Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Communication in necrophagous Diptera larvae: interspecific effect of cues left behind by maggots and implications in their aggregation

Abstract

Necrophagous Calliphoridae breed in vertebrate carrion. Their larvae aggregate and form large masses of individuals. These aggregated larvae can reach adulthood faster than scattered larvae, increasing their chances of survival. Furthermore, the gathering of larvae of different species suggests possible interspecific aggregation vectors. In this context, the effect of larval ground-left cues on larvae of Calliphora vomitoria and Lucilia sericata was studied. We used video tracking to follow larvae placed in binary choice tests. We observed (1) a preference of both species for a side marked by conspecific or heterospecific larvae compared to an unmarked side, (2) a preference of L. sericata larvae for a conspecific-marked side compared to a heterospecific-marked side but only at high concentration of cues and (3) a preference of both species for the side marked by the greater number of larvae. These results demonstrate that larvae leave a mark locally which is retentive, has an interspecific range, has an effect proportional to its intensity and whose strength varies depending on the emitting species. According to the self-organization theory, this mark could enhance larval gathering and promote interspecific aggregations. While not yet demonstrated, an interspecific Allee effect could explain the interspecific association of necrophagous calliphorid larvae.

Introduction

Many living organisms form aggregates. These groups of high density exist in various taxa but are especially common and well-known in arthropods such as woodlice1 or social insects2,3. The benefits of such a group formation (i.e., aggregation) include reduced risk of predation4,5, protection against environmental conditions6 and better food assimilation7. Under natural conditions, aggregates are mostly composed of individuals of the same species (i.e., intraspecific aggregates) but can also gather two or more different species (i.e., interspecific aggregates)3.

Aggregation can result from two main processes. Non-social aggregation refers to the gathering of individuals under the influence of environmental heterogeneity8. On the other hand, social aggregation occurs as a result of attraction between individuals. This process requires aggregation vectors, i.e., visual, auditory, tactile or chemical stimuli efficient at a variable range8,9. In most cases, social aggregation includes a self-organizing process, defined as the emergence of complex collective behavior from simple and repeated interactions between individuals2,10. During aggregation, local individual behavior acts as a positive feedback for conspecifics and this feedback amplifies the aggregative behavior, ultimately leading to the emergence of the collective decision2,10,11,12. While intraspecific aggregation has already been the subject of numerous studies13, the formation of interspecific aggregates and corresponding aggregation vectors are still poorly understood3.

Among Diptera, necrophagous Calliphoridae larvae grow and feed on vertebrate carrion7,14. This rich and abundant resource allows fast and efficient larval development. During the feeding instars, larvae aggregate and form huge masses that can contain hundreds to thousands of individuals7. Furthermore, several species in this family are known to aggregate together and form mixed-species groups3,15,16,17,18. A striking consequence of larval aggregation, the so-called maggot-mass effect, is a local temperature increase which can reach 20 °C above ambient. This heat production is proportional to the number of larvae in the aggregate18,19. As the developmental speed of larvae increases with temperature20, aggregated larvae benefiting from the larval-mass effect can reach adulthood faster than isolated individuals21,22,23,24. This reduced development time likely increases the chances of survival of larvae, while aggregation confers other benefits such as better nutrients absorption and protection against predators and parasites5,7. Deleterious effects linked to thermal stress, overcrowding and competition between individuals have also been reported7,24,25.

A recent study demonstrated larval social aggregation in two blowfly species, the common green bottle fly Lucilia sericata and the blue bottle fly Calliphora vomitoria12. This result suggests possible aggregation vectors shared between the two species12. The authors also demonstrated that L. sericata larvae leave on the ground a cuticular mark having a retentive effect on congeners26. According to the authors, this could promote aggregation of larvae and thus constitute an aggregation vector26.

The present study investigates the interspecific effect of the cuticular ground-left cues of C. vomitoria and L. sericata larvae. Three hypotheses were experimentally tested using in vitro binary choice tests: (1) the cues locally left by larvae affect the behavior of larvae of the other species; (2) these heterospecific cues have an effect similar to that of homospecific cues; and (3) the effect of the cues increases in proportion to their concentration.

