonator^{14,15,19,27,28,29,30,31,32,33,34,35,36,37,38,39}. Consequently, several schemes for exciting the resonator based on this kind of photonassisted electron tunneling have been introduced using, for example, Josephson junctions^{22,23,40,41} and quantum dots^{42,43,44,45} (see also^{46,47,48,49} for schemes utilizing superconducting qubits). In contrast, refrigeration of a superconducting microwave resonator mode has been recently demonstrated using voltagecontrolled tunneling of single electrons across normalmetal–insulator–superconductor (NIS) tunnel junctions^{14}. To the best of our knowledge, however, no microwave source based on metallic NIS tunnel junctions has been demonstrated to date.
In this paper, we report the observation of microwave absorption and emission arising from photonassisted singleelectron tunneling through NIS junctions. The experimental setup is extended from that of the first quantumcircuit refrigerator^{14}, such that we can measure the power spectral density of the microwave radiation generated in a CPW resonator. The device is compatible with lowtemperature electronics and offers orders of magnitude electrical tunability of the generated power with the frequency corresponding to the lowest mode of the CPW resonator. Importantly, we observe that the resonator mode is cooled by the quantumcircuit refrigerator by measuring for the first time the effect of the refrigerator on the emitted radiation. Furthermore, our results demonstrate that the mode temperature of the resonator can be driven beyond 2.5 K, far above the temperatures of the phonon and electron reservoirs of the system. Thus when operated as an incoherent microwave source, our device has potential in delivering relatively high powers without the excess heating of other nearby components or sensitivity to modest external magnetic fields.
Results and Discussion
The experimental sample shown in Fig. 1(a)–(c) consists of NIS tunnel junctions capacitively coupled to a halfwavelength superconducting CPW resonator fabricated on a highpurity 500μmthick silicon wafer. The silicon substrate is passivated with a 300nmthick thermally grown silicon dioxide. The resonator is defined with photolithography and reactive ion etching of a 200nmthick sputtered Nb layer. Subsequently, a 50nmthick layer of Al_{2}O_{3} is introduced on the whole wafer using atomic layer deposition (ALD) process at 200 °C. This ALD oxide serves as the dielectric material of the parallel plate capacitors C_{1–4} shown in Fig. 1(d). The NIS junctions and a transmission line connected to the resonator are subsequently defined using electron beam lithography, followed by a standard twoangle evaporation with insitu oxidation to form the tunnel barriers. The final NIS nanostructure consists of a 20nmthick normal metal (Cu) on top of a 20nmthick superconductor (Al), separated by a thin aluminumoxide tunnel barrier. The tunnel junction area is approximately 200 × 200 nm^{2} inferred from the SEM image of the sample.
Figure 1(d) depicts the layout of the sample and the measurement setup with a simplified circuit diagram given in Fig. 1(e) (see Sec. III of Supplementary information for more details). Microwave photons generated in the resonator at 10mK cryostat temperature decay into the transmission line, and are characterized using a spectrum analyzer. As depicted in Fig. 1(b), a pair of voltagebiased NIS junctions is used to create the photons, while a currentbiased pair is used as a thermometer to measure the electron temperature of the normalmetal island^{50} (see Sec. V of Supplementary information). To estimate the power generated by controlled electron tunneling without offsets, we subtract the measured power corresponding to the offstate of the source, namely, zero bias voltage, from the power measured at finite bias voltages. We refer to this quantity as the generated power.
To enhance the interaction between the tunneling electrons and the resonator, we use a large coupling capacitance between the normalmetal island and the resonator, C_{3}, in comparison to the tunnel junction capacitance, C_{J}. For the sake of convenient experimental detection, the coupling capacitance between the resonator and the transmission line is chosen to maintain a welldefined resonance although with a relatively low loaded resonator quality factor Q ≈ 60. Note that the source may also be conveniently designed for narrowbandwidth operation. The resonator length is chosen to obtain the desired frequency of the generated radiation. In this work, we examine two samples with resonator lengths of L_{res} = 13.14 mm (Sample A) and 6.89 mm (Sample B) which correspond to the fundamental resonance frequencies of 4.55 GHz and 8.32 GHz, respectively.
