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Minimum energy control for 
complex networks
Gustav Lindmark & Claudio Altafini

The aim of this paper is to shed light on the problem of controlling a complex network with minimal 
control energy. We show first that the control energy depends on the time constant of the modes of the 
network, and that the closer the eigenvalues are to the imaginary axis of the complex plane, the less 
energy is required for complete controllability. In the limit case of networks having all purely imaginary 
eigenvalues (e.g. networks of coupled harmonic oscillators), several constructive algorithms for 
minimum control energy driver node selection are developed. A general heuristic principle valid for any 
directed network is also proposed: the overall cost of controlling a network is reduced when the controls 
are concentrated on the nodes with highest ratio of weighted outdegree vs indegree.

Understanding the basic principles that allow to control a complex network is a key prerequisite in order to move 
from a passive observation of its functioning to the active enforcement of a desired behavior. Such an understand-
ing has grown considerably in recent years. For instance, classical control-theoretical notions like structural con-
trollability have been used to determine a minimal number of driver nodes (i.e., nodes of the network which must 
be endowed with control authority) that guarantee controllability of a network1. Several works have explored the 
topological properties underlying such notions of controllability2–7, or have suggested to use other alternative 
controllability conditions8–10. Several of these approaches are constructive, in the sense that they provide receipts 
on how to identify a subset of driver nodes that guarantees controllability. However, controllability is intrinsically 
a yes/no concept that does not take into account the effort needed to control a network11. A consequence is that 
even if a network is controllable with a certain set of driver nodes, the control energy that those nodes require 
may result unrealistically large. Achieving “controllability in practice” i.e., with a limited control energy, is a more 
difficult task, little understood in terms of the underlying system dynamics of a network. In addition, in spite of 
the numerous attempts9,11–20, no clear strategy has yet emerged for the related problem of selecting the driver 
nodes so as to minimize the control energy.

The aim of this paper is to tackle exactly these two issues, namely: i) to shed light on what are the dynamical 
properties of a network that determine the input energy needed to control a network; and ii) to develop driver 
node placement strategies requiring minimum control energy.

We show in the paper that for linear dynamics the natural time constants of the modes of the system are key 
factors in understanding how much energy a control must use. Since the time constants of a linear system are 
inversely proportional to the real part of its eigenvalues, systems that have eigenvalues near the imaginary axis 
(i.e., slow dynamics and nearly oscillatory behavior) are easier to control than systems having eigenvalues with 
large real parts (i.e., fast dynamics, stable or unstable), regardless of the specific metric used to quantify the con-
trol energy (in the paper we use Gramian-based measures17,21).

The main driver node selection strategy we propose in the paper is based on ranking nodes according to the 
ratio between weighted outdegree and weighted indegree. This strategy, which is inspired by topological consider-
ations but is still lacking a complete theoretical justification, is very different from choosing a minimum number 
of driver nodes that guarantee structural controllability. We show that whenever controllability is not an issue 
(e.g. when the network is strongly connected), such method systematically outperforms a random driver node 
assignment even by orders of magnitude, in all the considered control metrics and in all considered networks 
(typically of size ~103 in this paper).

Methods like the one proposed in this paper are based on computing eigenvalues, and hence are necessar-
ily quantitative, i.e., require to assign weights to the edges of a network. However, we show in the paper that 
our quantitative analysis sheds light on the intrinsic weakness of purely qualitative methods like those based on 
structural controllability: there are cases in which the Gramian associated to structural controllability is closer 
to singularity that the one associated with our ranking, regardless of the latter passing or less the structural 
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controllability test. In terms of energy this translates into the following paradox: the control energy of a structur-
ally controllable system can be higher than that of a “structurally uncontrollable” one.

We also show that for the special case of networks of coupled harmonic oscillators, which have purely imagi-
nary spectra, it is possible to obtain explicit criteria for minimum energy driver node placement. Unlike for our 
main driver node selection strategy, based on weighted outdegree/indegree ratio, which is supported mainly by 
heuristic topological considerations, the strategies for the special case of purely imaginary spectra rely instead 
on arguments such as diagonal dominance of the Gramian, and are supported by a fully theoretical analysis. In 
this case, essentially every Gramian-based controllability measure leads to a tractable minimum energy driver 
node placement strategy. One of these strategies in particular is exact, and turns out to be very similar to the node 
ranking mentioned above.