Material and Methods

Biological material

Larvae were obtained from adult flies collected in the field and reared in the laboratory. Adults of C. vomitoria and L. sericata were reared separately in a 50 × 50 × 50 cm insectarium kept at room temperature (20 ± 2 °C) under a natural light cycle. Water and sugar were provided ad libitum. Twenty grams of fresh chopped beef liver were introduced each day to provide the protein required for vitellogenesis and to trigger egg laying. Eggs were collected daily and deposited in a plastic box (108 × 83 × 64 mm) containing 100 g of chopped beef liver. This box was placed in an incubator (Pol-Eko-Aparatura model ST BASIC) at a temperature of 20 ± 1 °C. Only young third instars (8 ± 1 mm) were used for experiments; this meant five-day old larvae for L. sericata27 and seven-day old larvae for C. vomitoria28.

Binary choice test

The effect of cuticular cues on larval behavior was studied using binary choice tests based on the method of Boulay et al. (2013)26. Larvae were placed in a Petri dish (2 cm in height, 9 cm in diameter) divided into two halves. The bottom of the arena was covered with moistened filter paper (Fig. 1). The dish was placed in an incubator (Liebherr, model FKS 1800) at 25 ± 2 °C and illuminated from below with a red light (630 nm) not visible to the larvae29. As the locomotor activity of the larvae is not linked to a circadian cycle30, experiments were performed daily between 13 h and 19 h. Controls showed that this experimental setup did not produce spatial bias (see Supplementary Fig. S1).

Figure 1
figure 1

Binary-choice setup used during the first and second steps of trials. During the first step, the arena was divided in two. In this example, one side was marked by five larvae for 10 minutes (grey, marked side) while the other side remained blank (white, unmarked side). In the second step, the partition and the marking larvae were removed and a naive larva was placed into the center of the arena. Its displacements were then video-tracked for 5 minutes.

Each test was conducted in two steps: 1/marking the arena and 2/tracking the displacement of a “naive” (i.e., never tested) larva. In the first step (marking), the arena was divided into two halves using a plastic strip, thus creating 2 semicircles of 4.5 cm radius (Fig. 1). Five or 40 “marking” larvae were placed on one side for 10 minutes and allowed to crawl on the paper to leave their cues. The larvae and the plastic strip were then removed. In the second step (tracking), a naive larva was placed in the center of the arena (Fig. 1) and video-recorded for 5 minutes (Veditec camera, model VED-037, Resolution: 976 × 582). The orientation of the arena in the incubator was reversed between each test so that the marked side was positioned half of the time on the left and half of the time on the right. At the end of each trial, the arena was disassembled and thoroughly cleaned with 95% ethanol.

Before performing each test, larvae were kept at 25 ± 1 °C in a pillbox containing moistened pine sawdust for 30 minutes to remove food remains potentially present on their cuticle. An additional 3 h and 30 minutes confinement under the same conditions was applied to marking larvae in order to starve them and to avoid having them defecate on the filter paper during marking26,31. Complementary tests showed that this cleaning (4 h confinement with pine sawdust) was sufficient to remove any traces of food from the larval cuticle (see Supplementary Fig. S2).

Six different marking combinations were tested with 30 replicates performed for each. The conditions “control vs. 5 L. sericata” and “control vs. 5 C. vomitoria” were designed to test the ability of larvae to perceive and react to a conspecific or heterospecific cue. The combinations “5 C. vomitoria vs. 5 L. sericata” and “40 C. vomitoria vs. 40 L. sericata” were designed to test the ability of larvae to distinguish and respond differently to cues from different species. The combinations “5 L. sericata vs. 40 L. sericata” and “5 C. vomitoria vs. 40 C. vomitoria” were designed to test the effect of changing cue concentration.

Data analysis

Video recordings were analyzed using Ethovision XT 8.5 software (Noldus Information Technology, Wageningen, The Netherlands). For each replication, the total duration, the total distance and the average speed in each side of the arena were calculated. The data between the two sides of the arena being paired, comparisons were performed using the Student’s t test for paired data when normality and homoscedasticity were present (respectively evaluated by the Shapiro’s test and the Fisher’s exact test), or using the Wilcoxon test when these conditions were not fulfilled. All analyses were performed with the R studio software (Version 0.98.1103), with a significance level set at α = 0.05. Two other parameters (the number of experiments in which the larva started to move in a side and the curvature of the larval path) were also calculated and compared between sides but, as the results were not significant (see Supplementary Figs S3 and S4), they were not shown in the present manuscript. Colormaps were generated using Ethovision to represent visually the differences of time spent by the larva between the different locations in the arena. Colors of the map represent the time spent at each coordinate of the arena with low wavelengths (e.g. red) indicating long retention time and high wavelengths (e.g. blue) indicating short retention time.

