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dynGENIE3: dynamical GENIE3 
for the inference of gene networks 
from time series expression data
Vân Anh Huynh-Thu & Pierre Geurts

The elucidation of gene regulatory networks is one of the major challenges of systems biology. 
Measurements about genes that are exploited by network inference methods are typically available 
either in the form of steady-state expression vectors or time series expression data. In our previous 
work, we proposed the GENIE3 method that exploits variable importance scores derived from 
Random forests to identify the regulators of each target gene. This method provided state-of-the-art 
performance on several benchmark datasets, but it could however not specifically be applied to time 
series expression data. We propose here an adaptation of the GENIE3 method, called dynamical GENIE3 
(dynGENIE3), for handling both time series and steady-state expression data. The proposed method 
is evaluated extensively on the artificial DREAM4 benchmarks and on three real time series expression 
datasets. Although dynGENIE3 does not systematically yield the best performance on each and 
every network, it is competitive with diverse methods from the literature, while preserving the main 
advantages of GENIE3 in terms of scalability.

Gene regulatory networks (GRNs) define the ensemble of interactions among genes that govern their expression. 
The elucidation of GRNs is crucial to understand the functioning and pathology of organisms, and remains one 
of the major challenges of systems biology. Since the advent of high-throughput technologies, computational 
approaches have been proposed to infer GRNs from the measurement of gene expressions in various conditions 
using statistical inference or machine learning techniques. While network inference methods have reached some 
maturity over the years, their performance on real datasets remains far from optimal and calls for the permanent 
improvement of existing methods.

Measurements about genes that are exploited by these methods are typically available in two forms: static 
steady-state expression vectors, obtained by applying a perturbation to the system under study and measuring 
gene expressions once the system has reached some equilibrium point, or time series expression data, measur-
ing the temporal evolution of gene expressions over several time points following the perturbation. Steady-state 
expression data are plethoric for many organisms. They however offer limited information regarding the dynam-
ics of gene regulation, which limits the performance of network inference methods when they only exploit such 
data. Time series data on the other hand are intrinsically much more informative about the dynamics and should 
in principle make the inference more effective than steady-state data. In particular, time series data allow to infer 
causal relationships among genes, by analysing the cascade of expression changes across time. Unfortunately, 
collecting time series data poses several important technical and design issues that make such data very scarce1. 
One issue comes from the fact that expression data are currently mainly obtained using microarray or RNA-seq 
technologies, which both measure the gene expressions in populations of cells. Inaccurate measurements can 
thus occur if the cells are not synchronised at the different sampling time points. A second important issue is 
the choice of the sampling time points. The high cost of genomic experiments usually prevents a dense sampling 
over a long time period, and it may be difficult to choose the correct time points that will allow to capture all the 
expression changes. Dealing with the scarcity in time series expression data is an important challenge for network 
inference methods and this calls also for methods that can exploit jointly both steady-state and time series data.

Mostly two families of methods have been explored in the literature to solve the GRN inference problem: 
model-free and model-based methods. Model-free methods infer the network by directly estimating the gene 
dependencies from the data through more or less sophisticated statistical or machine learning-based analyses2–6. 
These methods typically have good scalability, enabling reconstructions of networks of thousands of genes, and 

Department of Electrical Engineering and Computer Science, University of Liège, 4000, Liège, Belgium. 
Correspondence and requests for materials should be addressed to V.A.H.-T. (email: vahuynh@uliege.be)

Received: 5 May 2017

Accepted: 6 February 2018

Published: xx xx xxxx

OPEN

mailto:vahuynh@uliege.be


www.nature.com/scientificreports/

2Scientific RepoRts |  (2018) 8:3384  | DOI:10.1038/s41598-018-21715-0

have consistently achieved state-of-the-art reconstruction performance in comparative evaluations7. On the other 
hand, model-based methods first define a quantitative dynamical model of the system, for example using differ-
ential equations8 or auto-regressive models9, and then infer the network by learning the parameters of this model 
from observed time series data. Model-based methods are rather computationally intensive and their parametric 
nature usually implies very stringent assumptions about the dynamics (e.g. linearity). These methods have nev-
ertheless some appealing properties that model-free methods do not have: they have clearly defined semantics 
in terms of the underlying dynamical system properties, which makes them more interpretable than model-free 
methods. Most importantly, model-based methods can be used for simulating and predicting the dynamical 
system behaviour under perturbations.

In our previous work, we proposed GENIE3, a model-free method that infers networks from steady-state 
expression data6. This method exploits variable importance scores derived from Random forests10 to identify the 
regulators of each target gene. The main properties of this method are its fully non-parametric nature, its good 
scalability, and its ease of use. GENIE3 was the best performer of the DREAM4 Multifactorial Network challenge 
and the DREAM5 Network Inference challenge7, and has since been shown to be competitive with several other 
methods in several independent studies (e.g.11,12). Motivated by the good performance of GENIE3 on steady-state 
data, the aim of this paper is to evaluate GENIE3 and a new variant of GENIE3, when they are applied for the 
analysis of time series data and for the joint analysis of steady-state and time series data. The proposed variant 
for time series data, called dynGENIE3 (for dynamical GENIE3), is based on a semi-parametric model, in which 
the temporal evolution of each gene expression is described by an ordinary differential equation (ODE) and the 
transcription function in each ODE is learned in the form of a non-parametric Random forest model. The regu-
lators of each target gene are then identified from the variable importance scores derived from the corresponding 
Random forest model.