Methods
Complete Controllability: merging Reachability and Controllability to 0.  A linear system

= +x Ax Bu (1)

is controllable if there exists an input u(t) that transfers the n-dimensional state vector x(t) from any point xo to 
any other point xf in n. The Kalman rank condition for controllability, … =B AB A B A B nrank([ ])k2  for k suffi-
ciently large, only provides a yes/no answer but does not quantifies what is the cost, in term of input effort, of such 
state transfer. Once controllability is guaranteed, a possible approach to investigate “controllability in practice” 
consists in quantifying the least energy that a control requires to accomplish the state transfer, i.e., in minimizing 
 ∫ τ τ=t u d( ) ( )f

t

0
2f  for u(t) that maps xo in xf in a certain time tf. Although in this work we focus on the 

infinite horizon case (i.e., tf → ∞), for pedagogical reasons it is instructive to start the analysis from the finite 
horizon case. In fact, for linear systems like (1), a closed form solution to this problem exists when tf is finite, and 
the resulting cost is
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 is called the reachability Gramian22. The control that achieves the 
state transfer xo → xf with minimal cost can be computed explicitly:
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Various metrics have been proposed to quantify the difficulty of the state transfer based on the Gramian21, like 
its minimum eigenvalue λmin(Wr), its trace tr(Wr), or the trace of its inverse −Wtr( )r

1 , see SI for a more detailed 
description.

We would like now to describe how (2) depends on the eigenvalues of A. In order to do that, one must observe that 
(2) can be decomposed into contributions originating from two distinct problems: (1): controllablity-from-0 (or reach-
ability, as it is normally called in control theory22) and (2): controllablity-to-0. The first problem consists in choosing 
xo = 0, in which case (2) reduces to = −t x W t x( ) ( )r f f

T
r f f

1 , while in the second xf = 0 leads to = −t x W t x( ) ( )c f o
T

c f o
1  

where = − −W t e W t e( ) ( )c f
A t

r f
AtT

f f  is a second Gramian, called the controllability Gramian. The two problems men-
tioned above, reachability and controllability-to-0, are characterized by different types of difficulties when doing a 
state transfer, all related to the stability of the eigenvalues of A. For instance the reachability problem is difficult along 
the stable eigendirections of A because the control has to win the natural decay of the unforced system to 0, while the 
unstable eigenvalues help the system escaping from 0 by amplifying any small input on the unstable eigenspaces, see 
Fig. 1 for a graphical explanation. The surfaces of t( )r f  shown in Fig. 1(a) reflect these qualitative differences. On the 
contrary, the influence of the eigenvalues of A is the opposite for the controllability-to-0 problem shown in Fig. 1(b). 
Hence if we want to evaluate the worst-case cost of a transfer between any xo and any xf (a problem sometimes referred 
to as complete controllability23), we have to combine the difficult cases of the two situations just described.

Measuring control energy through the infinite-time horizon mixed Gramian.  In the complete 
controllability problem, all the cases leading to a high control energy can be taken into account by combining the 
two Gramians Wr and Wc into a “mixed” Gramian Wm obtained splitting A into its stable and antistable parts and 
forming a reachability subGramian for the former and a controllability subGramian for the latter24–26. Such 
Gramian can be computed in closed form only when the time of the transfer tends to infinity. In the infinite time 
horizon, in fact, both Wr and Wc diverge, but their inverses are well-posed and depend only on the stable modes 
the former and the unstable modes the latter. These are the parts composing the inverse of Wm, see Fig. 1(c). 
Computing Wm and its inverse requires solving jointly two Lyapunov equations. The procedure is explained in 
detail in the SI. Assume that the spectrum of A contains k, ⩽ ⩽k n0 , eigenvalues with negative real part, and 
n − k eigenvalues with positive real part (and no purely imaginary eigenvalues). Then there exist a change of basis 
V bringing A into the form:
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and, correspondingly,
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with λ <ARe[ ( )] 01  and λ >ARe[ ( )] 02 . In the new basis, the following two Lyapunov equations hold (see the SI 
for details on how they are obtained)
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Figure 1.  Reachability, Controllability-to-0 and Complete Controllability problems. (a) The reachability (or 
controllability-from-0) problem is difficult along the stable eigendirections of A (red curves in the leftmost 
panel) and easy along the unstable ones (blue). This is reflected in the surfaces of  = −t x W t x( ) ( )r f f

T
r f f

1  shown 
in the 3 rightmost panels. In particular, the reachability problem requires limited control energy when A is 
antistable (rightmost panel). (b) The controllability-to-0 problem is difficult along the unstable eigendirections 
of A (red) and easy along the stable ones (blue). The input energy surfaces, = −t x W t x( ) ( )c f o

T
c f o

1 , reflect these 
properties. The case of A stable requires the least control energy. (c) The problem studied in this paper, complete 
controllability, is a mixture of the two cases, collecting the worst-case situations of both. When the real part of 
the eigenvalues of A is squeezed towards the imaginary axis as in the right panels of Fig. 2(a), the input energy 
reduces accordingly.
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the mixed Gramian (the subGramians W1,r and W2,c are derived in detail in the SI). Following24, the expression of 
the mixed Gramian in the original basis is = − −W V W Vm m

T1 . By construction, the mixed Gramian matrix Wm 
always exists when A has no purely imaginary eigenvalues, and it summarizes the infinite-horizon contribution 
of the stable eigenvalues to the reachability problem and of the unstable eigenvalues to the controllability to 0 
problem (i.e., all cases leading to a high control energy). The three figures of merit λmin(Wm), tr(Wm) and −Wtr( )m

1  
are the measures that are mostly used in the paper to quantify the control energy. Although a finite-horizon ver-
sion of Wm (and −Wm

1) can be deduced from the infinite horizon ones (see SI), in this paper we deal exclusively 
with the infinite horizon case, as often done in the literature17,22,24.