Data availability

The datasets generated and analysed during the current study are available from the corresponding author on reasonable request.

Results

Larval detection of conspecific and heterospecific cues

When only one side of the arena was previously occupied (i.e. marked) by five congeners, both L. sericata and C. vomitoria larvae spent significantly more time and travelled greater distances in the conspecific-marked side (Table 1, Figs 2 and 3). The same result was observed for the heterospecific cue: when one side of the arena was previously marked by five heterospecific larvae, both L. sericata and C. vomitoria larvae spent significantly more time and travelled greater distances in the heterospecific-marked side (Table 1, Fig. 3). In both conditions (conspecific and heterospecific marking), the average speed of the larvae did not differ significantly between marked and unmarked sides of the arena.

Table 1 Mean values of larval displacement in the two sides of the arena for heterogeneous marking conditions (different cues on the two sides of the arena).
Figure 2
figure 2

(A) Two examples of tracks (red, left side) performed by two different larvae (a1 and a2) having spent most of their time in the marked side (dark gray) than in the control side (unmarked side; light gray). Crosses indicate the place where the larvae was located when recording started (i.e. 2 or 3 seconds after being deposited at the center of the arena). (B) Colormaps related to the two tracks above (right side, b1 with a1, b2 with a2). The color gradient reveals the differences in the time spent by the larva at the different locations (from blue to red: from the least to the most of time spent).

Figure 3
figure 3

Mean differences (mean ± s.e.m.) in time spent between marked and non-marked sides. The time difference was calculated by subtracting the time spent on the non-marked side from the time spent on the marked side. The results obtained with naive L. sericata larvae are reported in green, while those for C. vomitoria are in blue. 30 replicates were performed for each condition. Student’s t test and Wilcoxon test, *P < 0.05, **P < 0.01, ***P < 0.001.

Larval differentiation between cues

Experiments comparing one side of the arena marked by five L. sericata larvae and the other side marked by five C. vomitoria larvae showed no difference in the time spent, the distance travelled or the average speed of the naive larvae between the two sides (Table 1, Fig. 4). This absence of choice was observed for larvae of the two tested species. However, when forty larvae were used for marking each side, L. sericata larvae spent significantly more time and travelled greater distances in the side marked by conspecifics (Table 1, Fig. 4). For C. vomitoria, the time spent and the distance travelled were also greater in the side marked by L. sericata larvae but these tendencies were not significant (time spent: Student t test, mean in the side marked by 40 L. sericata = 178 s, mean in the side marked by 40 C. vomitoria = 122 s, t = 1.70, P = 0.10; distance travelled: Student t test, mean in the side marked by 40 L. sericata = 49 cm, mean in the side marked by 40 C. vomitoria = 32 cm, t = 1.94, P = 0.06). For both species, the average speed did not differ significantly between the two sides of the arena.

Figure 4
figure 4

Mean differences (mean ± s.e.m.) in time spent between the sides marked by different species. The time difference was obtained by subtracting the time spent on the side marked by C. vomitoria larvae from the time spent on the side marked by L. sericata larvae. The results obtained with naive L. sericata larvae are reported in green, while those for C. vomitoria are in blue. 30 replicates were performed for each condition. Student’s t test and Wilcoxon test, ***P < 0.001.

Effect of cue intensity

Both L. sericata and C. vomitoria larvae spent significantly more time and travelled greater distance on the side marked by 40 larvae than on the side marked by 5 larvae. This was true for homospecific as well as heterospecific tests (Table 1, Fig. 5). In both cases, the average speed of the larvae did not differ significantly between the two sides of the arena.

Figure 5
figure 5

Mean differences (mean ± s.e.m.) in time spent in the side marked by 40 larvae minus the time spent in the side marked by 5 larvae. The results obtained with naive L. sericata larvae are reported in green, while those for C. vomitoria are in blue. 30 replicates were performed for each condition. Student’s t test and Wilcoxon test, *P < 0.05, **P < 0.01, ***P < 0.001.

