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Identification of novel prognosis-
related genes associated with 
cancer using integrative network 
analysis
YongKiat Wee1, Yining Liu2, Jiachun Lu2,3, Xiaoyan Li4 & Min Zhao1

Prognosis identifies the seriousness and the chances of survival of a cancer patient. However, it remains 
a challenge to identify the key cancer genes in prognostic studies. In this study, we collected 2064 genes 
that were related to prognostic studies by using gene expression measurements curated from published 
literatures. Among them, 1820 genes were associated with copy number variations (CNVs). The further 
functional enrichment on 889 genes with frequent copy number gains (CNGs) revealed that these genes 
were significantly associated with cancer pathways including regulation of cell cycle, cell differentiation 
and mitogen-activated protein kinase (MAPK) cascade. We further conducted integrative analyses of 
CNV and their target genes expression using the data from matched tumour samples of The Cancer 
Genome Atlas (TCGA). Ultimately, 95 key prognosis-related genes were extracted, with concordant 
CNG events and increased up-regulation in at least 300 tumour samples. These genes, and the number 
of samples in which they were found, included: ACTL6A (399), ATP6V1C1 (425), EBAG9 (412), FADD 
(308), MTDH (377), and SENP5 (304). This study provides the first observation of CNV in prognosis-
related genes across pan-cancer. The systematic concordance between CNG and up-regulation of gene 
expression in these novel prognosis-related genes may indicate their prognostic significance.

Prognosis, diagnosis and treatment are key components in medicine. Cancer prognosis involves an assessment of 
how the disease will affect the individual and an estimation of life expectancy. The objective of prognosis research 
is to understand and predict the potential outcomes and survival rates1. This information would be valuable in 
clinical trials to identify novel drug agents and improve treatment2. Identifying the cancer biomarkers is a cru-
cial part in prognostic studies3. Biomarkers are indicators of certain biological conditions4 and identifying these 
has both prognostic and predictive value5. A prognostic biomarker provides information concerning the likely 
outcomes of an individual’s treatment including disease progression and disease recurrence6. Examples of prog-
nostic biomarkers are Prostate-Specific Antigen (PSA) in prostate cancer and the phosphatidylinositol 3-kinase 
(PIK3CA) mutation status of tumours - which are associated with human epidermal growth factor receptor 2 
(HER2) in women with positive metastatic breast cancer6. Detection of biomarkers using molecular biology tech-
niques enables the categorisation of molecular signatures of different types of cancer and provides a guide for 
individual therapy5. Biomarkers are also useful for detecting and monitoring the physical changes of a cell during 
disease progression4.

Genetic abnormalities in transcription and translation could serve as prognostic biomarkers in human can-
cers7. Several studies have indicated value of genomic data specifically in relation to gene expression levels as 
well as clinical prognostic in multifactorial disorders including cancers8. These studies also emphasized the 
importance of personalised medicine and that analysing gene expression signatures may lead to the discovery of 
novel therapeutic agents for particular cancer types2. Currently, gene expression profiling is used to identify gene 
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expression features that correlate with survival following cancer prognosis and this has enabled the creation of 
expression profiles that can be used to identify the molecular prognosis signature in different types of tumours9. 
Bioinformatics tools have also been developed to identify the molecular signatures10 but analysis of data sets 
across different human cancer types is complex. These data sets can be categorized into several groups including 
gene expression levels, methylation levels and frequency of genetic mutations2 and the results used to build a 
prognosis model for different group of cancer patients.

Cancer progression involves a series of genetic alterations involving mutations and copy number of variants 
(CNVs) in human genomes11,12. There are two main groups of CNVs: copy number loss (CNL) which is the loss 
of gene copies; and copy number gain (CNG) which is the addition of gene copies11. CNVs are clustered in dis-
tinct chromosomal regions and may alter the expression of many different types of genes13. In addition, CNVs 
play a crucial role in the expression for both protein-coding and non-coding genes and can influence and alter 
the normal signalling pathways13. Therefore, it is important to understand the CNVs and their association with 
gene expression when investigating the disease-associated changes and identifying their significance in cancer 
prognostic studies.

Several studies have investigated gene expression and CNVs in different cancers14–16 but there has been 
no systematic study of the features of CNVs in prognosis-related genes. We conducted a study to identify the 
prognosis-related genes using integrative network analysis across different cancer types and their clinical out-
comes. We integrated the prognosis-related genes with expression and CNV data, and this will help in identifying 
the potential biomarkers in multiple cancers.

Results
Frequent copy number gain in potential prognosis-related genes across different types of can-
cer. To provide an unbiased perspective of CNVs in some major cancer types, our studies were designed based 
on following the steps as shown indicated in Fig. 1A and the results are given in Fig. 1B. This shows results 
mapped based on their gene names with concordance CNGs events and up-regulation from the largest cancer 
genomics data source – TCGA. Most of the genes were identified with CNGs (Fig. 1B) and we focused on those 
novel prognosis-related genes using expression method only (i.e. each gene with their unique PubMed ID) in 
prognostic studies and there were 1820 genes associated with CNVs in multiple cancer types (Table S1). We used 
a defined threshold value of >2 to identify the prevalence of CNVs in these prognosis-related genes by counting 
the ratio of number of samples with gene copies gain divided by the number samples with gene copies loss and 
the ratio number of samples with gene copies loss divided by the number samples with gene copies gain. One 
thousand and fifty prognosis-related genes were identified as CNGs (ratio of Gain/Loss > 2) while 277 genes were 
associated with CNLs (ratio of Loss/Gain > 2). Finally, 889 prognosis-related genes were observed with frequent 
CNGs (number of CNGs TCGA samples > 30) and these genes were then used for functional enrichment and 
integrative analysis (Table S2). We identified that there was a predominance of genes involved in CNGs as 1050 
genes were associated with constant CNGs (ratio of Gain/Loss > 2).

Functional enrichment analysis of the 889 genes was conducted using Gene Ontology (GO) terms as func-
tional units (Fig. 1C). The results provide information on enriched with cell cycle, growth, apoptotic process, 
cell division and cell proliferation: all features related to cancer progression. Cancer results from a single somatic 
cell that has accumulated multiple DNA mutations and result in cell proliferation caused by mutations in genes 
that control proliferation and the cell cycle17. Abnormal stimulation of the apoptotic process will threaten cell 
survival and therefore, apoptosis is highly regulated in human cells18. Nevertheless, most of the cancerous cells 
escape this cell death process by disrupting the apoptosis pathway and inactivating pro-apoptotic cell death ele-
ments18. For example, BCL-2, the first anti-apoptotic gene discovered, is encoded by the human BCL-2 gene and 
involved in the regulation of programmed cell death including autophagy, necrosis and apoptosis19. The elevated 
level of gene expression of BCL-2 is often found in many cancer types including lung cancer and lymphomas20. 
Overexpression of BCL-2 and related anti-apoptotic proteins has been demonstrated to inhibit cell death induced 
by growth factor deprivation, hypoxia and oxidative stress20. The potential prognosis-related genes with CNG 
have fundamental roles in chromosome organization19. Our enrichment analysis provides insight into the role of 
these prognosis-related genes in cancer progression including cancer-related pathways, cell growth and cell cycle.