Constructing networks with preassigned spectra.  The circular and elliptic laws27 are used in the paper 
to construct random networks with eigenvalues in desired regions. The circular law states that a matrix A of 
entries a n/ij  where aij are i.i.d. random variables with zero-mean and unit variance has spectral distribution 
which converges to the uniform distribution on the unit disk as n → ∞, regardless of the probability distribution 
from which the aij are drawn. A numerical example is shown in Fig. 2(a) (second panel from left). A random 
matrix is typically a full matrix, meaning that the underlying graph of interactions is fully connected. The circular 
law is however valid also for sparse matrices, for instance for Erdös-Rényi (ER) topologies. If p is the edge proba-
bility, then = ⋅A a p n( )/ij  still has eigenvalues distributed uniformly on the unit disk, see Fig. S1(a).

A generalization of the circular law is the elliptic law, in which the unit disk containing the eigenvalues of A 
is squeezed in one of the two axes. To do so, the pairs of entries {aij, aji} of A have to be drawn from a bivariate 
distribution with zero marginal means and covariance matrix expressing the compression of one of the two axes. 
Various examples of elliptic laws are shown in the panels of Fig. 2(a). Also elliptic laws generalize to sparse matri-
ces, see Fig. S1(a).

Results
Control energy as a function of the real part of the eigenvalues of A.  In a driver node placement 
problem, the inputs affect a single node, hence the columns of B are always elementary vectors, i.e., vectors having 
one entry equal to 1 and the rest equal to 0. When A is a random matrix, the underlying graph is generically fully 
connected, hence issues like selection of the minimal number of driver nodes based on the connectivity of the 
graph become irrelevant. In this work we always consider cases in which the driver nodes we have available are 
enough to guarantee controllability. Having disentangled the problem from topological aspects, the dependence 

Figure 2.  Real part of the eigenvalues and control energy. (a) Eigenvalues of a random matrix. The circular/
elliptic laws allow to obtain state matrices A with eigenvalues in prescribed locations, for instance with 
predetermined real part. (b) Control energy for various metrics when the number of (randomly chosen) inputs 
grows and Re[λ(A)] changes. The data show a mean over 100 realizations of dimension n = 1000 (for each 
realization 100 different edge weights assignments are considered). The color code is as in (a). Of the three 
metrics used to measure the control energy, λmin(Wm) (left) and tr(Wm) (middle) should both be maximized, 
while −Wtr( )m

1  (right) should be minimized in order to improve the control energy (see direction of the arrow on 
the left of each panel). For all three metrics, the performances are strictly a function of the position of the 
eigenvalues of A. The minimum of the control energy is achieved when the eigenvalues have very small real part 
(cyan) and worsen with growing real part, following the order: cyan, green, red, violet.
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of the control energy from other factors, like the spectrum of A, becomes more evident and easier to investigate. 
If for instance we place driver nodes at random and use the infinite-horizon mixed Gramian Wm to form the 
various energy measures mentioned above for quantifying the control energy, then we have the results shown in 
Fig. 2(b). As expected, all indicators improve with the number of inputs, because the control effort gets spread 
over more nodes. What is more interesting is that when we repeat the computation for the various spectral distri-
butions of Fig. 2(a), the result is that the control energy decreases when the (absolute value of the) real part of the 
eigenvalues of A decreases. All measures give an unanimous answer on this dependence, regardless of the number 
of inputs considered. In particular, when A has eigenvalues which are very close to the imaginary axis (rightmost 
panel of Fig. 2(a) and cyan curves in Fig. 2(b)) then λmin(Wm) is bigger (i.e., the worst-case controllability direc-
tion is easiest to control), but also tr(Wm) increases and −Wtr( )m

1  decreases (meaning, in both cases, that the aver-
age energy needed for controllability on all directions decreases).

An identical result is valid also for sparse matrices. In particular, for ER graphs with edge probability p = 0.05 
and coefficients from a bivariate normal distribution (yielding elliptic laws as in Fig. S1(b)), the various norms 
used to quantify the control energy are shown in Fig. S1(b). Their pattern is identical to the full graph case of 
Fig. 2(b).

The computations shown in Fig. 2(b) are performed with the infinite-horizon mixed Gramian Wm described 
in the SI, because such Wm can be easily computed in closed form. A finite-horizon Wm(tf) can be approximately 
obtained from it, but the arbitrarity of tf makes it hard to set up an unbiased comparison of the various spectral 
distributions of A of Fig. 2(a), which are characterized by widely different time constants (inversely correlated to 
the amplitude of the real part of λ(A)). Observe in Fig. S2 how the various measures of controllability computed 
with a finite-time Wm(tf) tend all to the infinite-time Wm but with different speeds.