Although elastic tunneling, where the electron does not exchange energy with the resonator, is typically frequent in our experiments, photonassisted electron tunneling is the key phenomenon leading to the photon creation we observe below. When an electron tunnels across an NIS junction, it can absorb energy from or emit energy to the resonator, that is, annihilate or create photons in the resonator^{30}. Figure 1(f) illustrates elastic and photonassisted singleelectron tunneling events across the junctions and the associated photon creation and annihilation. If the energy provided by the bias voltage to the electron tunneling across the junction, eV_{B}/2, is greater than the superconductor gap parameter, Δ, the photon creation rate increases faster with the bias voltage than the annihilation rate. Thus, the effective temperature related to the creation and annihilation of photons increases. The elastic tunneling does not directly affect the resonator modes but typically dominates the electric current across the junctions for \(e{V}_{{\rm{B}}}\mathrm{/2}\gtrsim {\rm{\Delta }}\).
Figure 2(a) and (b) show the spectral density of the generated power as a function of the bias voltage for Sample A. We observe increased generated power around 4.55 GHz matching the frequency of the fundamental resonator mode estimated using the experimental parameters given in Table 1. The spectral brightening can be mostly described by a characteristic Lorenzian peak. We attribute the additional structure to microwave reflections from the circuitry following the resonator.
The power spectral density increases with the bias voltage for eV_{B}/(2Δ) > 1 whereas it is almost vanishing for eV_{B}/(2Δ) < 1. This onset of generated radiation matching the energy gap in the superconductor density of states provides clear evidence that singleelectron tunneling is responsible for the observed photon emission. In the units of the photon emission rate per hertz, the observed maximum power spectral density of roughly 80 Hz^{−1}s^{−1} at \(e{V}_{{\rm{B}}}\mathrm{/(2}{\rm{\Delta }})\simeq 14\) is orders of magnitude higher than those reported in refs^{41,43} for incoherent sources. Some coherent sources^{22,23} provide yet orders of magnitude higher power spectral density. However, our incoherent source is based on a different physical phenomenon. Thus, its output power has a simple biasvoltage dependence, offering robust insitu electrical control. The biasvoltage dependence of the frequencyintegrated spectral density, i.e., the generated power is shown in Fig. 2(c). The onset of positive generated power is clearly visible at \(e{V}_{{\rm{B}}}\mathrm{/(2}{\rm{\Delta }})\gtrsim 1\).
Owing to energy conservation, the net power flowing from the resonator to the transmission line is given by P_{RT} = P_{out} − P_{in}, where P_{out} and P_{in} are the powers carried by photons moving in the transmission line away from and towards the microwave source, respectively. The net power is related to the average photon number of the resonator, \({\bar{n}}_{{\rm{res}}}\), and of the radiation incident on the resonator from the transmission line, \({\bar{n}}_{{\rm{TL}}}\), at the fundamental angular frequency, ω_{0}, by (see Sec. IV of Supplementary information)
where Z_{0} is the characteristic impedance of the transmission line and c_{res} is the capacitance per unit length of the resonator. The circulator shown in Fig. 1(d) renders P_{in} and \({\bar{n}}_{{\rm{TL}}}\) independent of the bias voltage, and hence the generated power assumes the form
Although the above equation only provides a direct conversion from the measured generated power to the change of the average resonator photon number, we describe in Sec. IV of Supplementary information how we extract the photon number at zero bias with the help of our theoretical model. In the model, we assume for simplicity that the exchanged power P_{RT} vanishes at zero bias voltage, i.e., here the resonator is thermalized with the tranmission line. This assumption does not lead to artificial changes in the estimated \({\bar{n}}_{{\rm{res}}}\), but renders \({\bar{n}}_{{\rm{TL}}}\) to describe the joint voltagebiasindependent heating effect of the resonator owing to the transmission line and any additional environments. Consequently, we refer below to T_{TL} as the apparent transmission line temperature. Note that the estimated resonator temperature becomes insensitive to changes in T_{TL} at high bias voltages where \({\bar{n}}_{{\rm{res}}}\gg {\bar{n}}_{{\rm{TL}}}\). In our experiments, the resonator mode is in a thermal state described by temperature T_{res}, and hence we may describe its average photon numbers using the Bose distribution function as
Figure 2(d) shows the resonator temperature and average photon number corresponding to the measured generated power in Fig. 2(c) as functions of the bias voltage. These results indicate that the mode temperature and the average photon number can be efficiently controlled using the bias voltage. For eV_{B} > 10Δ, we have T_{res} > 2.5 K. Such a high mode temperature is not conveniently achieved by coupling the resonator to a hot resistor due to the transition of the superconducting aluminum, employed as the lead material, to the normal state.