Several experiments are carried out on artificial and real datasets to assess the performance of GENIE3 and 
dynGENIE3. While dynGENIE3 consistently outperforms GENIE3 on the artificial data, the relative perfor-
mances of the two methods become very data-dependent when they are applied to real data. In addition, our 
experiments show that, even though dynGENIE3 does not systematically reach the best performance in every 
setting, it is nevertheless very competitive with existing methods from the literature.

To summarise, dynGENIE3 is a highly scalable network inference method able to exploit time series and 
steady-state data jointly. It consistently yields good performance on diverse artificial and real networks. On the 
DREAM4 networks, it is only outperformed by CSI13, a Bayesian inference method based on Gaussian processes. 
CSI has however the major drawback of being very computationally intensive, with respect to the number of 
observations and the number of candidate regulators (more details can be found in the “Related works” section).

The present work supersedes the time series extension of GENIE3 that we proposed previously14 and that was 
applied for the inference of the GRN underlying the drought response of common sunflower15.

Methods
Problem definition. Let DTS and DSS be two expression datasets. The first dataset DTS, called the time series 
dataset, contains the expression levels of p genes, measured at N time points following a perturbation of the 
network:

= …D t t tx x x{ ( ), ( ), , ( )}, (1)TS N1 2

where ∈tx( )k
p, k = 1, …, N is a vector containing the gene expression values at the k-th time point:

= … .Τt x t x t x tx( ) ( ( ), ( ), , ( )) (2)k k k p k1 2

The other dataset DSS, called the steady-state dataset, contains the expression levels of the same p genes, meas-
ured in M experimental conditions once the system has reached some equilibrium point:

= …D e e ex x x{ ( ), ( ), , ( )}, (3)SS M1 2

where ∈ex( )k
p, k = 1, …, M is a vector containing the expression values at steady-state of the p genes in the k-th 

condition:

= … .Τe x e x e x ex( ) ( ( ), ( ), , ( )) (4)k k k p k1 2

The goal is to exploit DTS, possibly together with DSS, in order to assign weights wi,j ≥ 0, (i, j = 1, …, p) to 
putative regulatory links from any gene i to any gene j, with the aim of assigning the largest weights to links that 
correspond to actual regulatory interactions. Note that in this article, we leave open the problem of automatically 
choosing a threshold on the weights to obtain a practical network and focus on providing a ranking of the regu-
latory links.

The GENIE3 framework. The original GENIE3 method for steady-state data. The GENIE3 method6 treats 
the network inference problem as p feature selection problems, each feature selection problem consisting in 
recovering the regulators of a given gene. The method was originally designed to exploit steady-state data and 
makes the assumption that the expression of each gene j in a given condition is a function of the expression levels 
of the other genes in the same condition:

ε= + ∀−x e f e j kx( ) ( ( )) , , , (5)j k j j k k
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where x−j denotes the vector containing the expression levels of all the genes except gene j and εk is a random 
noise. GENIE3 further makes the assumption that the function fj only exploits the expression in x−j of the 
genes that are direct regulators of gene j, i.e. genes that are directly connected to gene j in the targeted network. 
Recovering the regulatory links pointing to gene j thus amounts to finding those genes whose expression is pre-
dictive of the expression of gene j.

The GENIE3 procedure works as follows:

•	 For j = 1 to p:

 1. Generate the learning sample of input-output pairs for gene j:

= = … .−LS e x e k Mx{( ( ), ( )), 1, , } (6)SS
j

j k j k

 2. Learn fj from LSSS
j  and use a feature ranking technique to compute confidence levels wi,j(i ≠ j), i = 1, 

…, p, for all the genes except gene j.
•	 Use wi,j as weight for the regulatory link i → j.

Note that when a set of candidate regulators (e.g. known transcription factors) is given, the input genes in LSSS
j  

can be restricted to these candidate regulators only. In that case, the weights wi,j such that gene i is not a candidate 
regulator are set to zero.

dynGENIE3 for time series data. GENIE3 can be applied to time series data in a naive way, by regarding the 
different time points as independent steady-state conditions. An alternative solution is to modify the procedure 
in order to take into account the dependence between the time points. The dynamical variant of GENIE3 (dyn-
GENIE3) assumes that the expression level of gene j is modelled through the following ordinary differential 
equation (ODE):

α= − + ∀
x t

t
x t f t jx

d ( )
d

( ) ( ( )), , (7)
j

j j j

where we assume that the transcription rate of xj is a (potentially non-linear) function fj of the expression levels of 
the p genes (possibly including the gene j itself) and αj is a parameter specifying the decay rate of xj.