Driver node placement based on weighted connectivity.  In the analysis carried out so far the driver 
nodes were chosen randomly. A topic that has raised a remarkable interest in recent times (and which is still open 
in our knowledge) is devising driver node placement strategies that are efficient in terms of input energy12–17,19,20. 
If we consider as weighted indegree and outdegree at node i the sum of the weights in absolute value of all incom-
ing or outgoing edges, i.e., = ∑ | |=w i a( ) j

n
ijin 1  and = ∑ | |=w i a( ) j

n
jiout 1  (a normalization factor such as ⋅p n  can be 

neglected), see Fig. 3(a), then a strategy that systematically beats random input assignment consists in ranking the 
nodes according to the ratio rw(i) = wout(i)/win(i) and placing inputs on the nodes with highest rw. In Fig. 3(c) the 
λmin(Wm) of this driver node placement strategy is compared with a random driver node selection. If for full 
graphs the improvement is minimal, as the graphs become sparser it increases, and for ER networks with p = 0.01 
the λmin(Wm) obtained by controlling nodes with high rw is more than twice that of the random choice of controls, 
see Fig. 3(b). As can be seen in Fig. S3, all measures of input energy show a qualitatively similar improvement. The 
topology of the network can be used to render the values of rw more extreme, for instance choosing direct 
scale-free (SF) graphs with indegree exponent bigger than outdegree exponent28 (and at the same time guarantee-
ing strong connectivity of the ensuing graphs, in order to avoid problems with minimal controllability), see 
Fig. 3(a,b). For these skewed SF networks, the improvement in choosing driver nodes with high rw becomes much 
more substantial, even of orders of magnitude bigger than a random selection, see Figs 3(c), S4 and S5 for more 
details.

Application to real-world networks.  In order to verify whether the proposed driver node placement 
strategy is effective also on more realistic data, we tested our algorithm on several networks collected from the 
literature, and representing complex systems of biological (transcriptional, metabolic and signaling), ecological 
(food-web), social, transportation and trade type, see Table 1. As for most real datasets, the underlying graphs are 
not strongly connected, hence controllability is not automatically verified. In order to guarantee it, it is necessary 
to assign a certain number mc of driver nodes, for instance chosen according to structural controllability and 
computed using a maximum matching algorithm1, see Table 1. If edge weights are assigned (here drawn from a 
uniform distribution), then in correspondence of such minimum number of driver nodes it is possible to estimate 
the control energy via the three measures λmin(Wm), tr(Wm), and −Wtr( )m

1 , see Figs 4, S7 and S8. When instead the 
driver nodes are chosen according to our ranking strategy rw, then there is no guarantee of achieving controllabil-
ity in a structural sense. In theory, lack of structural controllability corresponds to a singular Gramian, but in 
practice it corresponds to a poorly conditioned Gramian, with λmin(Wm) small and −Wtr( )m

1  big. One expects then 
a higher control energy than when structural controllability is guaranteed. This in fact happens in some of the 
networks we are considering. For instance in the E. coli-metab network of Fig. 4(a), indeed when me nodes are 
chosen according to rw, then if me = mc two of the three control energy measures (λmin(Wm) and −Wtr( )m

1 ) are 
worst than in the structurally controllable case. However, for other networks, such as the US Airports network of 
Fig. 4(b), when me = mc the control energy for driver nodes chosen according to rw is already better than for struc-
tural controllability, and it improves further when me > mc. A similar behavior is observed in several of the net-
works analyzed, see Figs S7 and S8. In all networks, the control energy improves as me increases (as expected), and 
it becomes better than that of the mc driver nodes required by structural controllability before the rw-ranked 
nodes begin to fulfill the structural controllability test. Notice how in nearly all networks tr(Wm) (which is less 
sensitive to singularity of Wm) improves when we choose rw-ranked driver nodes.

An alternative test that can be carried out to evaluate the effect of our ranking strategy on the control energy 
consists in choosing the mc driven nodes prescribed by structural controllability, plus extra mf nodes according to 
the ranking rw. Here we have decided to select a number of extra driver nodes equal to mf = (n − mc)/2 (i.e., half 
of the remaining nodes), in two different ways: i) according to the ratio rw, and ii) randomly. The resulting num-
bers for our networks are given in Fig. 5(a) and in Table 1. The results in terms of control energy are illustrated in 
Fig. 5(b). For all networks, all three metrics λmin(Wm), tr(Wm), and −Wtr( )m