Importantly, the measured electron temperature shown in Sec. V of Supplementary information is much lower than that of the resonator mode for almost any bias voltage in Fig. 2(d). This observation verifies that the observed microwave radiation directly arises from photonassisted electron tunneling rather than from heating of the normalmetal island.
Although negative generated power is challenging to differentiate in the measured power spectra, we observe in Fig. 2(c) a shallow but statistically significant dip in the experimental generated power around eV_{B}/(2Δ) = 1. The dip corresponds to the refrigeration of the fundamental mode owing to photonassisted tunneling, and hence provides complementary evidence of this phenomenon first observed in ref.^{14}. As theoretically shown in refs^{14,51}, the photonassisted tunneling acts on the resonator as an environment, the effective temperature of which achieves a minimum of half the electron temperature somewhat below the gap voltage. This qualitatively explains the observed refrigeration. At high bias voltages, the effective temperature approaches eV_{B}/(2k_{B})^{51}, and hence a local minimum in the generated power appears.
To describe the energy transfer from the tunneling electrons to the transmission line, mediated by microwave photons in the fundamental mode of the resonator, we develop a thermal model shown in Fig. 3. Here, we consider thermal states for the electric components assuming that the temperatures of the resonator mode, T_{res}, and of the electrons in the normalmetal island, T_{N}, are well defined in the parameter range studied. We have verified the validity of this assumption with a model that accounts for transitions between individual resonator states^{51} but do not present the model here since its predictions are essentially identical to those provided by our simpler model. Because of the relatively weak coupling between the resonator and the transmission line, we assume that a tunneling electron does not induce photonassisted transitions in the transmission line. Instead, the influence of the tunneling events is indirectly taken into account through the change in the temperature of the resonator mode.
In the thermal model, the power from the tunneling electrons to the resonator, P_{JR}, is calculated using the P(E) theory^{30}, as detailed in Sec. III of Supplementary information. Both powers, P_{JR} and P_{RT}, are functions of the temperature of the resonator mode. We solve P_{RT} for each V_{B} by finding the mode temperature, at which these powers balance, P_{JR} = P_{RT}. Subsequently, the average photon number \({\bar{n}}_{{\rm{res}}}\) is calculated using the obtained mode temperature and Eq. (3). We have measured the bare internal quality factor of samples with the same design to be orders of magnitude higher than the realized external quality factor and hence we neglect the effect of any additional internal losses to the power balance. The apparent temperature of the transmission line, corresponding to the photons moving towards the resonator and possible additional heating channels, is assumed to be independent of the applied bias voltage. The experimentally measured electron temperature of the normalmetal island is used in the simulation.
The theoretical results, employing the parameters given in Table 1, show in Fig. 2(c) good agreement with the experiments in a wide range of generated powers. In the model, the dip in the generated power around eV_{B}/(2Δ) = 1 is arising from photon absorption induced by electron tunneling. Furthermore, the modelled average number of photons, \({\bar{n}}_{{\rm{res}}}\), and the temperature of the fundamental mode, T_{res}, are shown in Fig. 2(d) as functions of the bias voltage.
Experimental results similar to those discussed above are shown in Fig. 4 for Sample B. Figure 4(a) shows the spectral density of the generated power as a function of the frequency and the bias voltage. A peak appears around 8.3 GHz for eV_{B}/(2Δ) > 1 and becomes taller with increasing bias voltage. Figure 4(b) exhibits the traces of the spectral density, which are integrated for Fig. 4(c) to obtain the generated power as a function of the bias voltage. The qualitative behavior of the generated power matches that of Sample A: the power begins to increase with bias voltage around eV_{B}/(2Δ) = 1, where we observe a shallow dip corresponding to cooling of the resonator. However, the magnitude of the generated power is greater and the mode temperature shown in Fig. 4(d) is lower compared with Fig. 2. This is because the coupling of the resonator to the transmission line is proportional to the third power of the resonance frequency [see Eq. (1)] which is almost twice as large here in comparison to Sample A.