Correlation of CNG with gene upregulation in novel prognosis-related genes using the corre-
sponding TCGA tumour samples. In order to find novel prognosis-related genes with concordance CNGs 
and up-regulation, the correlation between CNGs and the overexpression of genes was investigated using the 
matched TCGA tumour samples. The threshold value (ratio of Gain_Over/Loss_Under) was set at >20 sam-
ples and, after investigating the matched TCGA samples for both CNVs gain and gene overexpression, 95 genes 
were identified with consistent CNGs and gene up-regulation (Table S3). These were identified as potential 
prognosis-related genes and used for functional enrichment and network analyses. The results from the functional 
enrichment analysis showed that these genes were related to the cancer progression in the cell cycle (adjusted 
P-value = 1.670E-15) and the biological pathways in cancer (adjusted P-value = 1.137E-9). Figure 1D shows the 
mutational pattern of these genes across different types of cancers and that these genes have a high mutation 
rate in the tumour samples as shown by gene amplifications. For example, the frequency of genetic alterations 
in TCGA oesophageal carcinoma that exhibited at least one copy number change for each gene was the highest 
with 157 cases (85.3%). The frequency of the amplification event in these 95 genes was greater than 84.6% (490 
cases) in the ovarian serous cystadenocarcinoma patients. In addition, in TCGA oesophagus-stomach cancers, 
there were 288 cases (85.4%) with at least one copy number change. More than 80.0% of oesophagus-stomach 
cancer patients involved gene amplifications. The same proportion of copy number changes in both CNGs and 
CNLs with more than 60.0% cases were identified in 14 cancer datasets from six types of cancer, including breast 
cancer, head and neck squamous cell carcinoma, lung cancer, bladder urothelial carcinoma, sarcoma and uterine 
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carcinosarcoma. In addition, there were three cancer types with greater than 70% of CNGs – TCGA lung squa-
mous cell carcinoma (78.8%), uterine carcinosarcoma (75.0%) and ovarian serous cystadenocarcinoma (75.9%). 
Most of the cancer patients had CNGs, and the deletion events only affected a small group. The results show the 
significance of features involving the 95 genes that may serve as prognosis-related genes because they promote a 
large number of copy number gains in clinical applications.

Figure 1. Pipeline for the discovery of consistency in copy number of gain and up-regulation of novel 
prognosis-related genes in pan-cancer and the gene enrichment analysis of 889 genes with frequent copy 
number gains (CNGs) and mutational landscape of 95 genes with constant CNGs and up-regulation. (A) 
This flowchart shows the pipeline for finding the novel prognosis-related genes which consistent with the 
copy number of gain in CNVs and their corresponding gene expression. The work divides into several steps: 
Identifying short descriptions containing both cancer and prognosis keywords: [(prognosis OR prognostic) 
AND (cancer OR tumour OR carcinoma)] from GeneRIF (Gene Reference Into Function) database; Manually 
curating the data from published literature to extract the corresponding gene names in Human. (B) 2309 genes 
with different studies (each with unique PubMed ID) extracted from the literature database and identified 2064 
genes related to prognostic studies; A gene set of 1820 genes which associated with CNVs;Total number of 
1050 prognosis-related genes identified with frequent CNGs based on the cut-off point (ratio of Gain/Loss > 2)
and 277 genes associated with CNLs (ratio of Loss/Gain > 2); 889 genes observed as frequent CNGs with 
number of CNGs TCGA samples >30; Lastly, 95 genes identified with consistent CNGs and over-expression 
in the same TCGA samples. (C) Gene enrichment analysis of 889 prognosis-related genes with concordant 
copy number gains (CNGs). The scatterplot presents the summarized GO terms of all 889 prognosis-related 
genes with CNGs. Circles show the GO clusters and are plotted in two-dimensional space according to other 
GO terms’ sematic similarities. Y-axis demonstrates the similarity of the GO terms; x-axis indicates the log of 
corrected P-value (bubbles of right corrected P-values are larger); circle colour represents directly proportional 
to the frequency of the GO term in the Gene Ontology Annotation (GOA) database (D) A general pan-cancer 
overview between the correlations of copy number variation (CNV) aspects based on 95 prognosis-related 
genes with up-regulated gene expression conceivably caused by copy number gains (CNGs). Y-axis shows the 
alteration frequency in percentage (including both amplification and deletion mutation); x-axis indicates the 
cancer types. Blue - Deletion; Red- Amplification.
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In addition to the sample analysis, we explored the genomic alterations in multiple genes across several 
tumour samples to further elaborate the prognosis-related genes (Fig. 2). From the sample-based mutational 
analysis, we selected 20 genes with the highest amplification rates (Table S1) in three different cancer types (with 
mutation frequency >85.0%): oesophageal carcinoma (87.0%), ovarian serous cystadenocarcinoma (86.7%) 
and oesophagus-stomach cancers (85.4%). We used the OncoPrint in cBioPortal derived from a query search 
for alterations in these 95 genes in TCGA oesophageal carcinoma, TCGA ovarian serous cystadenocarcinoma, 
and TCGA oesophageal-stomach cancers samples. An OncoPrint is a graphical display of gene mutations in 
human cancer tumour samples. The 20 genes with the highest amplification rate across the three tumour sam-
ples were selected (Figure S1, Table S4). From the OncoPrint results in TCGA oesophageal carcinoma, there 
were six genes with more than 20.0% alteration frequency. Five of them, FADD, SENP5, OPA1, ACTL6A and 
BCL6 showed the highest alteration frequency with >22.0% amplification. In the TCGA ovarian serous cysta-
denocarcinoma sample, the OncoPrint showed six genes with more than 20.0% of genetic alterations frequency 
and most of the alterations were related to homozygous addition. ACTL6A, EBAG9, OPA1, SENP5, BCL6 and 
ATP6V1C1 had the highest amplifications frequency each with greater than 21.0%. From the OncoPrint of the 
TCGA oesophageal-stomach cancers sample, a total of seven genes had greater than 10.0% - alterations frequency 
and those with the highest frequency were: ERBB2 (25.0%), JUP (15.0%), CUL7 (13.0%), RAB22A (12.0%), CPSF4 