1  are essentially always confirming that 
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Figure 3.  Driver node placement strategy: ranking according to rw = wout/win. (a) Interpretation of the ranking 
strategy (left panel). The selection of driver nodes starts from those having the highest ratio rw, meaning those 
that are dominated by (weighted) out-degree. Networks that are SF directed graphs with indegree exponent 
bigger than out-degree exponent (in the right panel γin = 3.14 and γout = 2.87) have a large fraction of nodes with 
this characteristic. (b) The ratio rw of ranked nodes is shown for ER networks of different densities and for the SF 
network shown in (a). Indeed for SF the fraction of nodes having high rw is much bigger than that of ER 
networks. The shaded areas represent the values of m used in our computations of control energy. (c) Comparison 
between control energy (here measured according to λmin(Wm)) for the rw-ranking (denoted λ W( )mmin

ordered ) and 
random driver node selection (denoted λ W( )mmin

random ). The ratio between the two quantities is shown for the ER 
and SF networks mentioned in (a,b). For ER networks, the improvement in control energy increases with the 
sparsity of the graph (inset: zoomed comparison in linear scale). For the SF networks, the improvement is 
remarkably more significant (two orders of magnitude, violet curve, see also Fig. S5 for more details). Measures 
are means over 100 realizations of size n = 1000; for each realization 100 edge weight assignments are tested.
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the driver node selection strategy based on rw is outperforming significantly a random node assignment. In par-
ticular, for the two nonlinear metrics (λmin(Wm) and −Wtr( )m

1 ), the improvement is often of several orders of 
magnitude, i.e., even better than in the skewed SF networks discussed in Fig. 3.

Systems with purely imaginary eigenvalues: the case of coupled harmonic oscillators.  From 
what we have seen above, the control energy is least when the real part of the eigenvalues tends to vanish. In the 
extreme case of purely imaginary eigenvalues, it is possible to obtain explicit driver node placement criteria that 
minimize the control energy. A special case of linear system with purely imaginary eigenvalues is a network of n 
coupled harmonic oscillators, represented by a system of second order ODEs

+ =̈Mq Kq Bu (6)

where M = MT > 0 is the inertia matrix, = ⩾K K 0T  is the stiffness matrix, typically of the form K = Kd + L, with 
⩾K 0d  diagonal and L a Laplacian matrix representing the couplings. In (6) the controls are forces, and the col-

umns of the input matrix B are elementary vectors in correspondence of the driver nodes. The state space rep-
resentation of (6) is

= +x A x B u (7)o o
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The system (7) has purely imaginary eigenvalues equal to ±iωj, j = 1, …, n, where ωj are the natural frequen-
cies of the oscillators. If ω ωΩ = …diag( , , )n

2
1
2 2  and Ψ = [ψ1 



 ψn] is the matrix of corresponding eigenvectors, 
then in the so-called modal basis the oscillators are decoupled and one gets the state space representation
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1
. See SI for the details. When a system has purely imaginary eigenvalues, the finite time reach-

ability Gramian diverges as tf → ∞. However, in the modal basis (8) the Gramian (here denoted Wz) is diagonally 
dominant and linear in tf, hence as tf grows it can be approximated by a diagonal matrix which can be computed 
explicitly29:

Network nodes edges mc mf

source 
(ref. n.)

Biological, transcriptional

 E. coli 1623 3515 1472 75 38

 Yeast 664 1066 550 57 39

Biological, metabolic

 E. coli 757 6116 102 327 40

 Yeast 780 4421 142 319 41

Biological, signalling

 Macrophage 660 1549 179 240 42

 Toll-like 672 2194 144 264 43

Food-web

 Florida 128 2106 30 49 44

 Mangdry 97 1491 22 37 44

Social

 Moreno highschool 70 366 3 33 45

 Advogato 5042 47067 1194 1924 46

Transport and Trade

 US Airport 1572 28235 582 495 47

 Wheat 166 1782 35 65 48

Table 1.  Various networks used in this study. mc represents the number of driver nodes needed to guarantee 
structural controllability. mf the number of extra driver nodes (in addition the previous mc) selected to reduce 
the control energy.
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where βj = 1 if the j-th input is present and 0 otherwise, and Mjj is the j-th diagonal entry of M, see SI for the 
details. For purely imaginary spectra (of which a network of coupled harmonic oscillators is a special case), using 
(9), the three measures of control energy adopted in this paper give rise to simple strategies for minimum energy 
driver nodes placement, which in some cases can be computed exactly for any n (for instance for the metric 
tr(Wz), see SI). The three algorithms are explained in detail in the SI. Figure 6 shows that such strategies are always 
beating a random driver node placement, often by orders of magnitude.