Conclusions
We observed microwave absorption and emission arising from photonassisted singleelectron tunneling through NIS junctions. We experimentally verified cooling by the quantumcircuit refrigerator^{14} by measuring for the first time the power spectral density of microwaves emitted from the resonator. Furthermore, we have implemented an incoherent microwave source which realizes direct conversion of the electrostatic energy provided by the dc voltage source to microwave photons. Importantly, it does not rely on the thermal voltage fluctuation spectrum of a resistor, and much like shotnoise sources^{19,39}, it may provide higher effective temperatures, faster tunability, and less excess heating than usual thermal methods. Our measurements of the generated power are in good agreement with the corresponding theoretical model, heavily suggesting that our interpretation that photonassisted tunneling is mainly responsible for the generated power is correct. This interpretation is verified by the observation of much higher generated powers than what is expected for resonator temperatures matching the normalmetal electron temperature. In the future, we aim to extend this photon source to narrow bandwidths and pulsed operation. In an effort to obtain a stringent quantitative verification of the validity of the used theoretical model, we aim to measure the characteristics of the source using a cryogenic microwave bolometer^{10} or a qubit coupled to the resonator^{52}.
References
 1.
Wolf, E. L. Quantum Nanoelectronics: An Introduction to Electronic Nanotechnology and Quantum Computing (WileyVCH, Weinheim, 2009).
 2.
Blais, A., Huang, R.S., Wallraff, A., Girvin, S. M. & Schoelkopf, R. J. Cavity Quantum Electrodynamics for Superconducting Electrical Circuits: an Architecture for Quantum Computation. Phys. Rev. A 69, 062320 (2004).
 3.
Wallraff, A. et al. Strong Coupling of a Single Photon to a Superconducting Qubit using Circuit Quantum Electrodynamics. Nature 431, 162–167 (2004).
 4.
Majer, J. et al. Coupling Superconducting Qubits via a Cavity Bus. Nature 449, 443–447 (2007).
 5.
Sillanpää, M. A., Park, J. I. & Simmonds, R. W. Coherent Quantum State Storage and Transfer between Two Phase Qubits via a Resonant Cavity. Nature 449, 438–442 (2007).
 6.
Devoret, M. H. & Schoelkopf, R. J. Superconducting Circuits for Quantum Information: an Outlook. Science 339, 1169–1174 (2013).
 7.
Kelly, J. et al. State Preservation by Repetitive Error Detection in a Superconducting Quantum Circuit. Nature 519, 66–69 (2015).
 8.
Ofek, N. et al. Extending the Lifetime of a Quantum Bit with Error Correction in Superconducting Circuits. Nature 536, 441–445 (2016).
 9.
Inomata, K. et al. Single MicrowavePhoton Detector using an Artificial ΛType ThreeLevel System. Nat. Commun. 7, 12303 (2016).
 10.
Govenius, J., Lake, R. E., Tan, K. Y. & Möttönen, M. Detection of Zeptojoule Microwave Pulses using Electrothermal Feedback in ProximityInduced Josephson Junctions. Phys. Rev. Lett. 117, 030802 (2016).
 11.
Saira, O.P., Zgirski, M., Viisanen, K. L., Golubev, D. S. & Pekola, J. P. Dispersive Thermometry with a Josephson Junction Coupled to a Resonator. Phys. Rev. Applied 6, 024005 (2016).
 12.
Clark, A. M. et al. Cooling of Bulk Material by ElectronTunneling Refrigerators. Appl. Phys. Lett. 86, 173508–173510 (2005).
 13.
Timofeev, A. V., Helle, M., Meschke, M., Möttönen, M. & Pekola, J. P. Electronic Refrigeration at the Quantum Limit. Phys. Rev. Lett. 102, 200801 (2009).
 14.
Tan, K. Y. et al. Quantumcircuit Refrigerator. Nat. Commun. 8, 15189 (2017).
 15.
Giazotto, F., Heikkilä, T. T., Luukanen, A., Savin, A. M. & Pekola, J. P. Opportunities for Mesoscopics in Thermometry and Refrigeration: Physics and Applications. Rev. Mod. Phys. 78, 217–274 (2006).
 16.
Hofheinz, M. et al. Synthesizing Arbitrary Quantum States in a Superconducting Resonator. Nature 459, 546–549 (2009).
 17.
Meschke, M., Guichard, W. & Pekola, J. P. Singlemode Heat Conduction by Photons. Nature 444, 187–190 (2006).
 18.
Partanen, M. et al. QuantumLimited Heat Conduction over Macroscopic Distances. Nat. Phys. 12, 460–464 (2016).
 19.