Figure 2. Sample-based mutational and network analysis for the eight-potential cross-cancer prognosis-
related genes with high amplification rate. (A) Sample-based mutational patterns for the eight genes from 
the three different cancer samples - TCGA esophageal carcinoma, TCGA ovarian serous cystadecarcinoma, 
TCGA esophagus-stomach cancers. Columns indicate samples and rows indicate genes. The colour bar is 
used to represent the genomic alterations such as CNVs and somatic mutations. The different mutational 
types are marked using different colours. The mutational types in (A–D) were depicted by colours. The red 
and blue show the amplification and deletion respectively. The grey indicates no mutations in the sample. The 
percentage represents the alteration frequency for each gene. (B) The network of the common eight genes with 
high amplification rates. The network represents the molecular function-based relationship between these 
eight genes and the novel linker genes in cancer development. Yellow circles represent prognosis-related genes 
and blue circles indicate linker genes. (C) A pan-cancer global view of copy number variation (CNV) features 
based on these common eight genes with increased gene expression potentially induced by copy number 
gains (CNGs). Y-axis shows the alteration frequency in percentage (including both amplification and deletion 
mutation); x-axis indicates the cancer types. Blue - Deletion; Red- Amplification.
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(11.0%), FADD (11.0%), IQGAP1 (11.0%), KRAS (11.0%) and LASP1 (10.0%). SENP5, OPA1, ACTL6A, BCL6, 
EBAG9, ATP6V1C1, KRAS and MTDH were found in all samples with greater alteration frequency and amplifica-
tion in comparison with other genes. Sumoylation (SUMO) is a reversible and dynamic post-translational process 
which is involved in regulating the functions of different proteins including those involved in cellular responses, 
phosphorylation and protein-protein interactions21. Several studies21 have reported that the SUMO-specific pro-
teases (SENPs) that remove SUMO from substrates are often amplified in human cancers. For example, SENP5, 
which plays an important role in cell division as well as sustaining the morphology and function of the mito-
chondria22. Findings indicate that breast cancer patients with low expression levels of SENP5 have a better prog-
nosis than those with high levels23. OPA1 is a member of the dynamin GTPase family and is located in the inner 
membrane of mitochondria24. OPA1 has a role in regulating cell death, and the cell death signals are amplified 
due to the formation of an apoptosome when OPA1 interacts with APAF1 and caspase 924. OPA1 is overexpressed 
and has poor prognosis value in lung adenocarcinoma cells25. Actin-like 6 A (ACTL6A), also known as BAF53A, 
encodes a family member of actin-related proteins (ARPs). ACTL6A is commonly involved in activating the 
transcription process, repressing the selected genes by chromatin remodelling26, and plays a key role in lung 
cancer invasion and metastasis. ACTL6A is overexpressed in lung cancer tissues and the upregulation of ACTL6A 
is associated with the clinic-pathological characteristics and is a poor prognostic factor for both cancer types26. 
A protein transcriptional repressor is encoded by BCL6A and has been implicated in different types of cancer 
particularly lymphomas27. The role of BCL6A in B cell development and lymphomagenesis supports the hypoth-
esis that BCL6A plays a major role as a proto-oncogene in lymphoma development27. BCL6A protein is highly 
expressed in breast cancer tissues and this expression is correlated with accurate prognosis and poor survival 
rates for patients28. Estrogen receptor-binding fragment-associated antigen 9 (EBAG9) is a gene which binds to 
the estrogen-responsive component located near the 5’-flanking region of the gene. The final product of EBAG9 
is a tumour-associated antigen that is highly expressed in different types of cancer including breast29 and kid-
ney30. In addition, several studies have indicated that the immunoreactivity of EBAG9 is positively associated with 
poor prognosis and its up-regulation is predicted to promote malignant progression in cancers30. The function 
of Atp6v1c1 in metastasis is poorly defined but studies have shown that Atp6v1c1 is overexpressed in oral cancer 
patients and encodes an element of vacuolar ATPase (V-ATPase), a multi-subunit enzyme that accelerates the 
process of acidification in the intracellular components of eukaryotic cells31. Atp6v1c1 expression in metastatic 
oral squamous cell carcinoma indicates that it has a significant role in cancer cell proliferation and metastasis. 
Our study showed that Atp6v1c1 may regulate the activity of lysosomal V-ATPase and trigger bone metastasis 
and breast tumour growth and may be is a promising target in the treatment and control of breast cancer32. KRAS 
is a proto-oncogene that encodes a protein member of the small GTPase superfamily. The encoded product binds 
to the protein which is involved in regulating cellular responses to extracellular stimuli. KRAS is the most fre-
quently mutated gene among the RAS gene family and has a 17–25% mutations rate in all cancer types33. Most 
studies show that the KRAS gene mutations are poor prognostic factors33 but that the upregulation of metadherin 
(MTDH) is associated with tumour progression in female reproductive system cancers. In addition, the overex-
pression of MTDH can predict the survival outcome in female reproductive malignancies34. MTDH complies 
with most of the features that identify the vital elements that regulate numerous processes in carcinogenesis. The 
expression of MTDH/AEG-1 is up-regulated in different types of cancers including breast and lung cancer. It has 
been demonstrated that overexpression of MTDH/AEG-1 can trigger the growth of malignant tumours through 
a complicated oncogenic signalling network34. As a result, we identified eight common mutated genes (EBAG9, 
MTDH, ATP6V1C1, OPA1, ATCL6A, BCL6, SENP5, KRAS) in the three different cancer types and used them 
as cross-cancer biomarkers to perform an integrative network analysis. Most of our results indicated that CNG 
triggers upregulated expression and is a reliable prognostic marker in cancer prognosis.