Also wout/win is still a good heuristic for driver node placement strategy. This can be understood by observing 
that the model (6) is symmetric hence for it in- and out-degrees are identical. However, since Ao has rows rescaled 
by M−1, wout is affected directly: when the inertia Mii is big, the corresponding = ∑ =w i K M( ) /j

n
ji iiout 1  is small and 

viceversa. No specific effect is instead induced on win. In the representation (7), selecting nodes according to 
wout/win means placing control inputs on the lighter masses, see Fig. 6(d). When the harmonic oscillators are 
decoupled (L = 0) then m < n means controllability is lost, but nevertheless selecting the nodes with least inertia 
as driver nodes maximizes the impact of a limited control authority (tr(Wz) is maximized). A weak (and sparse) 
coupling allows to recover controllability, while the least inertia as optimal driver node strategy becomes subop-
timal. When the coupling becomes stronger (for instance when the coupling graph is more connected) then the 
inertia of an oscillator is less significant as a criterion for selection of driver nodes: the modes of the system are 
now spread throughout the network and no longer localized on the individual nodes. As shown in Fig. S9, in a 
fully connected network of harmonic oscillators, driver node strategies based on wout/win and on tr(Wz) tend to 
perform considerably worse for the other measures (λmin(Wz) and −Wtr( )z

1 ), while for a sparse graph (here ER 
graphs with p = 0.05), of the three explicit optimal driver node placement strategies available in this case, tr(Wz) 
has a high overlap with wout/win, see Fig. 6(b), while the other two tend to rank controls in somewhat different 
ways. Given that in this case we have three strategies that are (near) optimal for the chosen measure of control 
energy, the dissimilarity of the node rankings of these three strategies means that the driver node placement 
problem is heavily dependent on the way control energy is quantified.

Figure 4.  Driver node placement according to rw = wout/win for two real-world networks. (a) Ecoli-metabol. (b) 
US Airports. In both cases the control energy measures λmin(Wm), tr(Wm), and −Wtr( )z

1  are shown in the 3 
leftmost panels (solid lines), when the number me of driver nodes (chosen according to rw) grows. The 
horizontal dashed line is the control energy in correspondence of the mc driver nodes required by structural 
controllability. The vertical dotted line is the value of me at which the rw-ranked nodes achieve structural 
controllability (it is me = n in US Airports). The rightmost panel shows how many of the me rw-ranked nodes 
overlap with the mc nodes of structural controllability.
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Application to minimum energy control of power grids.  In the linear regime, power grids can be 
modeled as networks of weakly damped coupled harmonic oscillators30. The so-called swing equation corre-
sponds in fact to the following network of damped and coupled harmonic oscillators

+ + =̈Mq Dq Kq Bu, (10)

where D is the matrix of dampings which we assume to be proportional, that is, that in the modal basis 
D1 = ΨT M−1 DM−1 Ψ is diagonal. In the state space representation (7), one gets then
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while in the modal basis

Figure 5.  Control energy of driver node placement according to rw = wout/win for the real-world networks of 
Table 1. (a) The real-world networks used. The number of nodes (n) is shown in blue, the minimal number of 
driver nodes needed to achieve controllability (mc) is shown in red, and the number of additional driver nodes 
selected (mf) in yellow. See also Table 1. For some networks, like for the two transcriptional networks, mc amounts 
to a large fraction of n. (b) Comparison of control energies between a choice of mf nodes according to rw and a 
random choice. The two choices give rise to two different mixed Gramians, denoted respectively Wm

ordered and 
Wm

random. These Gramians are used to form the three measures of control energy λmin(Wm), tr(Wm), and −Wtr( )m
1 . 

The ratios between the two resulting values for these three metrics are shown in the three panels for the real 
networks considered in this study. In basically all cases the control energy improves (i.e., λ
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), often by several orders of magnitude, even when mf is small.
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The presence of damping makes the state update matrix stable, hence Wm = Wr. For weak damping, the driver 
node selection strategies illustrated above can be applied to the model (11) and so can the method based on 
wout/win. We have investigated the minimum energy control of several power grids listed in Table S2, varying 
the dampings across several orders of magnitude, see Fig. 7(a). As expected, for all of them the energy required 
to achieve controllability increases as the real part of the eigenvalues moves away from the imaginary axis, see 
Figs 7(b) and S10–S13. All strategies still beat a random driver node placement, even those based on the Gramian 
(9), formally valid only for undamped dynamics.

Discussion
This paper contains two distinct contributions to the problem of understanding what determines the control 
energy required to completely control a complex network. The first is to show that the time constants of the free 
evolution of the system play a key role. Recall that in a linear unforced dynamical system the real part of the eigen-
values of A determines how fast/slow a system converges to the origin (stable eigenvalues, when real part of λ(A) 

Figure 6.  Driver node placement strategies for a network of coupled harmonic oscillators. (a) The concept of 
driver node is basis dependent: when the basis changes in state space (for instance we pass from (7) to (8)), the 
control inputs no longer target a single node, but become spread across the entire state space (now decoupled 
into non-interacting modes). (b) Comparison of different driver node placement strategies for n = 1000 coupled 
harmonic oscillators. Shown are means over 100 realizations (with 100 edge weights samples taken for each 
realization). The diagonal Gramian Wz of (9) is used to quantify the control energy. Red: driver node placement 
based on λmin(Wz). Violet: placement based on tr(Wz). Green: placement based on −Wtr( )z