Spietz, L. et al. Primary Electronic Thermometry Using the Shot Noise of a Tunnel Junction. Science 300, 1929–1932 (2003).
 20.
Goetz, J. et al. Photon Statistics of Propagating Thermal Microwaves. Phys. Rev. Lett. 118, 103602 (2016).
 21.
Spietz, L. et al. Noise performance of lumped element direct current superconducting quantum interference device amplifiers in the 4–8 GHz range. Applied Phys. Lett. 97, 142502 (2010).
 22.
Chen, F. et al. Realization of a singleCooperpair Josephson laser. Phys. Rev. B 90, 020506 (2014).
 23.
Cassidy, M. C. et al. Demonstration of an ac Josephson junction laser. Science 355, 939–942 (2017).
 24.
Houck, A. A. et al. Generating Single Microwave Photons in a Circuit. Nature 449, 328–331 (2007).
 25.
Bozyigit, D. et al. Antibunching of microwavefrequency photons observed in correlation measurements using linear detectors. Nat. Phys. 7, 154–158 (2011).
 26.
Peng, Z. H., de Graaf, S. E., Tsai, J. S. & Astafiev, O. V. Tuneable ondemand singlephoton source in the microwave range. Nat. Commun. 449, 12588 (2016).
 27.
Devoret, M. H. et al. Effect of the Electromagnetic Environment on the Coulomb Blockade in Ultrasmall Tunnel Junctions. Phys. Rev. Lett. 64, 1824 (1990).
 28.
Girvin, S. M., Glazman, L. I., Jonson, M., Penn, D. R. & Stiles, M. D. Quantum Fluctuations and the SingleJunction Coulomb Blockade. Phys. Rev. Lett. 64, 3183 (1990).
 29.
Averin, B., Nazarov, Y. & Odintsov, A. Incoherent Tunneling of the Cooper Pairs and Magnetic Flux Quanta in Ultrasmall Josephson Junctions. Physica B 165/166, 945–946 (1990).
 30.
Ingold, G.L. & Nazarov, Y. V. Charge Tunneling Rates in Ultrasmall Junctions. NATO ASI Series B 294, 21–107 (1992).
 31.
Holst, T., Esteve, D., Urbina, C. & Devoret, M. H. Effect of a Transmission Line Resonator on a Small Capacitance Tunnel Junction. Phys. Rev. Lett. 73, 3455 (1994).
 32.
Ingold, G.L., Grabert, H. & Eberhardt, U. Cooperpair current through ultrasmall Josephson junctions. Phys. Rev. B 50, 395 (1994).
 33.
Lu, W., Maranowski, K. D. & Rimberg, A. J. Charge transport processes in a superconducting singleelectron transistor coupled to a microstrip transmission line. Phys. Rev. B 65(R), 060501 (2002).
 34.
Billangeon, P.M. et al. Emission and Absorption Asymmetry in the Quantum Noise of a Josephson Junction. Phys. Rev. Lett. 96, 136804 (2006).
 35.
Toppari, J. J. et al. Cooperpair resonances and subgap Coulomb blockade in a superconducting singleelectron transistor. Phys. Rev. B 76, 172505 (2007).
 36.
Billangeon, P.M., Pierre, F., Bouchiat, H. & Deblock, R. ac Josephson Effect and Resonant Cooper Pair Tunneling Emission of a Single Cooper Pair Transistor. Phys. Rev. Lett. 98, 216802 (2007).
 37.
Pekola, J. P. et al. EnvironmentAssisted Tunneling as an Origin of the Dynes Density of States. Phys. Rev. Lett. 105, 026803 (2010).
 38.
Pashkin, Yu. A. et al. Charge transport through ultrasmall single and double Josephson junctions coupled to resonant modes of the electromagnetic environment. Phys. Rev. B 83(R), 020502 (2011).
 39.
Gabelli, J. et al. Electronphoton correlations and the third moment of quantum noise. New J. Phys. 15, 113045 (2013).
 40.
ZakkaBajjani, E. et al. Experimental Determination of the Statistics of Photons Emitted by a Tunnel Junction. Phys. Rev. Lett. 104, 206802 (2010).
 41.
Hofheinz, M. et al. Bright Side of the Coulomb Blockade. Phys. Rev. Lett. 106, 217005 (2011).
 42.