Copy number gain with overexpression in novel prognosis-related genes with the highest num-
ber of prognostic studies. We selected those prognosis-related genes with the highest number of studies 
(>300) to investigate their CNGs and gene-upregulation. The highest frequency genes in CNGs, BIRC5, ERBB2 
and EZH2 were used to perform a pan-cancer mutational analysis (Fig. 3). BIRC5 gene is known as a baculoviral 
inhibitor and inhibits the apoptosis signalling pathway that is expressed in human tissues. This gene has a role in 
cell cycle regulation including various cell cycle checkpoints35. In addition, the expression level of BIRC5 is found 
to be associated with tumorigenesis in cancer progression36. High copy number of BIRC5 gene is found in tumour 
tissues37 and several studies have indicated that BIRC5 is highly amplified in different types of cancer, including 
pancreatic and lung35. BIRC5 agents have been identified as a potential therapeutic target in cancer treatment 
but their long-term effectiveness is unclear. This is because there are numerous factors involved in regulating 
the activity and expression level of BIRC5 which could influence the efficacy of BIRC5-targeted therapies36. The 
ERBB2 oncogene is a member of the epidermal growth factor receptor family that encodes a receptor tyrosine 
kinase which is usually involved in numerous signal transduction pathways38. The overexpression of ERBB2 has 
been found in breast tumours and correlates with poor prognosis38. In addition, the ERBB2 gene is overexpressed 
in lung cancer and prostate cancer. EZH2 is the key substance of polycomb repressive complex 2 (PRC2) which 
codes for histone methyltransferase. This enzyme silences the gene through post-translational histone modifica-
tion39 and triggers the oncogenic signalling pathways via chromatin modification and by silencing the tumour 
suppressor genes39. Therefore, histone methyltransferase plays a significant role in oncogenesis. EZH2 and the 
production of histone-lysine N-methyltransferase is often highly amplified in various types of human malig-
nancies including lung cancer and breast cancer40. Many studies have evaluated whether the overexpression of 
EZH2 may be a prognostic factor for survival in patients with lung cancer40. The tumour sample with the high-
est amplification frequency and the most significant overall survival value was selected for each type of cancer. 
BIRC5 accounted for 4.6% of amplification frequency of TCGA sarcoma. Another prognosis-related gene, ERBB2 
was amplified in six cases (10.7%) of patients in a uterine corpus endometrial carcinoma dataset. The frequency 
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of gain-of-function in EZH2 demonstrated a higher percentage in ovarian serous cystadenocarcinoma patients 
(11.4%, 66 cases) than in skin cutaneous melanoma patients (5.7%, 21 cases). Furthermore, we showed that all 
these genes were consistently overexpressed in the tumour sample with CNGs (Fig. 4). The frequency of the 
oncogenes with CNGs and overexpression across the tumour samples suggested that this could be a common 
mechanism in cancer development. Using cBioPortal, the overall survival rates of patients in these cancer types 
was compared between tumour samples with or without alterations in each gene, and those which contained the 
highest number of tumour samples (Fig. 4). Those patients with TCGA uterine corpus endometrial carcinoma 
had significant overall survival rates with p-value 1.930e-6. We observed that TCGA uterine corpus endometrial 
carcinoma patients with genetic alterations in BIRC5 had significantly better overall survival rates when com-
pared to TCGA sarcoma and ovarian serous cystadenocarcinoma patients with gene amplification in BIRC5 and 
EZH2. The median month survival for sarcoma patients with genetic alterations was 32.13 while that of patients 
without genetic alterations was 76.35. There was a significantly difference in survival rates between patients with 
and without genetic alterations. The expressions of BIRC5, ERBB2 and EZH2 and their mRNA were compared 
between the cell subsets in the two groups. The expressions data were downloaded from cBioPortal (Fig. 4), 
statistically analysed using the t test, and compared using the merged data (amplification and gain) and diploid. 
A P-value of < 0.05 indicated that the difference was statistically significant. We also performed a t-test analysis 
for each BIRC5, ERBB2 and EZH2 in TCGA sarcoma, uterine corpus endometrial carcinoma and ovarian serous 
cystadenocarcinoma. Both BIRC5 and ERBB2 genes generated a significant result with P-value < 2.2e-16 in both 
TCGA sarcoma and uterine corpus endometrial carcinoma. The EZH2 gene also gave a significant P-value with 
1.19e-07 in TCGA ovarian serous cystadenocarcinoma. The difference was statistically significant (P < 0.05) in 
all the results which suggests that the CNG triggers gene expression changes in these potential prognosis-related 
genes. Our results indicate that these changes could be an important factor in examining and predicting the out-
come of a disease including cancers.

To identify the expression of the eight-potential cross-cancer biomarkers in the prognosis of four different 
cancer types we used to show in the Kaplan-Meier Plotter online platform (www.kmplot.com) namely breast41, 
ovarian42, lung43 and gastric44 cancer. We evaluated all the eight prognostic-related genes to examine their impact 
in the recurrence-free survival (RFS) of the four different cancer type patients. The desired Affymetrix was valid: 
202666_s_at (ACTL6A), 226463_at (ATP6V1C1), 203140_at (BCL6), 204274_at (EBAG9), 204010_s_at (KRAS), 
212248_at (MTDH), 216071_x_at (OPA1) and 213184_at (SENP5). Survival curves were plotted for all patients 
in breast (n = 1015; Figure S2), ovarian (n = 1816; Figure S3), lung (n = 2457; Figure S4) and gastric (n = 1815; 
Figure S5) cancer. When group of patients was divided into four groups according to the different cancer types, 
half of the genes: (i) ACTL6A (P = 2.3e-15 in breast cancer, P = 8e-04 in ovarian cancer, P = 0.00016 in lung 
cancer and P = 2.3e-15 in gastric cancer), (ii) ATP6V1C1 (P = 0.014 in breast cancer, P = 0.024 in ovarian cancer, 
P = 1.3e-06 in lung cancer and P = 0.014 in gastric cancer), (iii) BCL6 (P = 0.031 in breast cancer, P = 0.00058 in 

Figure 3. A pan-cancer view of copy number variation (CNV) distribution in three novel prognosis-related 
genes: BIRC5 (A), ERBB2 (B) and EZH2 (C) and their corresponding CNV mutational landscape. Y-axis shows 
the mutation frequency in percentage (including both amplification and deletion mutation); x-axis indicates the 
cancer types. Blue - Deletion; Red- Amplification.

http://www.kmplot.com


www.nature.com/scientificreports/

7SCIEnTIFIC RepoRts |  (2018) 8:3233  | DOI:10.1038/s41598-018-21691-5

ovarian cancer, P = 0.028 in lung cancer and P = 0.031 in gastric cancer) and (iv) EBAG9 (P = 1.4e-09 in breast 
cancer, P = 0.08 in ovarian cancer, P = 0.00029 in lung cancer and P = 1.4e-09 in gastric cancer) were associated 
with RFS. Interestingly, we identified that MTDH was not statistically associated with RFS in ovarian cancer 
(P = 0.59); however, the high expression of MTDH was associated with a poor prognosis in other three cancer 
types – breast (P = 3.5e-10), lung (P = 2.1e-06) and gastric (P = 3.5e-10; Sup Fig. 1). The high expression of OPA1 
showed statistically significant with P < 0.05 in both breast and gastric cancer (P = 1.6e-06, respectively); while 
SENP5 was associated with RFS in the other two cancer types – ovarian cancer (P = 0.011) and gastric cancer 
(P = 1.1e-05). Overall, these results will help to further validate the reliability and reproducibility of these eight 
prognostic genes and may aid in assessing the patients’ risk profile.

Network connectivity of potential prognostic marker and oncogene with high frequency of 
gene amplification and overexpression. We performed network analysis using GeneMANIA and 
Cytoscape to identify the correlation among the eight genes identified from our expression analyses of genes with 
both high frequency CNGs and consistent gene up-regulation. The derived network (Fig. 2B) comprised of eight 
core genes and another 20 that were shown in Cystoscape. Genes (nodes) with the highest number of interactions 
were EBAG9 (17 connections), MTDH (16), ATP6V1C1 (14), OPA1 (11), ATCL6A (7), BCL6 (6), SENP5 (5) and 
KRAS (3). These 28 genes have been implicated in several biological and cellular processes including cell-cell 
junction and cell-cell junction assembly. Using Toppfun, the functional enrichment results show that these 20 
genes are enriched with regulation of translation and cell aging. Translational regulation has been shown to play 
an important role in cancer and tumour progression. Tumour cells use these alternative mechanisms of transla-
tion initiation to promote survival during tumour progression45. Cellular senescence is a mechanism of cellular 
aging that has diverse effects on both cancer and tissue aging. After a certain cell division, primary human cells 
permanently lose their ability to proliferate, resulting in a senescent phenotype in which major changes take place 
in various cellular phenotypes and epigenomes46. Because senescent cells are defined by their inability to prolif-
erate and constitute a barrier against tumour formation, an epidemiologic link between aging and cancer was 
hypothesized46. The genes involved in cell aging are TERF1, OPA1 and ATR. We performed integrative analysis 