The ODE (7) has the following finite approximation:

α
−
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and the function fj can thus be learned using the following learning sample:
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Note that this procedure allows the incorporation of multiple time series experiments by learning the tran-
scription function fj from the concatenation of the learning samples LSTS

j  respectively generated from the different 
experiments.

The ODE model (7) and its finite approximation (8) have been used successfully by the Inferelator method 
for modelling and inferring gene regulatory interactions16–18. A more detailed comparison with this method is 
provided in the “Related works” section.

It is interesting to note that when the time interval tk+1 − tk is constant ∀k and α =
−+

j t t
1

k k1
, the equation (8) 

simplifies to:

= − = ′+ +x t t t f t f tx x( ) ( ) ( ( )) ( ( )), (10)j k k k j k j k1 1

which is equivalent to a time-lagged version of the original GENIE3 method14.

dynGENIE3 for both time series and steady-state data. At steady-state, = 0
x t

t

d ( )

d
j  and the equation (7) becomes:

α = ∀ .x t f t jx( ) ( ( )), (11)j j j

The learning sample LS j used to learn the function fj can thus be obtained by concatenating the two types of 
data:

∪=LS LS LS , (12)j
TS
j

SS
j

where LSTS
j  (resp. LSSS

j ) is the learning sample generated from the time series (resp. steady-state) data:
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Tree-based methods. In GENIE3 and dynGENIE3, the function fj is learned in the form of an ensemble of 
regression trees. Regression trees split the data samples with binary tests based each on one input variable, trying 
to reduce as much as possible the variance of the output variable in the resulting subsets of samples. Candidate 
splits for numerical variables compare the input variable values with a threshold that is determined during the 
tree growing. Single trees are usually very much improved by ensemble methods that average the predictions of 
several trees. For example, in a Random forest ensemble each tree is built from a bootstrap sample of the original 
learning sample and at each test node K variables are selected at random among all the input variables before 
determining the best split10.

Variable importance measure. It is possible to compute, from a tree model, variable importance scores assessing 
the relevance of the different input features for predicting the output. In our experiments, we consider the Mean 
Decrease Impurity measure19 that computes, at each test node  , the total reduction of the variance of the output 
variable due to the split:

 = . − . − .I S S S S S S( ) # Var( ) # Var( ) # Var( ), (14)t t f f

where S denotes the set of samples that reach node  , St (resp. Sf) denotes its subset for which the test is true 
(resp. false), Var(.) is the variance of the output variable in a subset, and # denotes the cardinality of a set of sam-
ples. Given one regression tree, the overall importance w of one variable is computed by summing the I values 
(14) of all the tree nodes where this variable is used to split. Those variables that are not selected at all obtain a 
zero value of their importance, and those that are selected close to the root node typically obtain high scores. For 
an ensemble of trees, the importance w is averaged over the different trees.

Regulatory link ranking. The sum of the importance scores wi,j of all the input features for one tree is usually very 
close to the initial total variance of the output. We thus have:

∑ ≈ . ∀
=

w N S jVar ( ),
(15)i

p

i j S j
1

,

where S is the learning sample from which the tree was built (i.e. a bootstrap sample of LS j for the Random forest 
method), NS is the size of S, and Varj(S) is the variance of the target gene j estimated in S. As a consequence, if we 
trivially use the scores wi,j to order the regulatory links, this is likely to introduce a positive bias for the regulatory 
links directed towards the genes whose expression levels vary the most. To avoid this bias, we normalize each 
importance score wi,j by the total variance that is explained by the putative regulators (excluding self-interactions):
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This normalization implies that the importance scores inferred from different models predicting different gene 
expressions are comparable.

Decay rate values. In the ODE model (7), the kinetic parameter αj, j = 1, …, p represents the decay rate of the 
expression of gene j. Its value may be retrieved from the literature, since there exist many studies that experimen-
tally measure the mRNA decay rates in different organisms. However, when such information is not available or 
when dealing with simulated data, we use the same approach as in the Jump3 method20. In this method, the value 
of the decay rate αj is estimated directly from the observed expression xj, by assuming an exponential decay α−e tj  
between the highest and lowest values of xj. In the remaining of this paper, the αj values estimated using this 
method will be called the “data-derived” values.

Availability. Python, MATLAB and R implementations of dynGENIE3 are available at http://www.montefiore.
ulg.ac.be/˜huynh-thu/dynGENIE3.html.

Related works. Like dynGENIE3, many network inference approaches for time series data are based on an 
ODE model of the type (7) 8,21. These methods mainly differ in the terms present in the right-hand side of the 
ODE (such as decay rates or the influence of external perturbations), the mathematical form of the models fj, the 
algorithm used to train these models, and the way a network is inferred from the resulting models. dynGENIE3 
adopts the same ODE formulation as in the Inferelator approach16: each ODE includes a term representing the 
decay of the target gene and the functions fj take as input the expression of all the genes at some time point t. 
In the specific case of dynGENIE3, the functions fj are represented by ensembles of regression trees, which are 
trained to minimize the least-square error using the Random forest algorithm, and a network is inferred by 
thresholding variable importance scores derived from the Random forest models. Like for the standard GENIE3, 

http://www.montefiore.ulg.ac.be/huynh-thu/dynGENIE3.html
http://www.montefiore.ulg.ac.be/huynh-thu/dynGENIE3.html
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dynGENIE3 has a reasonable computational complexity, which is at worst O(prN log N), where p is the total num-
ber of genes, r is the number of candidate regulators and N is the number of observations.

