Abstract
We propose a broadband terahertz absorber consisting of nonstructured graphene loaded with arrays of elliptic dielectric cylinders. The relative bandwidth for the absorption above 90% reaches about 65%. The working mechanism of broad bandwidth mainly comes from two aspects. One is that the nonstructured graphene loaded with elliptic dielectric cylinders provides multiple discrete graphene plasmon resonances with large relative frequency interval. The other is that, for each discrete resonance, there exists a set of continuous plasmon resonances because the width of the dielectric structure varies continuously and gradiently. The broadband terahertz absorber we demonstrate here, based on geometrically gradient dielectric structures and nonstructured graphene, avoids the graphene processing, which shows great potential applications in related devices.
Similar content being viewed by others
Introduction
Terahertz (THz) devices have attracted increasing attention due to the unique properties of the THz region (0.1–10 THz), which share similarities with both the microwave and the far infrared ranges^{1}. Many applications of THz devices have been proposed so far, such as communicating, spectroscopy, sensing and imaging^{2,3,4}. Among these attempts, the absorber plays an important role in many devices working in THz range, including detectors^{5}, sensors^{6}, modulators^{7}, thermal emitters^{8}, camouflage devices^{9}, etc. Traditionally, metallic metamaterials are the key components of many THz absorbers, structures of various geometries have been designed to realize different absorption functions such as dualband^{10,11}, multiband^{12,13} and broadband^{14,15,16}. Recently, graphene, a singlelayered carbon atom arranged in a honeycomb lattice, has become one of the most promising materials for designing THz absorbers due to its tunability, broadband response and high carrier mobility^{17}. Various types of graphenebased absorbers have been proposed to achieve nearunity absorption. Many of these absorbers are based on periodically structured graphene like disks^{18}, microrings^{19}, fishnets^{20}, ribbons with gradient width^{21} and multilayered ribbons with asymmetric voids^{22}. Nevertheless, edge effects of structured graphene are evident disadvantages of these structures^{23}. To avoid this problem, absorbers using nonstructured graphene are put forward, such as metaldielectricgraphene sandwich structure^{24}, graphene loaded with periodical arrays of dielectric bricks^{25}, multilayer graphene sheets on quartz substrates^{26}, graphene with metasurface comprising of plasmonic structures^{27}, and multilayer graphene with uneven dielectric slab structure^{28}.
In this letter, we propose an alternative broadband mechanism of multiband continuous plasmon resonances, and demonstrate that the relative bandwidth of over 90% absorption can reach about 65% in the THz range by using nonstructured graphene loaded with geometrically gradient dielectric structures. Here, we expound the physical mechanism firstly. Then, we present numerical simulations and results. Finally, we investigate the effects of some relative parameters.
Structure and Physical Mechanism
The proposed structure of the broadband THz absorber is presented in Fig. 1(a), which consists of periodic arrays of geometrically gradient dielectric loaded with monolayer graphene supported by a piece of dielectric substrate on a metallic film. In this design, the elliptic dielectric cylinders refer to the geometrically gradient dielectric. Figure 1(b) depicts geometrical parameters of a unit cell. The structure is characterized by the periodic interval W along xaxis, the periodic interval L along yaxis, the semiminor axis R_{1}, the semimajor axis R_{2} and the thickness H_{2} of the elliptic dielectric cylinder, the Fermi level E_{ F } of graphene, the thickness H_{1} of the dielectric substrate and the thickness H_{ m } of the metallic film. The material of the dielectric substrate and the elliptic dielectric cylinder are dielectric 1 and dielectric 2, respectively. In this structure, the metallic film can reflect waves and the nonstructured graphene loaded with periodic arrays of geometrically gradient dielectric can also provide array local resonant reflection (ALRR)^{29}, which form two mirrors of an asymmetric FabryPerot (FP) cavity^{27,30}. The transmission of waves can be blocked as long as the metallic mirror is thick enough compared with the typical skin depth at THz frequencies. The reflection of waves can be eliminated if the critical coupling condition is satisfied^{27} or the impedance of the absorber is matched to that of the free space^{31}. When both the transmission and reflection channels are suppressed, the nearunity absorption can be realized. Since the nearunity absorption is decided by the critical coupling condition or impedance matching condition that is closely related with the graphene plasmon resonances (GPRs), we can broaden the absorption band through broadening GPRs. However, generally, the GPRs are narrowband. So, in order to achieve broadband absorption, the key problem is to find a method to broaden the GPRs. In this configuration, the GPRs are related to the formation of standingwave patterns of graphene plasmons with the wave vector^{32,33}.