Figure 4. The expression analysis of up-regulated expression of three novel prognosis-related genes with CNGs 
and their survival curves: BIRC5, ERBB2 and EZH2. Plots were derived from cBioPortal based on the Kaplan-
Meier analysis. Blue line indicates lower expression and red line indicates higher expression. (A) The expression 
level of BIRC5 in TCGA sarcoma. (B) The expression level of ERBB2 in TCGA uterine corpus endometrial 
carcinoma. (C) The expression level of EZH2 in TCGA ovarian serous cystadenocarcinoma. (D) Overall 
survival analysis of BIRC5 in TCGA sarcoma. (E) Overall survival analysis of ERBB2 in TCGA uterine corpus 
endometrial carcinoma. (F) Overall survival analysis of EZH2 in TCGA ovarian serous cystadenocarcinoma.
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of the linker genes (KIAA0196, HRSP12, CPNE3, IMPA1, FAM131A, NCBP2, DPY19L4, FXR1, RAD21, EMC2, 
TERF1, TOPBP1, UBR5, EIF3E, TRAM1, PTK2, ATR, RAB2A, PABPC1 and ZBTB24) which were identified in 
GeneMANIA using cBioPortal. The results show a significant amplification frequency in all the tumour samples 
(Fig. 2C). The cases with more than 40.0% genetic alterations and including both CNLs and CNGs were identified 
in six cancer datasets from four cancer types: ovarian serous cystadenocarcinoma, lung squamous cell carcinoma, 
oesophageal carcinoma and uterine carcinosarcoma. For example, the TCGA ovarian serous cystadenocarcinoma 
patients had more than 60.0% (360 cases) genetic alteration in CNGs. In particular, TCGA ovarian serous cys-
tadenocarcinoma patients had significant overall survival rates of a p-value 0.0351. The median month survival 
for ovarian serous cystadenocarcinoma patients with genetic alterations was 48.72, while that of patients without 
genetic mutation was 39.55. Overall, most of cancer cohort patients had CNGs compared to patients affected 
with CNLs. This implied that these linker genes also play a significance role in prognostic studies through genetic 
alterations in high frequency of copy number gains.

Conclusion
This study has revealed some significant somatic mutational characteristics of prognosis-related genes in multiple 
cancer types, particularly with respect to the CNVs and their effects on gene expression. The results revealed that 
most of the prognosis genes were associated with CNGs and, therefore, we focused on the concordant patterns 
between CNG and gene up-regulation. Our results provided information on the correlation between gene dos-
age and somatic CNV in prognosis genes but a more systematic examination of the expression quantitative trait 
locus would provide detailed information on the relationship between CNV and gene expression. In addition, 
this study showed that these prognosis-related genes were associated with cancer pathways including the MAPK 
cascade. From the OncoPrint analysis of 95 oncogenes, we observed that there are eight oncogenes with high 
amplification rate in TCGA ovarian serous cystadenocarcinoma, TCGA oesophageal carcinoma and TCGA lung 
squamous cell carcinoma. The results indicate that these eight oncogenes – EBAG9, MTDH, ATP6V1C1, OPA1, 
ATCL6A, BCL6, SENP5 and KRAS are likely to be important cross- cancer target genes for cancer therapies and 
may also be associated with the patient’s survival rate. Further experimental analysis and validation may provide 
insight into the potential molecular mechanisms underlying copy number gain and recurrent over-expression. 
However, the limited sample size in some of the cancer types may remove many CNVs with lower frequencies. 
In addition, the signals outside the pre-designed probes may be lost as TCGA largely depends on the CGH array 
between normal and cancer samples for distinguishing different types of CNVs. This causes in limited sample 
sizes and indicates the presence of many undiscovered structural variants in cancer development.

Our systematic investigation of copy number variations in potential prognosis-related genes showed that the 
copy number gain of the prognosis-related genes clustered in several regions. These genes obtained from prog-
nostic studies using expression experimental method were associated with copy number gain and have significant 
roles in cancer-related pathways. The gain of copy number in these prognosis-related genes may promote the gene 
expression change associated with tumorigenesis. Given the large amount of information that CNVs can provide 
with regard to clinicopathological characteristics and complex disease signalling patterns, their use in future 
explorations in prognostic studies will facilitate the discovery of novel biomarker and drug agents to improve 
patient preselection for clinical trials.

Methods
Cancer prognosis-related gene expression changes curated from published literature. To 
examine cancer prognosis-related genes globally, we conducted an extensive literature search and curation. By 
using Perl regular expression, we identified short descriptions containing both cancer and prognosis keywords: 
[(prognosis OR prognostic) AND (cancer OR tumour OR carcinoma)] from GeneRIF (Gene Reference Into 
Function) database (October, 2016). The data were manually curated from published literature to extract the 
corresponding gene names in Human. There were 2370 genes with different studies (each with unique PubMed 
ID) extracted from the literature database and we identified 2064 genes related to prognostic studies. We focused 
on those prognostic studies which related to gene expression measurements. To systematically investigate the 
somatic CNVs in novel prognosis-related genes, we developed a pipeline and generated a list of 1820 genes which 
are associated with CNVs (Table S1).

Pan-cancer CNV data for prognosis-related genes from The Cancer Genome Atlas (TCGA). To 
explore the global view of CNVs in several major types of cancer in an unbiased way, we overlapped all these 
2064 prognosis-related genes with the somatic CNVs determined from TCGA CNV data from the Catalogue 
of Somatic Mutations in Cancer (COSMIC) database (V73)47, which is one of the largest resources for cancer 
genomics research. It resulted 1820 genes were associated with CNVs. The number of TCGA samples with gain 
or loss copies were counted, and we defined a threshold value to prioritize the instructive CNV occurrences for 
these prognosis-related genes. Particularly, we set two cut-off values with ratio of Gain/Loss (at least twice of 
TCGA samples with CNGs as TCGA samples with CNLs) and ratio of Loss/Gain (at least twice of TCGA samples 
with CNLs as TCGA samples with CNGs) >2 to determine the prevalence of CNVs in these prognosis-related 
genes. This approach resulted in 1050 prognosis-related genes with the evidence of an overall gain of CNVs and 
277 prognosis-related genes were associated with CNLs. Since there were more than half of the prognosis-related 
genes were found to be CNGs, we selected those prognosis-related genes with higher frequency of CNGs. We 
focused on those 1050 prognosis-related genes with more than 30 TCGA samples with CNGs and we further 
identified 889 genes with frequent CNGs. These genes were used to perform gene expression analysis.
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Gene expression analysis of prognosis-related genes with frequent CNGs. To examine the corre-
lation between the CNVs and gene expression changes of the 889 prognosis-related genes with frequent CNGs, we 
incorporated their gene expression changes in the matched TCGA samples using gene expression data. Among 
these, we identified that there was a predominance of genes involved in CNGs, therefore we only focused on those 
gene expression changes in the matched TCGA samples with CNGs and over-expression. We counted the number 
of identical TCGA samples in both CNVs and expression data (CNGs and over-expression) for each gene. The 
Z-score of the expression data was applied to identify whether these genes are over-expressed or under-expressed 
in a sample. In detail, a Z-score refers to the standard deviations away from the mean of expression in the refer-
ence, and the equation (1) is shown as below where x represents the expression in tumour sample; µ represents 
the mean expression in all the samples and σ represents the standard deviation of expression in reference samples:

Z x
(1)

µ
σ

=
−

We used the Z-score threshold value 2 to determine the up-regulated prognosis-related genes in specific 
TCGA samples. In this research, we focused on the prognostic studies that used expression as the protocol of the 
experiments. The number of samples with consistent over-expression and CNGs were calculated for each gene. 
The threshold value (ratio of Gain_Over/Loss_Under) was set to >20 samples and 95 genes were generated with 
consistent CNGs and over-expression. The main reason for this was to identify a reliable gene list with constant 
CNG and over-expression. We set different cut-off values and we managed to narrow down the gene list to less 
than 100 genes. Therefore, this level of gene list would be performed better for functional analysis. To examine 
the CNVs patterns in TCGA samples, the integrative analysis was performed using a free web database known 
as cBioPortal (http://cbioportal.org)48. The cBioPortal for Cancer Genomics allow users to explore, analyse and 
visualize the multidimensional cancer genomics data. In addition, the web portal provided information for the 
tumour samples from The Cancer Genome Atlas (TCGA) and the International Cancer Genome Consortium 
(ICGC). The list of 95 genes was used to explore their corresponding CNVs expression plots in the TCGA samples 
using cBioPortal.

Functional enrichment and network analysis. To investigate the related biological systems in the 
prognosis-related genes with concordance CNGs events and gene over-expression, we analysed the results using 
the online tools ToppFun49, REVIGO50 and GeneMania51. The molecular functions of the 95 prognosis-related 
genes were analysed using Toppfun. Toppfun is a web database which allows users to explore the molecular 
functions of gene ontology (GO), cellular components, biological processes and pathways. From the Toppfun 
results, a total of 50 enriched GO terms was generated and we extracted their IDs and corresponding p-values for 
the visualization process using REVIGO (http://revigo.irb.hr/). REVIGO summarized and removed the redun-
dant GO terms from a long list. The GO results served as input data in REVIGO and it produced a semantic 
similarity-based scatterplot of GO terms from Toppfun. To perform the network analysis, we used GeneMania 
to identify the interactions of the selected genes. We then utilised Cytoscape to characterize and visualise the 
network results generated from GeneMania.

References
 1. Halabi, S. & Owzar, K. The importance of identifying and validating prognostic factors in oncology. Semin Oncol 37, e9–18, https://

doi.org/10.1053/j.seminoncol.2010.04.001 (2010).
 2. Mehta, S. et al. Predictive and prognostic molecular markers for cancer medicine. Ther Adv Med Oncol 2, 125–148, https://doi.

org/10.1177/1758834009360519 (2010).
 3. Hu, Y. & Fu, L. Targeting cancer stem cells: a new therapy to cure cancer patients. Am J Cancer Res 2, 340–356 (2012).
 4. Wulfkuhle, J. D., Liotta, L. A. & Petricoin, E. F. Proteomic applications for the early detection of cancer. Nat Rev Cancer 3, 267–275, 

https://doi.org/10.1038/nrc1043 (2003).
 5. Nalejska, E., Maczynska, E. & Lewandowska, M. A. Prognostic and predictive biomarkers: tools in personalized oncology. Mol Diagn 

Ther 18, 273–284, https://doi.org/10.1007/s40291-013-0077-9 (2014).
 6. Croft, P. et al. The science of clinical practice: disease diagnosis or patient prognosis? Evidence about “what is likely to happen” 

should shape clinical practice. BMC Med 13, 20, https://doi.org/10.1186/s12916-014-0265-4 (2015).
 7. Lohmann, S. et al. Gene expression analysis in biomarker research and early drug development using function tested reverse 

transcription quantitative real-time PCR assays. Methods 59, 10–19, https://doi.org/10.1016/j.ymeth.2012.07.003 (2013).
 8. Ow, T. J., Sandulache, V. C., Skinner, H. D. & Myers, J. N. Integration of cancer genomics with treatment selection: from the genome 

to predictive biomarkers. Cancer 119, 3914–3928, https://doi.org/10.1002/cncr.28304 (2013).
 9. Kourou, K., Exarchos, T. P., Exarchos, K. P., Karamouzis, M. V. & Fotiadis, D. I. Machine learning applications in cancer prognosis 

and prediction. Comput Struct Biotechnol J 13, 8–17, https://doi.org/10.1016/j.csbj.2014.11.005 (2015).
 10. Goodison, S., Sun, Y. & Urquidi, V. Derivation of cancer diagnostic and prognostic signatures from gene expression data. Bioanalysis 

2, 855–862, https://doi.org/10.4155/bio.10.35 (2010).
 11. Henrichsen, C. N., Chaignat, E. & Reymond, A. Copy number variants, diseases and gene expression. Hum Mol Genet 18, R1–8, 

https://doi.org/10.1093/hmg/ddp011 (2009).
 12. Shlien, A. & Malkin, D. Copy number variations and cancer. Genome Med 1, 62, https://doi.org/10.1186/gm62 (2009).
 13. Liang, L., Fang, J. Y. & Xu, J. Gastric cancer and gene copy number variation: emerging cancer drivers for targeted therapy. Oncogene 

35, 1475–1482, https://doi.org/10.1038/onc.2015.209 (2016).
 14. Lu, T. P. et al. Integrated analyses of copy number variations and gene expression in lung adenocarcinoma. PLoS One 6, e24829, 

https://doi.org/10.1371/journal.pone.0024829 (2011).
 15. Wei, R., Zhao, M., Zheng, C. H., Zhao, M. & Xia, J. Concordance between somatic copy number loss and down-regulated expression: 

A pan-cancer study of cancer predisposition genes. Sci Rep 6, 37358, https://doi.org/10.1038/srep37358 (2016).
 16. Yang, Z., Zhuan, B., Yan, Y., Jiang, S. & Wang, T. Integrated analyses of copy number variations and gene differential expression in 

lung squamous-cell carcinoma. Biol Res 48, 47, https://doi.org/10.1186/s40659-015-0038-3 (2015).
 17. Willis, R. E. Targeted Cancer Therapy: Vital Oncogenes and a New Molecular Genetic Paradigm for Cancer Initiation Progression 

and Treatment. Int J Mol Sci 17, https://doi.org/10.3390/ijms17091552 (2016).
 18. Koff, J. L., Ramachandiran, S. & Bernal-Mizrachi, L. A time to kill: targeting apoptosis in cancer. Int J Mol Sci 16, 2942–2955, https://

doi.org/10.3390/ijms16022942 (2015).