In comparison, most methods in the literature (including Inferelator) assume that the models fj are linear and 
train these models by jointly maximizing the quality of the fit and minimizing some sparsity-inducing penalty 
(e.g. using a L1 penalty term or some appropriate Bayesian priors). After training the linear models, a network 
can be obtained by analysing the weights within the models, several of which having been enforced to zero during 
training. In contrast to these methods, dynGENIE3 does not make any prior hypothesis about the form of the fj 
models. This is an advantage in terms of representational power but this could also result in a higher variance, and 
therefore worse performance because of overfitting, especially when the data is scarce. A few methods also exploit 
non-linear/non-parametric models within a similar framework, among which Jump320, OKVAR-Boost22 and 
CSI13. Like dynGENIE3, Jump3 incorporates a (different) dynamical model within a non-parametric, tree-based 
approach. In the model used by Jump3, the functions fj represent latent variables, which necessitated the develop-
ment of a new type of decision tree, while Random forests can be applied as such in dynGENIE3. One drawback 
of Jump3 is its high computational complexity with respect to the number N of observations, being O(N4) in 
the worst-case scenario. Moreover, Jump3 can not be used for the joint analysis of time series and steady-state 
data. OKVAR-Boost jointly represents the models fj for all genes using an ensemble of operator-valued kernel 
regression models trained using a randomized boosting algorithm. The network structure is then estimated from 
the resulting model by computing its Jacobian matrix. One of the drawbacks of this method with respect to dyn-
GENIE3 is that it requires to tune several meta-parameters. The authors have nevertheless proposed an original 
approach to tune them based on a stability criterion. Finally, CSI is a Bayesian inference method that learns the fj 
models in the form of Gaussian processes. Since learning Gaussian processes does not embed any feature selec-
tion mechanism, network inference is performed in CSI by a combinatorial search through all the potential sets of 
regulators for each gene in turn, and constructing a posterior probability distribution over these potential sets of 
regulators. As a consequence, the complexity of the method is O(pN3r d/(d − 1)!), where d is a parameter defining 
the maximum number of regulators per gene8. Its high complexity makes CSI unsuitable when the number of 
candidate regulators (r) or the number of observations (N) is too high. Supplementary Table S1 compares the run-
ning times of dynGENIE3 and CSI for different datasets. The most striking difference is observed when inferring 
the DREAM4 100-gene networks. While dynGENIE3 takes only several minutes to infer one network, CSI can 
take more than 48 hours per target gene. The CSI algorithm can be parallelised over the different target genes (like 
dynGENIE3), but even in that case the computational burden remains an issue when inferring large networks 
containing thousands of genes and hundreds of transcription factors (such as the E. coli network).

Performance metrics. GENIE3 and dynGENIE3 both provide a ranking of the regulatory links from the 
most confident to the least confident. To evaluate such a ranking independently of the choice of a specific thresh-
old, we use the precision-recall (PR) curve and the area under this curve (AUPR), as suggested by the DREAM 
consortium7,23–25. The PR curve plots, for different thresholds on the weights of the links, the proportion of true 
positives among all the predictions (precision) versus the percentage of true positives that are retrieved (recall). A 
perfect ranking, i.e. a ranking where all the positives are located at the top of the list, yields an AUPR equal to one, 
while a random ranking results in an AUPR close to the proportion of positives in the true network.

For the DREAM4 networks (see below for the data description), we used the “AUPR score”, as proposed by the 
challenge organizers, to aggregate the AUPRs obtained for n different networks:

∑= −
=n

pAUPR score 1 log ,
(17)i

n

AUPR
i

1
10

( )

where pAUPR
i( )  is the probability for the i-th network that a given or larger AUPR is obtained by a random ranking 

of the putative edges. This probability is estimated from 100,000 random edge rankings. A higher AUPR score 
thus indicates a better overall performance over the n networks.

Results
We first evaluated the performances of GENIE3 and dynGENIE3 on the simulated data of the DREAM4 In Silico 
Network challenge (note that this is a different challenge than the DREAM4 Multifactorial Network challenge 
where GENIE3 was deemed the best performer). We then applied the methods to three real expression data-
sets related to different organisms (Saccharomyces cerevisiae, Drosophila melanogaster and Escherichia coli). 
Supplementary Table S1 summarizes the total numbers of samples, genes and transcription factors in each data-
set. Unless otherwise stated, in all our experiments ensembles of T = 1000 trees were grown and the main param-
eter K of the Random forest algorithm was set to the number of input candidate regulators.