where e is the charge of electron, ħ is the reduced Planck’s constant, ω is the angular frequency of graphene plasmons, E_{ F } is the Fermi level of graphene, τ is the carrier relaxation time in graphene, ε_{0} is permittivity of vacuum, ε_{01} is the relative permittivity of the dielectric substrate, and ε_{02} is the relative permittivity of dielectric cylinders above the graphene film. When the structures are illuminated by a plane wave with the electric field linearly polarized along the x direction, the excited graphene plasmons propagate along the x direction and experience multiple reflections from the interfaces between the dielectric cylinders and air gap. In this structure, based on the thin element approximation in scalar Fourier optics, the elliptic dielectric cylinders can be divided into infinite infinitesimals with the profile of isosceles trapezoids along the yaxis, as shown in Figure 1(c). As a result, each pair of lateral faces along the x direction of infinitesimals act as two reflective mirrors of a FP cavity and FPtype resonances involving graphene plasmons occur. The distance L_{ p }(y), namely the FP cavity lengths, between two mirrors at a specific position y is approximated as
The graphene plasmon resonance condition can be written as:
where Re(k_{ GP }) is the real part of wave vector k_{ GP }, N is a positive integer determining the order of a resonance mode, ϕ is the phase of the reflection coefficient for graphene plasmon reflection at two mirrors. In general, ϕ is nonzero that depends on the structural, material parameters and position y. The physical explanation for this nonzero f is related to extension of the plasmon field beyond the interfaces of the dielectric cylinders and air gap.
From eqs (1)–(3), by simple algebra operation, the resonant angular frequency for the Nth order plasmon resonance mode can be obtained as
From equation (4), we find this configuration can provide multiple discrete GPRs since N can be set as different positive integers. We can also see that, for each discrete resonance, there exists a set of corresponding continuous plasmon resonances in the structure because y varies continuously in the elliptic dielectric cylinders. Under certain conditions, the frequency region of the continuous resonances can be larger than the corresponding frequency interval between two discrete neighbor resonances. So, the overlapping resonant frequencies can spread over a wide range, which is referred to as multiband continuous GPRs.
As we know, the angle β between two mirrors of a FP cavity is a key factor determining the performance of resonance, and an angle of zero or close to zero is a condition for obtaining strong resonances. In our proposed structure, the angle β between two mirrors at a specific position y can be approximately given by
From equation (5), we can find that, for a fixed R_{1} and R_{2}, the angle β decreases with a decrease of position y, which shows the FPtype resonances are most likely to occur at smaller position y and can always occur at position y = 0 particularly. For a fixed R_{1} and position y, the angle β becomes smaller and tends to zero as R_{2} increases. This implies that it is reasonable to use the elliptic dielectric cylinders rather than usual dielectric cylinders to act as the geometrically gradient dielectric to obtain multiband continuous GPRs. Since the nearunity absorption is closely related with the GPRs, the achieved multiband continuous GPRs imply that the broadband nearperfect absorption may be obtained under certain conditions.