Discussion

This study demonstrates (1) a preference of L. sericata and C. vomitoria larvae for the side marked by larvae (conspecific or heterospecific), (2) a preference of L. sericata larvae for the side marked by conspecifics compared to the side marked by the other species and (3) a preference of both species for the side marked by a greater number of larvae (conspecific or heterospecific).

During tests comparing a larval-marked side to a non-marked side, the larvae consistently favored the marked side. This choice was observed for both conspecific and heterospecific marking. This result demonstrates that larvae can perceive the former presence of other larvae of both species. This detection induced a longer stay and greater distance travelled in the marked side, without change in the average speed. Accordingly, the cues left by larvae appear to have a retentive effect on other larvae. An attractive effect could also occur, but this cannot be evidenced by the present results. These results agree with the retentive effect of conspecific cues which have already been demonstrated in L. sericata by Boulay et al. (2013)26 and, confirming the two first hypotheses, highlight for the first time the interspecific range of the effect of larval cues.

Since larval cues have a cross-specific retentive effect, these ground-left odors could play the role of an interspecific aggregation vector. Indeed, the interspecific range of the effect could explain the ability of blowfly larvae of different species to socially aggregate together, as observed under field conditions and experimentally demonstrated by Boulay et al. (2016)12. Since the presence of a larval odor indicates the close presence of other larvae, the ability of a larva to preferentially stay in a marked area would increase the likelihood of interspecific aggregation. Such a mechanism has already been observed within two lepidopteran species, Malacosoma disstria and M. americanum32. Caterpillars of these species leave cues locally that affect not only their conspecifics but also the other species and lead to their gathering32.

When comparing sides marked by different species, larval preferences were different depending on the species and the cues concentration. At low concentrations (i.e. marking with five larvae), both L. sericata and C. vomitoria larvae showed no species-specific preference. But at high concentrations (i.e. marking with forty larvae), L. sericata larvae significantly preferred the side marked by conspecifics. The choice made by L. sericata larvae demonstrates that these larvae can discriminate cues depending on the emitting species. This ability seems to exist also in C. vomitoria, as the differences in both time spent and distance travelled between the two sides were very close to the significance level (respectively, P = 0.10 and P = 0.06). However, the fact that larval preferences were not observed at low concentration suggests the existence of a minimum perception threshold, below which larvae are not able to distinguish differences between cues. Such perception thresholds have already been evidenced in other Diptera larvae, for example in Drosophila33. Furthermore, the superior retentive effect of L. sericata larval cues shows that the strength of the effect can vary according to the emitting species and that different species can respond differently to conspecific cues.

The chemical compounds involved in the larval cues were likely present on the larval cuticle. As evidenced by control experiments, the effect of cues could not be induced by compounds or microorganisms coming from the environment and remaining on the larval integument (see Supplementary Fig. S2). The ability of larvae to discriminate cues between emitting species reinforces this observation. Consequently, a likely explanation of the source of larval cues is that these cues were produced by larvae and left during crawling (probably in a passive way). In many insect species, cuticular extracts (mostly hydrocarbons) initiate aggregation of individuals. This has been shown in ladybirds34 as well as in cockroaches35. Moreover, coexistence between different populations, colonies or species is often linked to similarities in cuticular compounds of individuals (e.g., refs36,37,38). Thus, as both L. sericata and C. vomitoria larvae can perceive cues from both species, these cues could contain some similar compounds. But as larvae can also discriminate cues when a minimum concentration is reached, some compounds may also quantitatively or qualitatively differ between the species. Two former studies analyzed the cuticular hydrocarbons at all developmental stages in L. sericata39 and C. vomitoria40. The hydrocarbons described were only linear alkanes. In C. vomitoria third instar larvae, the most abundant alkanes were C21, C22 and C2540, while in L. sericata they were C25, C27, C29 and C3139. Therefore, among the most abundant alkanes, only C25 were common to both species. The other alkanes ranging from C21 to C31 were almost all detected in both species but in very low proportions. According to these data, one hypothesis explaining both the interspecific perception and the concentration-dependent discrimination of cues is that larvae are able to detect linear alkanes from a vast range of size and to distinguish them depending on their size only if their concentration exceeds the value of the minimum perception threshold. Experiments using extracts or single compounds could allow to determine precisely which compounds are involved in larval aggregations.