DREAM4 in silico networks. The goal of the DREAM4 In Silico Network challenge was to recover 5 net-
works of 10 genes and 5 networks of 100 genes, from both time series and steady-state data. Each time series 
experiment consisted in a perturbation that is applied to the network at time t = 0 and is removed after 10 time 
points, making the system return to its original state. Each time series contains noisy gene expressions levels that 
were sampled at 21 time points, with equal time intervals of 50 time units. The steady-state data contain the gene 
expression levels in various experimental conditions (wild-type, single gene knockouts, single gene knockdowns 
and multifactorial perturbations).

Network inference from time series data. We first compared GENIE3 and dynGENIE3 to various network infer-
ence algorithms, using only the time series data. Among the competitors are algorithms based on decision trees 
(Jump320), pairwise mutual information (CLR4 and its time-lagged variant tlCLR26), dynamic Bayesian networks 
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(G1DBN27 and VBSSM28), ordinary differential equations (tlCLR/Inferelator pipeline17 and TSNI29), non-linear 
dynamical systems (GP4GRN30, CSI13 and OKVAR-Boost22) and Granger causality (GCCA31). Since the expres-
sion data are here simulated, we can not use known biology in order to set the values of the degradation rates αj 
in dynGENIE3 and we thus set αj to the data-derived values (see the “Decay rate values” section). We also used 
these parameter values for Inferelator and Jump3, which also have degradation rates in their respective models. 
The resulting AUPR scores are shown in Table 1 and the AUPRs for each network are indicated in Supplementary 
Tables S2 and S3. A part of these results were taken directly from the work of Penfold & Wild8.

For each network size, dynGENIE3 is the second top-performing method, while GENIE3 returns much 
poorer predictions, stressing the importance of taking into account the dependence between the time points 
when exploiting time series data. The same effect is observed for CLR, with tlCLR performing better than its 
original counterpart. The best overall performer is CSI. This method however suffers from scaling issues (see the 
“Related works” section), while dynGENIE3 has a lower computational complexity and can thus be applied for 
the inference of very large networks.

Network inference from time series and steady-state data. We applied GENIE3 and dynGENIE3 for the joint 
analysis of time series and steady-state data (Table 2 and Supplementary Tables S4 and S5). dynGENIE3 yields the 
highest AUPR score when it integrates both datasets (compared to the scores obtained when only one of the two 
datasets is exploited), indicating that the two types of data contain different and complementary information that 
should be jointly exploited. GENIE3 returns here again poorer predictions than dynGENIE3. Its predictions for 
some networks are even worse than those obtained when only steady-state data are used.

Two out of the three best performing methods of the DREAM4 In Silico Network challenge make an intensive 
use of the steady-state expression data resulting from the single gene knockouts17,32, highlighting the importance 
of this type of data for the inference of regulatory networks. To check if our dynGENIE3 procedure could be 
improved by an appropriate use of the knockout data, we combined it with the MCZ method17. In the latter pro-
cedure, the weight of the edge directed from gene i to gene j is given by the following median corrected z-score:

σ
=

| − |
w

x x
,

(18)
i j

i ko
j

wt
j

j
,

,

Method Algorithm 10-gene networks 100-gene networks

Tree ensembles

dynGENIE3 4.410 47.596

GENIE3 1.915 13.635

Jump3 3.610 43.434

Mutual information
tlCLR 4.006 39.020

CLR 1.979 16.591

Dynamic Bayesian networks
G1DBN 3.705 24.186

VBSSM 3.225 19.480

Ordinary differential equations
Inferelator 3.191 28.182

TSNI 1.098 1.628

Non-linear dynamical systems

CSI 4.733 57.543

GP4GRN 3.133 36.997

OKVAR-Boost 0.762 3.868

Granger causality GCCA 2.827 7.719

Random 0.260 0.643

Table 1. AUPR scores of the DREAM4 networks learned from time series data. The highest score is shown in 
bold and the runner-up is shown in italic. The scores of G1DBN, VBSSM, TSNI, CSI, GP4GRN and GCCA were 
computed from the AUPRs found in Tables 1 and 2 of Penfold & Wild8. The scores of Jump3 were computed 
from the AUPRs found in Tables 3 and S2 of Huynh-Thu & Sanguinetti20.

Data Algorithm 10-gene networks 100-gene networks

Steady-state GENIE3 2.179 31.652

Time series dynGENIE3 4.410 47.596

Steady-state + time series GENIE3 2.542 30.884

Steady-state + time series dynGENIE3 4.953 73.466

Knockouts MCZ 4.428 98.9973

Knockouts + steady-state + time series MCZ* dynGENIE3 5.983 132.770

Challenge best performer 7.085 103.068

Table 2. AUPR scores of the DREAM4 networks learned from steady-state and/or time series data. The highest 
score is shown in bold.
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where xi ko
j
,  is the expression of gene j when gene i is deleted, xwt

j  is the expected wild-type expression of gene j, and 
σj is the standard deviation of gene j expression. To combine MCZ with dynGENIE3, we simply take the product 
of the scores of the two methods. The final weight wi,j will thus have a high value if the edge i → j is top-ranked by 
both methods. As shown in Table 2, the predictions of the networks can indeed be (strongly) improved when the 
two methods are combined. Actually, this MCZ/dynGENIE3 combination would have been ranked second and 
first in the 10-gene and 100-gene sub-challenges respectively. However, it requires a complete dataset comprising 
the systematic knockout of each gene of the targeted network, which may be unrealistic.