1 . Cyan: placement 
based on wout/win. Blue: random input assignment. All driver node placement strategies always beat a random 
assignment, often by orders of magnitude. The green and red curves give similar performances and so do the 
cyan and violet. Notice that for tr(Wz) the violet curve gives the exact optimum. (c) Overlap in the node ranking 
of the different driver node placement strategies. Color code is the same as in (b). The only highly significant 
overlap is between wout/win and tr(Wz), while λmin(Wz) and −Wtr( )z

1  correspond to different node ranking 
patterns. Notice that none of the strategies orders nodes according to win/wout (mid panel). (d) Inverse 
correlation between the inertia at node i, Mii, and wout/win (correlation coefficient around −0.75 in average).
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is negative) or diverges to ∞ (unstable eigenvalues, when real part of λ(A) is positive). Such convergence/diver-
gence speed grows with the absolute value of the real part of λ(A). In the complete controllability problem, both 
stable and unstable modes of A are gathered together, and all have to be “dominated” by the controls to achieve 
controllability. This result is valid regardless of the topology of the network, and of the number of controls used 
(provided, of course, that controllability is guaranteed). When the modes of the system are all slow, like when 
they are very close to the imaginary axis, then the energy needed to dominate them all is lower than when some 
of them are fast (i.e., the eigenvalues have large real part).

In the limit case of all eigenvalues of A being purely imaginary, we can also recover a known result from con-
trol theory affirming that controllability from any xo to any xf can be achieved in finite time by means of control 
inputs of bounded amplitude. As a matter of fact, an alternative approach used in control theory to take into 
account the control energy of a state transfer is to impose that the amplitude of the input stays bounded for all 
times (rather than the total energy), and to seek for conditions that guarantee controllability with such bounded 
controls31–33. Assume u ∈ Ω, with Ω a compact set containing the origin, for instance Ω = [−1, 1]m, where m is the 
number of control inputs. The constraint u ∈ Ω guarantees that we are using at all times a control which has an 
energy compatible with the physical constraints of our network. The consequence is, however, that reaching any 
point in n may require a longer time, or become unfeasible. In particular a necessary and sufficient condition for 
any point to be reachable from 0 in finite time when u ∈ Ω is that no eigenvalue of A has a negative real part, see 
SI. This is clearly connected with our previous considerations on the reachability problem without bounds on u: 
when all modes of A are unstable then the input energy required to reach any state from 0 is low (Fig. 1(a)) and 
becomes negligible for sufficiently long time horizons. On the contrary, transferring any state to 0 in finite time 
with u ∈ Ω is possible if and only if no eigenvalue of A has a positive real part. Also in this case the extra con-
straints on the input amplitude reflects the qualitative reasoning stated above and shown in Fig. 1(b). Also in the 

Figure 7.  Minimum energy control of power grids for varying damping coefficients. (a) The eigenvalues of 
the state space system (11) for the North EU power grid37 with uniformly distributed masses (〈Mii〉 = 10) and 
damping coefficients that vary across 4 orders of magnitude. Since the system is always stable, Wm = Wr. (b) 
Control energy for the metric λmin(Wr) when the driver nodes are placed according to λmin(Wr) (left panel), 
wout/win (mid panel), or randomly (right panel). The values of λmin(Wr) corresponding to the 4 choices of 
damping made in (a) are shown in solid lines (same color code as in (a)), while in dotted lines the values of 
λmin(Wz) are shown (suitably normalized to eliminate the explicit dependence from tf, see (9)). The insets show 
the same quantities in log scale. Values are all averages over 100 realizations. For all three driver node placement 
strategies, the performances worsen as the damping is increased. Comparing the three panels, wout/win performs 
similarly to λmin(Wr), and both outperform a random placement by orders of magnitude.
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bounded control case, considering a generic transfer from any state xo to any other state xf means combining the 
two scenarios just described: formally a system is completely controllable from any xo to any xf in finite time and 
with bounded control amplitude u ∈ Ω if and only if all eigenvalues of A have zero real part, see SI for the details. 
The findings discussed above for u unbounded are completely coherent with this alternative approach to “practi-
cal controllability”.

The second contribution of this paper is a general strategy for driver node placement which reduces the con-
trol energy. Once the technical issues associated with minimal controllability can be neglected (in the sense that 
we are choosing sufficiently many inputs so as to guarantee controllability), a general criterion for controlling a 
network with a limited input energy is to drive the nodes having the maximal disembalance between their 
weighted outdegree and indegree. This driver node selection strategy has a direct topological interpretation, in 
terms of outdegree “dominance” (in a sense, it resembles the idea of dominating sets discussed in the literature9 
although for directed edges only, as for undirected networks rw(i) = 1 ∀i). Our node ranking strategy has also 
another indirect topological interpretation. For random edge weights, nodes that have high rw tend to be outde-
gree dominated, and hence to be associated to (topological) dilations, see Fig. 3(a). A set   of nodes forms a 
dilation if  | | > | |T( ) , where T( )  are the parent nodes of the nodes in   and | | (and | |T( ) ) denotes set cardi-
nality1,34. When seeking minimal (structural) controllability, dilations cannot appear, meaning that controls must 
be added to the children nodes in excess34. However, when minimal controllability is not the main concern and a 
number of driver nodes achieving controllability has already been selected, the strategy we are suggesting for 
reducing the control energy tends to favor nodes that are parent nodes of a dilation, rather than children. The 
rationale behind it is that in a dilation controlling parent nodes impacts several eigenmodes of the system (and 
hence reduces the control energy) while controlling children nodes enlarges the reachable subspace and for 
instance allows to discriminate among children of the same parents (and hence improves the structural control-
lability properties)35. We think that this trade-off could be responsible for the limited success in finding effective 
minimum control energy driver node strategies in the literature.