Lastly, we observed that larvae spent more time in the side marked by a greater number of larvae (conspecific or heterospecific), confirming our third hypothesis. This behavior indicates a proportional effect between the attractive/retentive larval cues and the number of larvae that left it. Ultimately, it implies that larvae could detect a posteriori which place was the more crowded. This proportionality of cue effect to its intensity is in accordance with the self-organization theory. By increasing the probability of retaining individuals, the larval cues could allow self-amplification, resulting in a reinforcement of aggregation and a constant increase in the larval number. Such a density-dependent enhancement has been demonstrated in ants2, cockroaches41 and woodlice1. Furthermore, the interspecific effect of this mechanism would promote large interspecific aggregation. Broly et al. (2016)42 showed that woodlice of the species Porcellio scaber and Oniscus asellus were more likely to gather together when the group was composed of a greater number of individuals. In blowflies, large interspecific aggregates are clearly visible under field conditions and have been reported by many authors (e.g., refs16,18,43). Until now, the main explanatory factor for such a mixing of species was the clustering of eggs in places with a high nutritional value such as the face or wounds7,44. Together with the study of Boulay et al. (2016)12, our results add a new explanation to interspecific aggregations by providing a first experimental evidence of a mechanism producing a social aggregation of necrophagous larvae from different species.

Interspecific aggregation should provide benefits for each of the involved species, implying a low level of interspecific competition. Such benefits may be similar to those of intraspecific aggregation (e.g. more efficient feeding and development). Thus, collective behavior could allow the aggregated species to benefit from a rich and abundant but ephemeral and not easily digested food source7. Several authors have demonstrated that aggregation allows larvae to create a larval mass effect (local heat emission)17,18 that may speed up their rate of development and reduce the time spent in the cadaver22,23,24. By increasing their number, larvae may also improve food acquisition by extra-corporal digestion. Such an exodigestion process may be promoted by several factors involving numerous larvae such as elevated local temperatures, releasing of enzymes, changing of the local pH, control of bacterial activity and mechanically liquefying of flesh7,45,46,47. Such an interspecific Allee effect has never been formally demonstrated but is a likely reason for interspecific communication and aggregation of necrophagous calliphorid larvae. Larvae might also benefit from being aggregated due to the collective decisions made by the aggregated larvae, leading for example to find the best feeding sites12,48. Moreover, the stronger effect of L. sericata cues compared to C. vomitoria cues suggests that larvae may receive more benefits in aggregating with L. sericata than with C. vomitoria. Accordingly, L. sericata could provide an advantage for larvae that C. vomitoria would not have, such as effective digestive enzymes or effective antimicrobial secretions. Indeed, the antibacterial properties of L. sericata excretions/secretions (ES) have already been shown to differ from those of another blowfly species, Calliphora vicina, with a greater efficiency of L. sericata ES compared to C. vicina ES against some species of bacteria49. Another hypothesis is that C. vomitoria larvae have greater competitive abilities than L. sericata, allowing them to outcompete L. sericata in interspecific aggregates. For now, competition studies between these two species are lacking to confirm or refute this hypothesis.

In conclusion, this study is the first demonstration that L. sericata and C. vomitoria larvae leave on the ground a cue inducing an effect that is retentive, has an interspecific range, is proportional to its intensity and whose the strength varies depending on the emitting species. According to the self-organization theory, this effect could enhance the aggregation of larvae and promote interspecific aggregation. However, this mark is currently known only through its behavioral effect and has not been chemically identified. While cuticular hydrocarbons are likely candidates, this still lacks direct evidence. In addition, other vectors such as thigmotactism7,26, volatile odors50, substrate modification46,47 or thermal orientation51 could also be involved in interspecific larval aggregations in natural environment.

References

  1. 1.

    Devigne, C., Broly, P. & Deneubourg, J.-L. Individual preferences and social interactions determine the aggregation of woodlice. Plos one 6, e17389 (2011).

    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Deneubourg, J. L., Lioni, A. & Detrain, C. Dynamics of aggregation and emergence of cooperation. Bio. Bull. 202, 262–267 (2002).

    CAS  Article  Google Scholar 

  3. 3.

    Boulay, J. et al. Mixed‐species aggregations in arthropods. Insect Sci. in press (2017).

  4. 4.

    Hamilton, W. D. Geometry for the selfish herd. J. Theor. Biol. 31, 295–311 (1971).

    CAS  Article  PubMed  Google Scholar 

  5. 5.