Influence of parameters. dynGENIE3 has two types of parameters: the model kinetic parameters αj, j = 1, …, p 
(decay rates of the genes) and the Random forest parameters (number T of trees per ensemble and number K of 
randomly selected variables at each tree node).

Figure 1 and Supplementary Figs S1 and S2 show that the quality of network predictions returned by dynGE-
NIE3 highly depends on the values of the decay rates. The data-derived αj values (orange horizontal line in the 
figures) yield a higher AUPR score than most of the other tested values of αj and thus seem to be good default 
values for the inference of the DREAM4 networks. Setting αj to the true decay rates, i.e. the decay rates that were 
actually used to simulate the DREAM4 data (these decay rate values were not available to the participants during 
the duration of the challenge), do not necessarily yield better performances (dashed black horizontal line in the 
figures). Actually, there is no clear correlation between the true and estimated decay rates (Supplementary Figs S3 
and S4). The data-derived αj thus only provide a rough order-of-magnitude estimate of the true decay rates, but 
nevertheless lead to good performance in terms of network reconstruction. This probably results from the mis-
match between the dynGENIE3 model (7) and the model used for simulating the data, the decay rate values being 
adjusted to compensate for the fact that a different model is used.

Supplementary Table S6 shows the AUPR scores for different values of the Random forest parameters. The 
scores do not vary much when varying the number of trees. Although a drop in performance is observed when 
decreasing the value of K, the variations in the AUPR scores are much weaker here compared to the variations 
observed when varying the values of the kinetic parameters αj.

Predicting the network response to a double knockout. The DREAM4 challenge comprised a bonus round where 
the goal was to predict for each network the steady-state gene expression levels in several double knockout exper-
iments (where two genes are simultaneously deleted). Given initial gene expression levels at t = 0, we used the 
ODE models learned by dynGENIE3 (from both the steady-state and time series data, using the data-derived 
decay rates) to predict the expression levels of non-deleted genes at successive time points until they reach a 
steady-state. The initial expression levels were set to zero for the two knocked out genes and to the wild-type 
expression levels for the remaining genes.

We compared the (steady-state) predictions returned by dynGENIE3 to a baseline approach that uses the ini-
tial expression levels at t = 0 as predictions. For each network, our approach yields a higher correlation between 
the predicted and true expression levels than the baseline (Fig. 2). Although these correlation values are signifi-
cant (Supplementary Table S7, where p-value < 1e-5 for all the correlation values), a large number of predictions 
remain however far from perfect (Supplementary Fig. S5).

Real-world networks. We applied different network inference methods for the reconstruction of real-world 
sub-networks in three different organisms: Saccharomyces cerevisiae, Drosophila melanogaster and Escherichia 
coli. These organisms are much studied in the literature and known biology can hence be used here to guide the 
network inference. For each method and dataset, we restricted the candidate regulators to known transcriptions 
factors (TFs) and ranked all the putative regulatory interactions between these known TFs and the remaining 
genes. For dynGENIE3, Jump3 and Inferelator, we set the decay rate parameters to experimentally measured 
mRNA decay rates (see next section). For the genes for which a measured decay rate could not be retrieved, αj 
was set to the median measured decay rate of the corresponding species.

Figure 1. AUPR scores of the DREAM4 networks learned using dynGENIE3 on both the steady-state and time 
series data. Each dot corresponds to a case where all the decay rates αj are set to the same value (indicated on the 
x-axis) and each horizontal line corresponds to a case where the αj are respectively set to different values. The 
orange horizontal line is the score obtained when the αj are set to the data-derived values and the dashed black 
horizontal line is the score obtained when the αj are set to the decay rates that were used for the data simulation.
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Gene expression datasets. We used the following time series datasets (the numbers of samples, genes and TFs are 
indicated in Supplementary Table S1):

•	 Saccharomyces cerevisiae dataset33: This dataset comprises gene expression levels in the budding yeast, meas-
ured over 2 cell cycles in wild-type cells and 1.5 cell cycles in cyclin-mutant cells. To validate the network pre-
dictions, we used the gold standard network provided by the DREAM5 challenge7. We restricted our analysis 
to the genes that are periodically transcribed (as identified by Orlando et al.33) and that are also present in the 
gold standard. Measured mRNA decay rates were retrieved from the work of Geisberg et al.34.

•	 Drosophila melanogaster dataset35: This dataset comprises gene expression levels measured over the 24-hour 
period during which the embryogenesis of the fruitfly D. melanogaster takes place. We focused our analy-
sis on the 1000 genes whose expression vary the most across the time series. We used as gold standard the 
experimentally confirmed binding interactions between TFs and genes that have been curated in the DroID 
database36 (version 2015_12). mRNA decay rates (measured from whole embryos) were retrieved from the 
work of Burow et al.37.