It has already been pointed out11 that guaranteeing controllability in a structural sense does not correspond to 
guaranteeing it in practice, as the required control energy can be exceedingly high. Our analysis of real-world 
networks confirms and strengthen this observation. Quite remarkably, we show that there are cases in which 
structural controllability fails, but nevertheless the control energy (which is theoretically infinite) turns out to be 
numerically lower that the one obtained in structurally controllable cases, even with equal numbers of controls. 
Such paradox follows from the fact that in both situations the Gramian is near-singular, which impacts measures 
like λmin(Wm) and −Wtr( )m

1 . On the contrary, tr(Wm) does not require Wm to be invertible, and in fact in nearly all 
networks we find that even with equal numbers of controls our rw-ranked driver node strategy outperforms the 
driver node selection based on structural controllability. This confirms the effectiveness of our node ranking 
strategy.

Obviously our analysis requires to assign sets of weights to the edges, not to rely exclusively on structural 
properties. The consistency in the results we find across all investigated real-world networks makes us confident 
that our observations are not spurious numerical artifacts. The conclusion one can draw from our quantitative 
analysis is that “binary” (yes/no) responses to the controllability question have limited value and should be taken 
with extreme care.

As can be seen comparing Fig. 5(a) (and Table 1) with Fig. S6(a), the topology drastically influences the 
minimal number of controls needed to achieve structural controllability. It also influences the minimum energy 
problem, and makes it difficult to disentangle the two aspects analytically. For instance, the transcriptional net-
works we consider (E. coli-transcr and Yeast-transcr) are essentially directed acyclic graphs, and as such require 
an extremely high number of driver nodes to achieve minimal controllability1. Nonetheless, by adding a few 
more driver nodes according to our rw ranking, at least in E. coli-transcr the control energy can still be reduced 
by several orders of magnitude, meaning that even in these “extreme” topologies there is a lot to gain in terms of 
practical control by carefully selecting extra driver nodes. By comparing Figs S6 and 5(b), it is possible to realize 
that, rather than the indegree and outdegree distribution per se, it is the fraction of nodes having a high rw (after 
the mc nodes needed to guarantee controllability have been disregarded, violet curves in Fig. S6(b)) that deter-
mines the efficacy of our strategy. Although it is difficult to obtain a sharp classification, indicatively the networks 
that show a limited improvement with our driver node selection procedure (for instance Yeast-transcr, US-airport 
and Wheat-trade) correspond to those having a fairly limited number of nodes with high rw in the mf extra nodes 
being selected. Clearly a future step of our research is to extend our driver node strategy so as both minimal num-
ber of controls and minimum control energy are achieved at the same time.

Notice that our computation of weighted out/indegrees considers the total sum of weights in absolute value. 
When signs are taken into account in computing win and wout, then no significant improvement over random 
input placement is noticeable. This is connected to the quadratic nature of the Gramian.

Finally, it is worth emphasizing that for a dynamical system the concept of driver node is not intrinsic, but 
basis-dependent. In fact, just like the idea of adjacency matrix of a graph is not invariant to a change of basis in 
state space, so inputs associated to single nodes (i.e., to single state variables) in the original basis become scat-
tered to all variables in another representation of the same system, see Fig. 6(a). Our calculations of driver nodes 
placement are always in the original basis, in which the adjacency matrix is expressed (for instance the representa-
tion (7) for the coupled harmonic oscillator, and (11) for the power grid). If we take a special basis in which the 
modes are decoupled (for instance the Jordan basis), then the contribution of the nodes to the modes (i.e., the 
eigenvectors of A) provide useful information for the investigation of minimum input energy problems. The topic 
is closely related to the so-called participation factors analysis in power networks36. Also quantities like win and 
wout are basis-dependent and become nearly equal for instance if in (1) we pass to a Jordan basis. On the contrary, 
the eigenvalues of A are invariant to a change of basis. Hence as a general rule, the control energy considerations 



www.nature.com/scientificreports/

13Scientific REPOrTS |  (2018) 8:3188  | DOI:10.1038/s41598-018-21398-7

that are consequence of the time constants of the system (like the dependence on the real part of the eigenvalues 
illustrated in Fig. 2) are “more intrinsic” than those that follow from the particular basis representation we have 
available for a network.
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