    Parrish, J. K. & Edelstein-Keshet, L. Complexity, pattern and evolutionary trade-offs in animal aggregation. Science 284, 99–101 (1999).

    ADS  CAS  Article  PubMed  Google Scholar 

  6. 6.

    Broly, P., Deneubourg, J.-L. & Devigne, C. Benefits of aggregation in woodlice: a factor in the terrestrialization process? Insectes Soc. 60, 419–435 (2013).

    Article  Google Scholar 

  7. 7.

    Rivers, D. B., Thompson, C. & Brogan, R. Physiological trade-offs of forming maggot masses by necrophagous flies on vertebrate carrion. Bull. Entomol. Res. 101, 599–611 (2011).

    CAS  Article  PubMed  Google Scholar 

  8. 8.

    Danchin, E. & Wagner, R. H. The evolution of coloniality: the emergence of new perspectives. Trends Ecol. Evol. 12, 342–347 (1997).

    CAS  Article  PubMed  Google Scholar 

  9. 9.

    Parrish, J. K. & Hamner, W. M. Animal groups in three dimensions (Cambridge University Press, 1997).

  10. 10.

    Sumpter, D. J. The principles of collective animal behaviour. Philos. Trans. R. Soc. Lond. B Biol. Sci. 361, 5–22 (2006).

    CAS  Article  PubMed  Google Scholar 

  11. 11.

    Bonabeau, E., Theraulaz, G., Deneubourg, J.-L., Aron, S. & Camazine, S. Self-organization in social insects. Trends Ecol. Evol. 12, 188–193 (1997).

    CAS  Article  PubMed  Google Scholar 

  12. 12.

    Boulay, J., Deneubourg, J.-L., Hédouin, V. & Charabidze, D. Interspecific shared collective decision-making in two forensically important species. Proc. R. Soc. Lond. B Biol. Sci. 283, 20152676 (2016).

    Article  Google Scholar 

  13. 13.

    Jeanson, R., Dussutour, A. & Fourcassié, V. Key factors for the emergence of collective decision in invertebrates. Front. Neurosci. 6 (2012).

  14. 14.

    Campobasso, C. P., Di Vella, G. & Introna, F. Factors affecting decomposition and Diptera colonization. Forensic Sci. Int. 120, 18–27 (2001).

    CAS  Article  PubMed  Google Scholar 

  15. 15.

    Ives, A. R. Aggregation and coexistence in a carrion fly community. Ecol. Monogr. 61, 75–94 (1991).

    Article  Google Scholar 

  16. 16.

    Woodcock, B. A., Watt, A. D. & Leather, S. R. Aggregation, habitat quality and coexistence: a case study on carrion fly communities in slug cadavers. J. Anim. Ecol. 71, 131–140 (2002).

    Article  Google Scholar 

  17. 17.

    Joy, J. E., Liette, N. L. & Harrah, H. L. Carrion fly (Diptera: Calliphoridae) larval colonization of sunlit and shaded pig carcasses in West Virginia, USA. Forensic Sci. Int. 164, 183–192 (2006).

    Article  PubMed  Google Scholar 

  18. 18.

    Slone, D. H. & Gruner, S. V. Thermoregulation in larval aggregations of carrion-feeding blow flies (Diptera: Calliphoridae). J. Med. Entomol. 44, 516–523 (2007).

    CAS  Article  PubMed  Google Scholar 

  19. 19.

    Charabidze, D., Bourel, B. & Gosset, D. Larval-mass effect: Characterisation of heat emission by necrophageous blowflies (Diptera: Calliphoridae) larval aggregates. Forensic Sci. Int. 211, 61–66 (2011).

    Article  PubMed  Google Scholar 

  20. 20.

    Marchenko, M. I. Medicolegal relevance of cadaver entomofauna for the determination of the time of death. Forensic Sci. Int. 120, 89–109 (2001).

    CAS  Article  PubMed  Google Scholar 

  21. 21.

    Goodbrod, J. R. & Goff, M. L. Effects of larval population density on rates of development and interactions between two species of Chrysomya (Diptera: Calliphoridae) in laboratory culture. J. Med. Entomol. 27, 338–343 (1990).

    CAS  Article  PubMed  Google Scholar 

  22. 22.