Methods
To verify the theoretical prediction, we next conduct fullwave numerical simulations employing frequency domain solver in CST Microwave Studio. In the simulation, ε_{r1} = 4 (dielectric 1) and ε_{r2} = 12 (dielectric 2) are selected to show the physical mechanisms of broadband absorption. In the THz range, ε_{r1} = 4 and ε_{r2} = 12 can be approximatively provided by silicon dioxide and silicon, respectively^{34}. The metallic material in this structure is gold, which is described by Drude model. The relative permittivity of gold is expressed by \({\varepsilon }_{gold}(\omega )={\omega }_{\infty }\) \({\omega }_{P}^{2}/({\omega }^{2}+i\omega \gamma )\). Here, ε_{∞}, ω_{ P } and γ are 1.0, 1.38 × 10^{16} rad ⋅ s^{−1}, and 1.23 × 10^{13} s^{−1}, respectively^{29}. Graphene is modeled as an anisotropic layer with thickness h_{ g } = 1 nm. The relative permittivity of graphene comprises the outofplane component ε_{ out } = 2.5 and the inplane component ε_{ in } = 2.5 + iσ(ω)/(ωε_{0}h_{ g }), where the graphene optical conductivity σ(ω) is derived using the randomphase approximation (RPA)^{35,36}. σ(ω) is calculated by σ(ω) = σ_{ inter }(ω) + σ_{ intra }(ω), where σ_{ inter }(ω) and σ_{ intra }(ω) are the interband and intraband contributions, respectively. In the THz range, the interband part σ_{ inter }(ω) is negligible compared with the intraband part σ_{ intra }(ω)^{37}, hence we can use σ_{ intra }(ω) to approximate σ(ω) here, which is described as
where ω is the frequency of the incident wave, k_{ B } is the Boltzmann constant, e is the charge of an electron, T = 300 K is the temperature, & planck; is the reduced Planck’s constant, τ is the carrier relaxation lifetime, and E_{ F } is the Fermi level. Here, relaxation lifetime is expressed by \(\tau =\mu {E}_{F}/e{v}_{F}^{2}\)^{27}, where the mobility μ is 10000 cm^{2}/(V ⋅ s) and the Fermi velocity v_{ F } is 10^{6} m/s. In the simulation, the open boundary condition is adopted in z direction and the unit cell boundary condition is adopted in x and y directions. The absorption is calculated from the obtained S parameters using A = 1 − R − T, where R is the reflection and T is the transmission.
Results and Discussion
First, we consider the case where E_{ F } = 0.5 eV, H_{1} = 15 μm, H_{2} = 11 μm, H_{ m } = 2 μm, R_{1} = 10 μm, R_{2} = 36 μm, L = 80 μm, W = 24 μm. Figure 2(a) shows the corresponding absorption spectrum under normal incident wave with the electric field parallel to xaxis. From Fig. 2(a), we can see the above 90% absorption covers the frequency range of 1.57–3.07 THz and the relative bandwidth reaches about 65%. In order to intuitively confirm the broadband mechanism, the typical distributions of the z component of the electric field at the distance 50 nm above the interface between the graphene and the elliptic dielectric cylinders for sixteen sample frequencies in the 90% absorption band are calculated and shown in Fig. 2(b)–(q), respectively. Fig. 2(b)–(q) clearly show that the different absorption frequencies correspond to the different electric field patterns. However, we can find that, although these field patterns are different, according to the number of nodes in x direction they can be divided into several categories. For example, all the field patterns in the frequency range of 1.57–1.95 THz (Fig. 2(b)–(g)) are similar and have one node in x direction, which shows all the corresponding modes are the firstorder graphene plasmon resonance, namely the dipole resonances. So, we describe the frequency range of 1.57–1.95 THz as the firstorder continuous absorption band. In the absorption band, the different absorption frequencies correspond to the different positions along y direction in elliptic dielectric cylinder, which possess the different FP cavity lengths. Similarly, the high order continuous absorption band can be formed, as shown in Fig. 2(h)–(q). It is noteworthy that the field patterns at some frequencies are not easy to distinguish because of the overlapping of different absorption bands. For example, at the frequency of 3.07 THz, we can see that the field patterns contain three GPRs occurring at the different positions, which are the second, third and fourth order mode, respectively. Figure 2(r) shows the distribution of the z component of the electric field on the central cutting xz plane at 3.07 THz. From Fig. 2(r), we can see the field is bound to the interface between the dielectric and graphene, which further verifies the absorption is closely related with the GPRs. These results show that our simulated results and theoretical predictions are in good agreement, which confirms the broadband mechanism.
In order to investigate the characteristics of the broadband THz absorber, we sweep a few parameters, including semimajor axis R_{2}, incident angle θ and Fermi level E_{ F }. It is necessary to stress that in each group of simulations, all the other parameters and conditions are kept the same as the above simulations.