•	 Escherichia coli dataset38: This dataset comprises gene expression levels in E. coli, measured at several time 
points after five different perturbations: cold, heat, oxidative stress, glucose-lactose shift and stationary phase. 
We used as gold standard the verified regulatory interactions available in RegulonDB39 (version 9.0), and we 
focused our analysis on the genes that are present in both the dataset and the gold standard. mRNA decay 
rates (measured in cells with a growth rate of 0.63 h−1) were retrieved from the work of Esquerre et al.40.

Results. Figure 3 shows for each organism the number of edges that are shared between the gold standard and 
the 500 regulatory links top-ranked by each method. To check if these numbers of shared edges are significant, we 
compared them to the numbers of edges that are shared between the gold standard and 10,000 random networks 
(represented by the grey histogram). The performances of the different methods depend very much on the organ-
ism. For example, while G1DBN is the second best performer for D. melanogaster, it does not perform better than 
random for S. cerevisiae. dynGENIE3, CLR and tlCLR are the only methods that retrieve a significant number of 
gold standard edges (p-value < 0.05) for each of the three organisms. The relative performances of GENIE3 and 
dynGENIE3 are also very data-dependent, with dynGENIE3 performing better than GENIE3 on the S. cerevisiae 
and DREAM4 datasets while the opposite is observed for D. melanogaster and E. coli.

As for the DREAM4 networks, the performance of dynGENIE3 on the real networks does not change much 
when using other values of the Random forest parameters (Supplementary Table S8), but strongly depends on 
the chosen values of the parameters αj (see Supplementary Fig. S6). For S. cerevisiae and E. coli, setting αj to 
the experimentally measured decay rates (black dashed horizontal line) allow to retrieve a high number of gold 
standard edges compared to the other tested αj values. For D. melanogaster, although a significant number of true 
edges are retrieved with the experimentally measured decay rates, much better performances can be obtained 
with other values of αj. Supplementary Fig. S6 also shows that the data-derived values (orange horizontal line) 
yield reasonably good performances except in the case of E. coli where the top-500 edges do not contain any gold 
standard edge.

It would thus be desirable to have an automatic way of tuning the kinetic parameters, which we first tried 
to achieve by checking how the ability of dynGENIE3 to predict new expression profiles vary according to the 
values of αj. One possible approach to get an unbiased estimate of the predictive performance of Random for-
est models is to use the out-of-bag samples, i.e. the samples that are left out when bootstrapping the original 
data before learning each tree. This approach has the advantage of being less computationally intensive than 
the usual cross-validation procedure. Using the out-of-bag samples, we measured the predictive performance 

Figure 2. Predictive performances of dynGENIE3 and the baseline for the DREAM4 double knockout 
experiments. Each bar shows the Pearson linear correlation between the predicted and true expression 
levels, for all the double knockout experiments combined (5 experiments for each 10-gene network and 20 
experiments for each 100-gene network).
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of dynGENIE3 by computing the correlation between the predicted expression levels xj(tk+1) and the true ones. 
Figure 4 plots this prediction score versus the number of retrieved gold standard edges (or AUPR). Note that 
only one representative DREAM4 network is shown in the figure for the sake of space. The results obtained on 
the DREAM4 networks suggest that the prediction score allows the identification of the best values of αj, since 
a higher prediction score tends to coincide with a higher AUPR. However, this becomes less clear for the real 
networks, the prediction score being positively correlated with the number of retrieved edges for S. cerevisiae but 
negatively correlated for D. melanogaster and E. coli. Although disappointing, these results show that optimising 
the model predictive performance does not necessarily lead to a good feature selection (i.e. the selection of the 
true regulators for each target gene).

We also attempted to use a feature stability criterion41 in order to tune the parameters αj. The idea is to com-
pare the T rankings of candidate regulators respectively returned by the T trees of an ensemble, the candidate 
regulators being each time ranked using the variable importance scores derived from one regression tree. More 
specifically, we used as stability score the average size of the intersection of the two sets of top 5 candidate regula-
tors respectively returned by two regression trees:
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where p is the number of tree ensembles (one for each target gene) and Si,j is the set of 5 top-ranked candidate 
regulators returned by the i-th tree of the j-th ensemble. Supplementary Fig. S7 plots this stability score as a func-
tion of the number of retrieved gold standard edges. Again, the results are not consistent over all the networks, as 
we do not observe a positive correlation for the S. cerevisiae network. On a general note, caution should however 
be taken when drawing conclusions from real data, since real gold standard networks are usually very far from 
being complete.