http://cbioportal.org
http://revigo.irb.hr/
http://dx.doi.org/10.1053/j.seminoncol.2010.04.001
http://dx.doi.org/10.1053/j.seminoncol.2010.04.001
http://dx.doi.org/10.1177/1758834009360519
http://dx.doi.org/10.1177/1758834009360519
http://dx.doi.org/10.1038/nrc1043
http://dx.doi.org/10.1007/s40291-013-0077-9
http://dx.doi.org/10.1186/s12916-014-0265-4
http://dx.doi.org/10.1016/j.ymeth.2012.07.003
http://dx.doi.org/10.1002/cncr.28304
http://dx.doi.org/10.1016/j.csbj.2014.11.005
http://dx.doi.org/10.4155/bio.10.35
http://dx.doi.org/10.1093/hmg/ddp011
http://dx.doi.org/10.1186/gm62
http://dx.doi.org/10.1038/onc.2015.209
http://dx.doi.org/10.1371/journal.pone.0024829
http://dx.doi.org/10.1038/srep37358
http://dx.doi.org/10.1186/s40659-015-0038-3
http://dx.doi.org/10.3390/ijms17091552
http://dx.doi.org/10.3390/ijms16022942
http://dx.doi.org/10.3390/ijms16022942


www.nature.com/scientificreports/

1 0SCIEnTIFIC RepoRts |  (2018) 8:3233  | DOI:10.1038/s41598-018-21691-5

 19. Delbridge, A. R., Grabow, S., Strasser, A. & Vaux, D. L. Thirty years of BCL-2: translating cell death discoveries into novel cancer 
therapies. Nat Rev Cancer 16, 99–109, https://doi.org/10.1038/nrc.2015.17 (2016).

 20. Yip, K. W. & Reed, J. C. Bcl-2 family proteins and cancer. Oncogene 27, 6398–6406, https://doi.org/10.1038/onc.2008.307 (2008).
 21. Park-Sarge, O. K. & Sarge, K. D. Detection of sumoylated proteins. Methods Mol Biol 464, 255–265, https://doi.org/10.1007/978-1-

60327-461-6_14 (2009).
 22. Wang, K. & Zhang, X. C. Inhibition of SENP5 suppresses cell growth and promotes apoptosis in osteosarcoma cells. Exp Ther Med 

7, 1691–1695, https://doi.org/10.3892/etm.2014.1644 (2014).
 23. Cashman, R., Cohen, H., Ben-Hamo, R., Zilberberg, A. & Efroni, S. SENP5 mediates breast cancer invasion via a TGFbetaRI 

SUMOylation cascade. Oncotarget 5, 1071–1082, https://doi.org/10.18632/oncotarget.1783 (2014).
 24. Corrado, M., Scorrano, L. & Campello, S. Mitochondrial dynamics in cancer and neurodegenerative and neuroinflammatory 

diseases. Int J Cell Biol 2012, 729290, https://doi.org/10.1155/2012/729290 (2012).
 25. Fang, H. Y. et al. Overexpression of optic atrophy 1 protein increases cisplatin resistance via inactivation of caspase-dependent 

apoptosis in lung adenocarcinoma cells. Hum Pathol 43, 105–114, https://doi.org/10.1016/j.humpath.2011.04.012 (2012).
 26. Xiao, S. et al. Actin-like 6A predicts poor prognosis of hepatocellular carcinoma and promotes metastasis and epithelial-

mesenchymal transition. Hepatology 63, 1256–1271, https://doi.org/10.1002/hep.28417 (2016).
 27. Akyurek, N., Uner, A., Benekli, M. & Barista, I. Prognostic significance of MYC, BCL2, and BCL6 rearrangements in patients with 

diffuse large B-cell lymphoma treated with cyclophosphamide, doxorubicin, vincristine, and prednisone plus rituximab. Cancer 118, 
4173–4183, https://doi.org/10.1002/cncr.27396 (2012).

 28. Lee, J., Lee, B. K. & Gross, J. M. Bcl6a function is required during optic cup formation to prevent p53-dependent apoptosis and 
colobomata. Hum Mol Genet 22, 3568–3582, https://doi.org/10.1093/hmg/ddt211 (2013).

 29. Ijichi, N. et al. Association of positive EBAG9 immunoreactivity with unfavorable prognosis in breast cancer patients treated with 
tamoxifen. Clin Breast Cancer 13, 465–470, https://doi.org/10.1016/j.clbc.2013.08.015 (2013).

 30. Ogushi, T. et al. Estrogen receptor-binding fragment-associated antigen 9 is a tumor-promoting and prognostic factor for renal cell 
carcinoma. Cancer Res 65, 3700–3706, https://doi.org/10.1158/0008-5472.CAN-04-3497 (2005).

 31. Cai, M. et al. Atp6v1c1 may regulate filament actin arrangement in breast cancer cells. PLoS One 9, e84833, https://doi.org/10.1371/
journal.pone.0084833 (2014).

 32. Feng, S. et al. Silencing of atp6v1c1 prevents breast cancer growth and bone metastasis. Int J Biol Sci 9, 853–862, https://doi.
org/10.7150/ijbs.6030 (2013).

 33. Dinu, D. et al. Prognostic significance of KRAS gene mutations in colorectal cancer–preliminary study. J Med Life 7, 581–587 (2014).
 34. Hou, Y. et al. Association of MTDH immunohistochemical expression with metastasis and prognosis in female reproduction 

malignancies: a systematic review and meta-analysis. Sci Rep 6, 38365, https://doi.org/10.1038/srep38365 (2016).
 35. Ghaffari, K., Hashemi, M., Ebrahimi, E. & Shirkoohi, R. BIRC5 Genomic Copy Number Variation in Early-OnsetBreast Cancer. Iran 

Biomed J 20, 241–245 (2016).
 36. Cao, L. et al. OCT4 increases BIRC5 and CCND1 expression and promotes cancer progression in hepatocellular carcinoma. BMC 

Cancer 13, 82, https://doi.org/10.1186/1471-2407-13-82 (2013).
 37. Brase, J. C. et al. ERBB2 and TOP2A in breast cancer: a comprehensive analysis of gene amplification, RNA levels, and protein 

expression and their influence on prognosis and prediction. Clin Cancer Res 16, 2391–2401, https://doi.org/10.1158/1078-0432.
CCR-09-2471 (2010).

 38. Cebollero Presmanes, M., Sanchez-Mora, N., Garcia-Gomez, R., Herranz Aladro, M. L. & Alvarez-Fernandez, E. Prognostic value 
of ERBB2 amplification and protein expression in small cell lung cancer. Arch Bronconeumol 44, 122–126 (2008).

 39. Wang, Y. et al. Prognostic significance of EZH2 expression in patients with oesophageal cancer: a meta-analysis. J Cell Mol Med 20, 
836–841, https://doi.org/10.1111/jcmm.12791 (2016).

 40. Wang, X. et al. Prognostic Significance of EZH2 Expression in Non-Small Cell Lung Cancer: A Meta-analysis. Sci Rep 6, 19239, 
https://doi.org/10.1038/srep19239 (2016).

 41. Gyorffy, B. et al. An online survival analysis tool to rapidly assess the effect of 22,277 genes on breast cancer prognosis using 
microarray data of 1,809 patients. Breast Cancer Res Treat 123, 725–731, https://doi.org/10.1007/s10549-009-0674-9 (2010).