We first investigate the effect of ellipticity of elliptic dielectric cylinders by varying R_{2} from 1 to 40 μm while fixing R_{1} = 10 μm. Figure 3(a) shows the corresponding absorption as a function of frequency and R_{2}/R_{1} under normal incident wave with the electric field parallel to xaxis. It can be observed that the absorption is very sensitive to ellipticity R_{2}/R_{1}. When the values of R_{2}/R_{1} are very large (e.g. R_{2}/R_{1} > 3), the characteristics of broadband absorption maintain well. On the other hand, when R_{2}/R_{1} is relatively small (e.g. R_{2}/R_{1} < 1.5), the broadband absorption tends to be torn. This is in agreement with that, decreasing the ellipticity R_{2}/R_{1} results in an increase of the angle β between two mirrors of FPtype GPRs at specific positions in the elliptic dielectric cylinders, which eventually makes the corresponding resonance strength weaker and even disappearing. As a result, the corresponding absorption becomes small and the broadband absorption is torn. In order to further confirm the broadband mechanism, the typical distributions of the z component of the electric field at the distance 50 nm above the interface between the graphene and the elliptic dielectric cylinders for R_{2}/R_{1} = 1 and R_{2}/R_{1} = 0.4 are shown in Fig. 3(b) and (c), respectively, which are significantly different from Fig. 2(b)–(q) where R_{2}/R_{1} = 3.6. Comparing the typical distributions of electric field in three different R_{2}/R_{1} ratios, we can visually find that the larger R_{2}/R_{1} can really provide more GPRs. For example, at the case of R_{2}/R_{1} = 0.4, the FPtype GPRs only occur at the position y = 0. However, for R_{2}/R_{1} = 3.6, the FPtype GPRs can occur at a wide region of position y. These field distributions are consistent with the prediction.
Next, we vary the incident angle θ from 0° to 89.9° while maintaining the incident plane wave in the xz plane and the magnetic field parallel to yaxis to examine the incident angular sensitivity. The incident angle θ is defined as the angle between the incident plane wave and the positive zdirection. Figure 4 shows the calculated absorption as a function of frequency and θ. It can be seen that the dependence of the absorption on the incident angle is relatively weak when the incident angle varies between 0° and 60°. The reason for this is that the nearunity absorption of this type of absorber is closely related to the GPRs. However, the excitation of the GPRs is insensitive to the incident angle^{38}. As the incident angle increases beyond 60°, the absorption decreases rapidly. This can be understood through the following qualitative analysis. The nearunity absorption is also closely related to destructive interference. But, in the case of large angle incidence, the reflection amplitudes from two mirrors of the asymmetric FP cavity formed by the metallic film and the nonstructured graphene loaded with periodic arrays of geometrically gradient dielectric have a large mismatch, and the destructive interference amplitudematching condition is destroyed. It is noticeable that there is an abnormal absorption phenomenon near the incident angle 85°. The reason of this phenomenon is: for the structure consisting of a single layer of lossy twodimensional (2D) material separated from a mirror by a dielectric spacer layer, there always exists an angle of incidence, at which the external radiation decay equals to internal absorption decay and thus complete absorption of the 2D material can be achieved^{39}. For our absorber, at 3.6 THz, the above condition of complete absorption is satisfied when the incident angle is near 85°.
Then, we show the effect of Fermi level E_{ F } on the absorption in Fig. 5(a). From Fig. 5(a), we can see that there is a blueshift of the absorption band as E_{ F } increases, which is because the plasmon resonance frequencies of the doped graphene increase with increased Fermi level^{40}. It can also be seen that the absorption decreases rapidly when E_{ F } varies from 0.2 to 0 eV, which results from the fact that the metallic character of graphene decreases when E_{ F } is relatively small. However, there is an interesting and abnormal phenomenon that a narrowband absorption still exists near the upper absorption band even as E_{ F } approaches 0, where GPRs do not exist. To explain this phenomenon, we extract the absorption for E_{ F } = 0.0 eV from Fig. 5(a), as shown in Fig. 5(b). From Fig. 5(b), we can find that the absorption peak frequency equals to about 2.64 THz. The magnetic field amplitude distributions for 2.64 THz are presented in Fig. 5(c) (central cutting xy plane of the dielectric cylinder) and Fig. 5(d) (central cutting yz plane). We can clearly see the field is mainly concentrated within the dielectric cylinder, which is very different from the field of GPRs bound to the interface between the dielectric and graphene (see Fig. 2(r)). This shows that the abnormal absorption is attributed to the dielectric resonance along the yaxis in elliptic dielectric cylinders.
Conclusions
In summary, we propose a broadband THz absorber based on multiband continuous plasmon resonances sustained by geometrically gradient dielectric loaded with graphene. The simulation results show that the relative bandwidth for the absorption above 90% can reach about 65%. The broad bandwidth mainly originates from two key aspects. One is that the nonstructured graphene loaded with geometrically gradient dielectric can provide multiple discrete graphene plasmon resonances with large relative frequency interval. The other is that, for each discrete resonance, there exists a set of continuous plasmon resonances because the width of dielectric structure varies continuously and gradiently. Besides, FP resonances of the dielectrics also contribute to the absorption. Based on nonstructured graphene, the absorber avoids processing graphene and destroying the unique properties of graphene. The approach of combining geometrically gradient dielectric structures and nonstructured doped graphene facilitates the application of the broadband THz absorbers and related devices.