Bruhat, L. E. et al. Cavity Photons as a Probe for Charge Relaxation Resistance and Photon Emission in a Quantum Dot Coupled to Normal and Superconducting Continua. Phys. Rev. X 6, 021014 (2016).
 43.
Stockklauser, A. et al. Microwave Emission from Hybridized States in a Semiconductor Charge Qubit. Phys. Rev. Lett. 115, 046802 (2015).
 44.
Childress, L., Sørensen, A. S. & Lukin, M. D. Mesoscopic Cavity Quantum Electrodynamics with Quantum Dots. Phys. Rev. A 69, 042302 (2004).
 45.
Liu, Y.Y., Petersson, K. D., Stehlik, J., Taylor, J. M. & Petta, J. R. Photon Emission from a CavityCoupled Double Quantum Dot. Phys. Rev. Lett. 113, 036801 (2014).
 46.
You, J. Q., Liu, Y. X., Sun, C. P. & Nori, F. Persistent SinglePhoton production by Tunable Onchip Micromaser with a Superconducting Quantum Circuit. Phys. Rev. B 75, 104516 (2007).
 47.
Astafiev, O. et al. Single ArtificialAtom Lasing. Nature 449, 588–590 (2007).
 48.
Hauss, J., Fedorov, A., Hutter, C., Shnirman, A. & Schön, G. SingleQubit Lasing and Cooling at the Rabi Frequency. Phys. Rev. Lett. 100, 037003 (2008).
 49.
Grajcar, M. et al. Sisyphus Cooling and Amplification by a Superconducting Qubit. Nat. Phys. 4, 612–616 (2008).
 50.
Leivo, M. M., Pekola, J. P. & Averin, D. V. Efficient Peltier Refrigeration by a Pair of Normal Metal/Insulator/Superconductor Junctions. Appl. Phys. Lett. 68, 1996–1998 (1996).
 51.
Silveri, M., Grabert, H., Masuda, S., Tan, K. Y. & Möttönen, M. Phys. Rev. B 96, 094524 (2017).
 52.
Suri, B. et al. Nonlinear microwave photon occupancy of a driven resonator strongly coupled to a transmon qubit. Phys. Rev. A 92, 063801 (2015).
Acknowledgements
We acknowledge the provision of facilities and technical support by Aalto University at OtaNano  Micronova Nanofabrication Centre. We have received funding from the European Research Council under Starting Independent Researcher Grant No. 278117 (SINGLEOUT) and under Consolidator Grant No. 681311 (QUESS), the Academy of Finland through its Centres of Excellence Program (project Nos. 312300, 251748 and 284621) and grants (Nos. 265675, 314449 286215, 308161, 314302, 305237, and 305306), the Emil Aaltonen Foundation, the Jenny and Antti Wihuri Foundation, the Alfred Kordelin Foundation, the Finnish Cultural Foundation, the Technology Industries of Finland Centennial Foundation, Jane and Aatos Erkkos Foundation, and the Vilho, Yrjö and Kalle Väisälä Foundation. We thank Leif Grönberg for assistance in sample fabrication.
Author information
Affiliations
Contributions
S.M. and K.Y.T. fabricated the samples and conducted the experiments. S.M. also developed the model and analysed the data. M.P. contributed to the sample fabrication, measurements, and data analysis. R.L. and J.G. contributed to the measurements. M.S. and H.G. contributed to the theoretical analysis. M.M. provided the initial ideas and suggestions for the experiment, and supervised the work in all respects. All authors commented on the manuscript written by S.M. and M.M.
Corresponding authors
Ethics declarations
Competing Interests
The authors declare no competing interests.
Additional information
Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Electronic supplementary material
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Masuda, S., Tan, K.Y., Partanen, M. et al. Observation of microwave absorption and emission from incoherent electron tunneling through a normalmetal–insulator–superconductor junction. Sci Rep 8, 3966 (2018). https://doi.org/10.1038/s41598018217725
Received:
Accepted:
Published:
Further reading

Tunable refrigerator for nonlinear quantum electric circuits
Physical Review B (2020)

Calibration of cryogenic amplification chains using normalmetal–insulator–superconductor junctions
Applied Physics Letters (2019)

Broadband Lamb shift in an engineered quantum system
Nature Physics (2019)

Utilization of the superconducting transition for characterizing lowqualityfactor superconducting resonators
Applied Physics Letters (2019)

Fast control of dissipation in a superconducting resonator
Applied Physics Letters (2019)
Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.