 42. Gyorffy, B., Lanczky, A. & Szallasi, Z. Implementing an online tool for genome-wide validation of survival-associated biomarkers in 
ovarian-cancer using microarray data from 1287 patients. Endocr Relat Cancer 19, 197–208, https://doi.org/10.1530/ERC-11-0329 (2012).

 43. Gyorffy, B., Surowiak, P., Budczies, J. & Lanczky, A. Online survival analysis software to assess the prognostic value of biomarkers 
using transcriptomic data in non-small-cell lung cancer. PLoS One 8, e82241, https://doi.org/10.1371/journal.pone.0082241 (2013).

 44. Szasz, A. M. et al. Cross-validation of survival associated biomarkers in gastric cancer using transcriptomic data of 1,065 patients. 
Oncotarget 7, 49322–49333, https://doi.org/10.18632/oncotarget.10337 (2016).

 45. Walters, B. & Thompson, S. R. Cap-Independent Translational Control of Carcinogenesis. Front Oncol 6, 128, https://doi.
org/10.3389/fonc.2016.00128 (2016).

 46. Falandry, C., Bonnefoy, M., Freyer, G. & Gilson, E. Biology of cancer and aging: a complex association with cellular senescence. J 
Clin Oncol 32, 2604–2610, https://doi.org/10.1200/JCO.2014.55.1432 (2014).

 47. Forbes, S. A. et al. COSMIC: High-Resolution Cancer Genetics Using the Catalogue of Somatic Mutations in Cancer. Curr Protoc 
Hum Genet 91, 10 11 11–10 11 37, https://doi.org/10.1002/cphg.21 (2016).

 48. Cerami, E. et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer 
Discov 2, 401–404, https://doi.org/10.1158/2159-8290.CD-12-0095 (2012).

 49. Chen, J., Bardes, E. E., Aronow, B. J. & Jegga, A. G. ToppGene Suite for gene list enrichment analysis and candidate gene 
prioritization. Nucleic Acids Res 37, W305–311, https://doi.org/10.1093/nar/gkp427 (2009).

 50. Supek, F., Bosnjak, M., Skunca, N. & Smuc, T. REVIGO summarizes and visualizes long lists of gene ontology terms. PLoS One 6, 
e21800, https://doi.org/10.1371/journal.pone.0021800 (2011).

 51. Warde-Farley, D. et al. The GeneMANIA prediction server: biological network integration for gene prioritization and predicting 
gene function. Nucleic Acids Res 38, W214–220, https://doi.org/10.1093/nar/gkq537 (2010).

Acknowledgements
This work was supported by the research start-up fellowship of university of sunshine coast to MZ and the 
National Natural Science Foundation of China (No. 81400846). We would like to express our gratitude to Prof. 
Richard Burns for review and comments on this manuscript.

Author Contributions
Y.W. carried out the analyses. Y.W., X.L., Y.L., and J.L. helped write the manuscript. X.L. and M.Z. conceived of the 
analysis and helped write the manuscript.

Additional Information
Supplementary information accompanies this paper at https://doi.org/10.1038/s41598-018-21691-5.
Competing Interests: The authors declare no competing interests.

http://dx.doi.org/10.1038/nrc.2015.17
http://dx.doi.org/10.1038/onc.2008.307
http://dx.doi.org/10.1007/978-1-60327-461-6_14
http://dx.doi.org/10.1007/978-1-60327-461-6_14
http://dx.doi.org/10.3892/etm.2014.1644
http://dx.doi.org/10.18632/oncotarget.1783
http://dx.doi.org/10.1155/2012/729290
http://dx.doi.org/10.1016/j.humpath.2011.04.012
http://dx.doi.org/10.1002/hep.28417
http://dx.doi.org/10.1002/cncr.27396
http://dx.doi.org/10.1093/hmg/ddt211
http://dx.doi.org/10.1016/j.clbc.2013.08.015
http://dx.doi.org/10.1158/0008-5472.CAN-04-3497
http://dx.doi.org/10.1371/journal.pone.0084833
http://dx.doi.org/10.1371/journal.pone.0084833
http://dx.doi.org/10.7150/ijbs.6030
http://dx.doi.org/10.7150/ijbs.6030
http://dx.doi.org/10.1038/srep38365
http://dx.doi.org/10.1186/1471-2407-13-82
http://dx.doi.org/10.1158/1078-0432.CCR-09-2471
http://dx.doi.org/10.1158/1078-0432.CCR-09-2471
http://dx.doi.org/10.1111/jcmm.12791
http://dx.doi.org/10.1038/srep19239
http://dx.doi.org/10.1007/s10549-009-0674-9
http://dx.doi.org/10.1530/ERC-11-0329
http://dx.doi.org/10.1371/journal.pone.0082241
http://dx.doi.org/10.18632/oncotarget.10337
http://dx.doi.org/10.3389/fonc.2016.00128
http://dx.doi.org/10.3389/fonc.2016.00128
http://dx.doi.org/10.1200/JCO.2014.55.1432
http://dx.doi.org/10.1002/cphg.21
http://dx.doi.org/10.1158/2159-8290.CD-12-0095
http://dx.doi.org/10.1093/nar/gkp427
http://dx.doi.org/10.1371/journal.pone.0021800
http://dx.doi.org/10.1093/nar/gkq537
http://dx.doi.org/10.1038/s41598-018-21691-5


www.nature.com/scientificreports/

1 1SCIEnTIFIC RepoRts |  (2018) 8:3233  | DOI:10.1038/s41598-018-21691-5

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2018

http://creativecommons.org/licenses/by/4.0/

	Identification of novel prognosis-related genes associated with cancer using integrative network analysis
	Results
	Frequent copy number gain in potential prognosis-related genes across different types of cancer. 
	Correlation of CNG with gene upregulation in novel prognosis-related genes using the corresponding TCGA tumour samples. 
	Copy number gain with overexpression in novel prognosis-related genes with the highest number of prognostic studies. 
	Network connectivity of potential prognostic marker and oncogene with high frequency of gene amplification and overexpressi ...

	Conclusion
	Methods
	Cancer prognosis-related gene expression changes curated from published literature. 
	Pan-cancer CNV data for prognosis-related genes from The Cancer Genome Atlas (TCGA). 
	Gene expression analysis of prognosis-related genes with frequent CNGs. 
	Functional enrichment and network analysis. 

	Acknowledgements
	Figure 1 Pipeline for the discovery of consistency in copy number of gain and up-regulation of novel prognosis-related genes in pan-cancer and the gene enrichment analysis of 889 genes with frequent copy number gains (CNGs) and mutational landscape of 95 
	Figure 2 Sample-based mutational and network analysis for the eight-potential cross-cancer prognosis-related genes with high amplification rate.
	Figure 3 A pan-cancer view of copy number variation (CNV) distribution in three novel prognosis-related genes: BIRC5 (A), ERBB2 (B) and EZH2 (C) and their corresponding CNV mutational landscape.
	Figure 4 The expression analysis of up-regulated expression of three novel prognosis-related genes with CNGs and their survival curves: BIRC5, ERBB2 and EZH2.