References
Williams, G. P. Filling the THz gap—high power sources and applications. Reports on Progress in Physics 69, 301 (2006).
Jornet, J. M. & Akyildiz, I. F. Graphenebased plasmonic nanoantenna for terahertz band communication in nanonetworks. IEEE Journal on Selected Areas in Communications 31, 685–694 (2014).
Singh, R. et al. Ultrasensitive terahertz sensing with highQ Fano resonances in metasurfaces. Applied Physics Letters 105, 41–48 (2014).
Jepsen, P. U., Cooke, D. G. & Koch, M. Terahertz spectroscopy and imaging  Modern techniques and applications. Laser Photonics Reviews 5, 124–166 (2011).
Wang, J., Gou, J. & Li, W. Preparation of room temperature terahertz detector with lithium tantalate crystal and thin film. Aip Advances 4, 97–105 (2014).
Yahiaoui, R. et al. Multispectral terahertz sensing with highly flexible ultrathin metamaterial absorber. Journal of Applied Physics 118, 083103 (2015).
Savo, S., Shrekenhamer, D. & Padilla, W. J. Liquid crystal metamaterial absorber spatial light modulator for THz applications. Advanced Optical Materials 2, 275–279 (2014).
Diem, M., Koschny, T. & Soukoulis, C. M. Wideangle perfect absorber/thermal emitter in the terahertz regime. Physical Review B Condensed Matter 79, 033101 (2008).
Shi, H., Ok, J. G., Won Baac, H. & Jay Guo, L. Low density carbon nanotube forest as an indexmatched and near perfect absorption coating. Applied Physics Letters 99, 211103 (2011).
Ma, Y. et al. A terahertz polarization insensitive dual band metamaterial absorber. Optics Letters 36, 945 (2011).
Shan, Y. et al. Ultrathin flexible dual band terahertz absorber. Optics Communications 350, 63–70 (2015).
Shen, X. et al. Tripleband terahertz metamaterial absorber: Design, experiment, and physical interpretation. Applied Physics Letters 101, 207402–207445 (2012).
Yahiaoui, R., Guillet, J. P., De, M. F. & Mounaix, P. Ultraflexible multiband terahertz metamaterial absorber for conformal geometry applications. Optics Letters 38, 4988 (2013).
Huang, L. et al. Experimental demonstration of terahertz metamaterial absorbers with a broad and flat high absorption band. Optics Letters 37, 154–156 (2012).
Wen, Y. et al. Planar broadband and high absorption metamaterial using single nested resonator at terahertz frequencies. Optics Letters 39, 1589–1592 (2014).
Li, H., Qi, L., Zhang, X. & Wei, Z. Metamaterial for polarizationincident angle independent broadband perfect absorption in the terahertz range. Optical Materials Express 7, 3294–3302 (2017).
Bao, Q. & Loh, K. P. Graphene photonics, plasmonics, and broadband optoelectronic devices. Acs Nano 6, 3677–3694 (2012).
Yao, G. et al. Dualband tunable perfect metamaterial absorber in the THz range. Optics Express 24, 1518–1527 (2016).
Gao, R. M., Xu, Z. C., Ding, C. F. & Yao, J. Q. Intensitymodulating graphene metamaterial for multiband terahertz absorption. Appl Opt 55, 1929–1933 (2016).
Andryieuski, A. & Lavrinenko, A. V. Graphene metamaterials based tunable terahertz absorber: effective surface conductivity approach. Optics Express 21, 9144–9155 (2013).
Zhu, Z. et al. Broadband singlelayered graphene absorber using periodic arrays of graphene ribbons with gradient width. Appl.phys.express 8, 015102 (2015).
Amin, M., Farhat, M. & Bağcı, H. An ultrabroadband multilayered graphene absorber. Optics Express 21, 29938–29948 (2013).
Kotakoski, J., Santoscottin, D. & Krasheninnikov, A. V. Stability of graphene edges under electron beam: equilibrium energetics versus dynamic effects. Acs Nano 6, 671–676 (2012).