Figure 3. Inference of the S. cerevisiae, D. melanogaster and E. coli sub-networks. Each vertical line indicates 
the number of regulatory interactions that are shared between the top 500 edges predicted by one method and 
the gold standard network. The grey histogram shows the null distribution computed from 10,000 random 
networks. Due to their high computational complexities, Jump3, CSI and GP4GRN were not applied to the E. 
coli dataset.
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Discussion
In this article, we evaluated the performances of tree-based approaches, GENIE3 and its dynamical variant dyn-
GENIE3, for the inference of gene networks from time series of expression data. For this evaluation, we used 
artificial data from the DREAM4 challenge and real datasets related to three different organisms. Our experi-
ments show that dynGENIE3 is competitive with diverse methods from the literature, even though it does not 
systematically yield the best performance for every network (but none of the compared methods was able to do 
so). Furthermore, our method can also be applied for the joint analysis of steady-state and time series data.

While dynGENIE3 consistently outperforms GENIE3 on the DREAM4 data, the same conclusion cannot be 
drawn for the real datasets, where the relative performances of the two methods are very data-dependent. These 
results could potentially be explained by the multiple differences that exist between the organisms and datasets, 
such as differences in the dynamics of the gene expression regulation or in the rates at which expression levels 
are sampled. A thorough analysis of these differences and their impact on the network inference methods would 
thus be desirable. As a preliminary result, Supplementary Table S9 shows the performance of dynGENIE3 when 
reducing by half the number of time points. Two different subsets of time points were used: the first half of the 
time points and the subset of time points obtained by taking every other time point over the whole time series. 
For the D. melanogaster and DREAM4 10-gene networks, most of the information seems to be contained in the 
first half of the time series, while for the other networks better performance is obtained when data are sampled 
over a longer time period.

As a side result, we showed that dynGENIE3 can be used to make predictions of gene expression profiles 
at successive time points. Here, we evaluated its predictive performances in the context of (simulated) double 
knockout experiments. Preliminary results show that dynGENIE3 performs better than a baseline approach. 
Such results should of course be completed with an evaluation on real data and a comparison to other predictive 
methods.

Figure 4. Performance of dynGENIE3 on one (representative) DREAM4 100-gene network and the three real-
world networks. Each figure shows the correlation between the prediction score and the AUPR (for the 
DREAM4 network) or the number of retrieved gold standard edges among the 500 top-ranked edges (for the 
real networks). The predictions score is the Pearson linear correlation between the predicted expression levels 
xj(tk+1), ∀k, and the true levels in the out-of-bag samples, averaged over all the genes j. Each blue dot 
corresponds to a value of αj (using the same αj value ∀ j). For the DREAM4 network the orange dot corresponds 
to the case where αj are set to the data-derived values and for the real networks the orange dot corresponds to 
the case where αj are set to the measured decay rates found in the literature.
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We investigated the predictive performance of dynGENIE3, estimated on the out-of-bag samples, as well as a 
stability criterion as means for automatically identifying the values of the kinetic parameters αj that would yield 
the best performances in terms of network reconstruction. While both criteria appear to be good indicators for 
the artificial DREAM4 networks, they are not always positively correlated with the number of retrieved gold 
standard edges in the case of the real networks. The design of a method to automatically tune the parameters αj 
is thus left as future work. Meanwhile, setting αj to experimentally measured decay rates (or to the data-derived 
values when measured rates are not available) already allows to obtain good performances.

In our current implementation of dynGENIE3, we use the finite difference approximation to estimate the 
derivative x t

t

d ( )

d
j  in the ODE model (7). Since this approximation relies on the time intervals between consecutive 

sampling time points, dynGENIE3 will miss the regulatory interactions that happen faster than the sampling 
frequency. Other approximation methods could be investigated, e.g. by computing the derivative of a Gaussian 
process fitted to the observed data xj(t1), …, xj(tN)42. Such a method would have the advantage of returning an 
estimate of the derivative at any time point t (and not only at the observation time points).

An important direction of future research is the application of the dynGENIE3 framework for the analysis 
of single-cell expression data. Emerging single-cell technologies now allow to measure gene expression levels 
simultaneously in hundreds of individual cells. Even when the gene expressions are measured at one single time 
point, cells are in different developmental stages, and several algorithms have been developed for ordering the 
cells along the developmental trajectory43. Pseudo time series derived from static single-cell data could therefore 
be used to unravel gene regulatory networks, and some promising initial steps are being taken44.

While we believe that dynGENIE3 is a step in the right direction, we also acknowledge that the complexity 
of gene regulation will pose a strict limit to the potential of GRN inference from expression data alone. Another 
important future research direction is thus the integration in dynGENIE3 of complementary data, such as 
microRNA expression, ChIP-seq, chromatin, or protein-protein interactions. Recently, Petralia et al.45, proposed 
an approach to bias the selection of features in Random forests, which could be adapted for dynGENIE3.

Like the Jump3 method, dynGENIE3 is a hybrid model-free/model-based method that incorporates a dynam-
ical model within a non-parametric, tree-based approach. Various gene regulation models have been proposed in 
the literature, which could be exploited. These models differ in their level of details and also in the way they model 
uncertainties46. In the future, we plan to explore and evaluate other hybrid approaches combining parametric 
terms based on first principles with non-parametric terms in the form of tree ensembles.
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