    Saunders, D. S. & Bee, A. Effect of larval crowding on size and fecundity of the blow fly, Calliphora vicina (Diptera: Calliphoridae). Eur. J. Entomol. 92, 615–622 (1995).

    Google Scholar 

  23. 23.

    Ireland, S. & Turner, B. The effects of larval crowding and the food type on the size and development of the blowfly Calliphora vomitoria. Forensic Sci. Int. 159, 175–181 (2006).

  24. 24.

    Rivers, D. B., Ciarlo, T., Spelman, M. & Brogan, R. Changes in development and heat shock protein expression in two species of flies (Sarcophaga bullata [Diptera: Sarcophagidae] and Protophormia terraenovae [Diptera: Calliphoridae]) reared in different sized maggot masses. J. Med. Entomol. 47, 677–689 (2010).

    CAS  PubMed  Google Scholar 

  25. 25.

    Ullyett, G. C. Competition for food and allied phenomena in sheep-blowfly populations. Philos. Trans. R. Soc. Lond. B Biol. Sci. 234, 77–174 (1950).

    ADS  Article  Google Scholar 

  26. 26.

    Boulay, J., Devigne, C., Gosset, D. & Charabidze, D. Evidence of active aggregation behaviour in Lucilia sericata larvae and possible implication of a conspecific mark. Anim. Behav. 85, 1191–1197 (2013).

    Article  Google Scholar 

  27. 27.

    Grassberger, M. & Reiter, C. Effect of temperature on Lucilia sericata (Diptera: Calliphoridae) development with special reference to the isomegalen and isomorphen diagram. Forensic Sci. Int. 120, 32–36 (2001).

    CAS  Article  PubMed  Google Scholar 

  28. 28.

    Ames, C. & Turner, B. Low temperature episodes in development of blowflies: implications for postmortem interval estimation. Med. Vet. Entomol. 17, 178–186 (2003).

    CAS  Article  PubMed  Google Scholar 

  29. 29.

    Strange, P. H. The spectral sensitivity of Calliphora maggots. J. Exp. Biol. 38, 237–248 (1961).

  30. 30.

    Joplin, K. H. & Moore, D. Effects of environmental factors on circadian activity in the flesh fly Sarcophaga crassipalpis. Physiol. Entomol. 24, 64–71 (1999).

  31. 31.

    Charabidze, D., Hedouin, V. & Gosset, D. Discontinuous foraging behavior of necrophagous Lucilia sericata (Meigen 1826) (Diptera Calliphoridae) larvae. J. Insect Physiol. 59, 325–331 (2013).

    CAS  Article  PubMed  Google Scholar 

  32. 32.

    Fitzgerald, T. D. & Edgerly, J. S. Specificity of trail markers of forest and eastern tent caterpillars. J. Chem. Ecol. 5, 565–574 (1979).

    Article  Google Scholar 

  33. 33.

    Kreher, S. A., Kwon, J. Y. & Carlson, J. R. The molecular basis of odor coding in the Drosophila larva. Neuron 46, 445–456 (2005).

    CAS  Article  PubMed  Google Scholar 

  34. 34.

    Wheeler, C. A. & Cardé, R. T. Following in their footprints: cuticular hydrocarbons as overwintering aggregation site markers in Hippodamia convergens. J. Chem. Ecol. 40, 418–428 (2014).

    CAS  Article  PubMed  Google Scholar 

  35. 35.

    Rivault, C., Cloarec, A. & Sreng, L. Cuticular extracts inducing aggregation in the German cockroach, Blattella germanica (L.). J. Insect Physiol. 44, 909–918 (1998).

    CAS  Article  PubMed  Google Scholar 

  36. 36.

    Bonavita-Cougourdan, A. et al. Selective adaptation of the cuticular hydrocarbon profiles of the slave-making ants Polyergus rufescens Latr. and their Formica rufibarbis Fab. and F. cunicularia Latr. slaves. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 113, 313–329 (1996).

    Article  Google Scholar 

  37. 37.

    Saïd, I., Costagliola, G., Leoncini, I. & Rivault, C. Cuticular hydrocarbon profiles and aggregation in four Periplaneta species (Insecta: Dictyoptera). J. Insect Physiol. 51, 995–1003 (2005).

    Article  PubMed  Google Scholar 

  38. 38.