Wang, Z. & Hou, Y. Ultramultiband absorption enhancement of graphene in a metaldielectricgraphene sandwich structure covering terahertz to midinfrared regime. Optics Express 25, 19185–19194 (2017).
Gao, F. et al. Broadband wave absorption in singlelayered and nonstructured graphene based on farfield interaction effect. Optics Express 25, 9579–9586 (2017).
Wu, B. et al. Experimental demonstration of a transparent graphene millimetre wave absorber with 28% fractional bandwidth at 140 GHz. Scientific Reports 4, 4130 (2014).
Yao, Y. et al. Electrically tunable metasurface perfect absorbers for ultrathin midinfrared optical modulators. Nano Letters 14, 6526–6532 (2014).
Xu, B. Z., Gu, C. Q., Li, Z. & Niu, Z. Y. A novel structure for tunable terahertz absorber based on graphene. Optics Express 21, 23803–23811 (2013).
Zhu, Z. et al. Metallic nanofilm halfwave plate based on magnetic plasmon resonance. Optics Letters 37, 698–700 (2012).
Alaee, R., Farhat, M., Rockstuhl, C. & Lederer, F. A perfect absorber made of a graphene microribbon metamaterial. Optics Express 20, 28017–28024 (2012).
Gu, C. et al. A wideband, polarizationinsensitive and wideangle terahertz metamaterial absorber. Progress in Electromagnetics Research Letters 17, 171–179 (2010).
Jablan, M., Buljan, H. & Soljacic, M. Plasmonics in graphene at infrared frequencies. Physical Review B Condensed Matter 80, 245435 (2009).
Xu, W. et al. Dielectric loaded graphene plasmon waveguide. Optics Express 23, 5147–5153 (2015).
Ju, L. et al. Graphene plasmonics for tunable terahertz metamaterials. Nature Nanotechnology 6, 630–634 (2011).
Falkovsky, L. A. & Varlamov, A. A. Spacetime dispersion of graphene conductivity. European Physical Journal B – Condensed Matter 56, 281–284 (2007).
Vakil, A. & Engheta, N. Transformation optics using graphene. Science 332, 1291–1294 (2011).
Dawlaty, J. M. Measurement of the optical absorption spectra of epitaxial graphene from terahertz to visible. Applied Physics Letters 93, 193–197 (2008).
Thongrattanasiri, S., Koppens, F. H. & Fj, G. D. A. Complete optical absorption in periodically patterned graphene. Physical Review Letters 108, 047401 (2012).
Zhu, L. et al. Angleselective perfect absorption with twodimensional materials. Light Science Applications 5, e16052 (2015).
Grigorenko, A. N., Polini, M. & Novoselov, K. S. Graphene plasmonics. Nature Photonics 6, 749–758 (2012).
Acknowledgements
Funding for this research was provided by Natural National Science Foundation of China (NSFC) (11674396).
Author information
Authors and Affiliations
Contributions
Z.Z., J.Z., C.G., W.X., K.L., X.Y. and S.Q. conceived the idea and supervised the study. J.Y. and Z.Z. conducted the numerical simulations and wrote the manuscript. All authors contributed to the data analysis and reviewed the manuscript.
Corresponding author
Ethics declarations
Competing Interests
The authors declare no competing interests.
Additional information
Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Yang, J., Zhu, Z., Zhang, J. et al. Broadband terahertz absorber based on multiband continuous plasmon resonances in geometrically gradient dielectricloaded graphene plasmon structure. Sci Rep 8, 3239 (2018). https://doi.org/10.1038/s41598018217052
Received:
Accepted:
Published:
DOI: https://doi.org/10.1038/s41598018217052
This article is cited by

Designing a Broadband Terahertz Metamaterial Absorber Through BiLayer Hybridization of Metal and Graphene
Plasmonics (2024)

A dualband simple graphenebased absorber for refractive index sensing applications
Optical and Quantum Electronics (2022)

A TripleBand Terahertz Metamaterial Absorber Using Two Double Rectangular Patches Connected by Two Identical Gold Strips
Journal of Electronic Materials (2022)

Wide angle insensitive and polarization independent graphite based superwideband absorber
Optical and Quantum Electronics (2022)

A tunable broadband graphenebased metamaterial absorber in the farinfrared region
Optical and Quantum Electronics (2021)
Comments
By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.