    Vauchot, B. et al. Differential adsorption of allospecific hydrocarbons by the cuticles of two termite species, Reticulitermes santonensis and R. lucifugus grassei, living in a mixed colony: Passive transfer by contact. J. Insect Physiol. 44, 59–66 (1997).

    Article  PubMed  Google Scholar 

  39. 39.

    Gołębiowski, M. et al. Cuticular and internal n-alkane composition of Lucilia sericata larvae, pupae, male and female imagines: application of HPLC-LLSD and GC/MS-SIM. Bull. Entomol. Res. 102, 453–460 (2012).

    Article  PubMed  Google Scholar 

  40. 40.

    Roux, O., Gers, C. & Legal, L. Ontogenetic study of three Calliphoridae of forensic importance through cuticular hydrocarbon analysis. Med. Vet. Entomol. 22, 309–317 (2008).

    CAS  Article  PubMed  Google Scholar 

  41. 41.

    Jeanson, R. et al. Self-organized aggregation in cockroaches. Anim. Behav. 69, 169–180 (2005).

    Article  Google Scholar 

  42. 42.

    Broly, P., Ectors, Q., Decuyper, G., Nicolis, S. C. & Deneubourg, J. L. Sensitivity of density-dependent threshold to species composition in arthropod aggregates. Sci. Rep. 6, 32576 (2016).

    Article  Google Scholar 

  43. 43.

    Kouki, J. & Hanski, I. Population aggregation facilitates coexistence of many competing carrion fly species. Oikos 72, 223–227 (1995).

    Article  Google Scholar 

  44. 44.

    Charabidze, D., Depeme, A., Devigne, C. & Hedouin, V. Do necrophagous blowflies (Diptera: Calliphoridae) lay their eggs in wounds?: Experimental data and implications for forensic entomology. Forensic Sci. Int. 253, 71–75 (2015).

    Article  PubMed  Google Scholar 

  45. 45.

    Hobson, R. P. Studies on the nutrition of blow-fly larvae. III. The Liquefaction of Muscle. J. Exp. Biol. 9, 359–365 (1932).

    CAS  Google Scholar 

  46. 46.

    Pendola, S. & Greenberg, B. Substrate-specific analysis of proteolytic enzymes in the larval midgut of Calliphora vicina. Ann. Entomol. Soc. Am. 68, 341–345 (1975).

    CAS  Article  Google Scholar 

  47. 47.

    Sandeman, R. M., Feehan, J. P., Chandler, R. A. & Bowles, V. M. Tryptic and chymotryptic proteases released by larvae of the blowfly Lucilia cuprina. Int. J. Parasitol. 20, 1019–1023 (1990).

  48. 48.

    Lihoreau, M., Clarke, I. M., Buhl, J., Sumpter, D. J. & Simpson, S. J. Collective selection of food patches in Drosophila. J. Exp. Biol. 219, 668–675 (2016).

  49. 49.

    Barnes, K. M., Gennard, D. E. & Dixon, R. A. An assessment of the antibacterial activity in larval excretion/secretion of four species of insects recorded in association with corpses, using Lucilia sericata Meigen as the marker species. Bull. Entomol. Res. 100, 635–640 (2010).

    CAS  Article  PubMed  Google Scholar 

  50. 50.

    Cobb, M. What and how do maggots smell? Biol. Rev 74, 425–459 (1999).

    Article  Google Scholar 

  51. 51.

    Aubernon, C., Boulay, J., Hédouin, V. & Charabidze, D. Thermoregulation in gregarious dipteran larvae: evidence of species-specific temperature selection. Entomol. Exp. Appl. 160, 101–108 (2016).

    Article  Google Scholar 

Download references

Acknowledgements

Thanks to J. Boulay and C. Devigne for helpful suggestions and comments about the conduction of experiments and analysis of results.

Author information

Affiliations

Authors

Contributions

Q.F. and D.C. conceived and designed the experiments, Q.F. conducted the experiments, Q.F. and D.C. analysed the results, Q.F. and D.C. wrote the paper. All authors reviewed the manuscript.

Corresponding author

Correspondence to Quentin Fouche.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fouche, Q., Hedouin, V. & Charabidze, D. Communication in necrophagous Diptera larvae: interspecific effect of cues left behind by maggots and implications in their aggregation. Sci Rep 8, 2844 (2018). https://doi.org/10.1038/s41598-018-21316-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41598-018-21316-x

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing