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Spontaneous oscillation in cell 
adhesion and stiffness measured 
using atomic force microscopy
Hanna Sanyour1,2, Josh Childs  1,2, Gerald A. Meininger3 & Zhongkui Hong1,2

Atomic force microscopy (AFM) is an attractive technique for studying biomechanical and 
morphological changes in live cells. Using real-time AFM monitoring of cellular mechanical properties, 
spontaneous oscillations in cell stiffness and cell adhesion to the extracellular matrix (ECM) have been 
found. However, the lack of automated analytical approaches to systematically extract oscillatory 
signals, and noise filtering from a large set of AFM data, is a significant obstacle when quantifying and 
interpreting the dynamic characteristics of live cells. Here we demonstrate a method that extends the 
usage of AFM to quantitatively investigate live cell dynamics. Approaches such as singular spectrum 
analysis (SSA), and fast Fourier transform (FFT) were introduced to analyze a real-time recording of cell 
stiffness and the unbinding force between the ECM protein-decorated AFM probe and vascular smooth 
muscle cells (VSMCs). The time series cell adhesion and stiffness data were first filtered with SSA and 
the principal oscillatory components were isolated from the noise floor with the computed eigenvalue 
from the lagged-covariance matrix. Following the SSA, the oscillatory parameters were detected 
by FFT from the noise-reduced time series data sets and the sinusoidal oscillatory components were 
constructed with the parameters obtained by FFT.

Atomic force microscopy (AFM) is a powerful technique with a broad range of biological applications in morpho-
logical and mechanical characterization at the molecular1, cellular2–7, and tissue level8–10. Application of AFM in 
real-time monitoring of cellular mechanics and morphology may provide us with a direct insight into the dynam-
ical changes in mechanics and structures of a live cell at nanoscale2. Spontaneous oscillations in cell stiffness, 
adhesion to extracellular matrix (ECM), and the architecture of cytoskeleton have been reported for multiple 
cell types2,11–14. Preliminary studies have revealed that vasoactive agonists may induce the changes in oscillation 
of cell elasticity and adhesion to the ECM, however, the exact mechanisms and the biological functions of these 
oscillations in cell stiffness and adhesion remain to be elucidated2,15. Evidence suggests that the mechanism for 
spontaneous oscillations in cell stiffness and adhesion may be attributed to myosin motors and myosin light chain 
kinase (MLCK) activity11,13. The study of periodic oscillations in live cells is still in its infancy, and thus the phys-
iological, functional, and clinical relevance of these oscillations remain unknown. It is conceivable that the AFM 
is ideally suited to investigate this temporal aspect of live cell mechanics. However, the highly dynamic character-
istics of the oscillations in cell mechanics and high diversity of individual samples necessitate unique analytical 
approaches for large sets of AFM data. The summarized oscillatory parameters obtained from the analysis of 
such data sets ultimately reveal the nature of spontaneous oscillations in cell mechanical and adhesive behaviour. 
Based on the size and complexity of these data sets, an automated analytical approach is required to systematically 
extract periodic signals from a large set of time series AFM data. This will provide a more unbiased approach to 
quantitatively investigate and interpret the dynamic live cell mechanics. In previous publications, we applied 
eigen decomposition that isolated major oscillatory components and reconstructed the time series of AFM data 
with the filtered oscillation signals2,13,14. Here, we describe an approach with the combination of singular spec-
trum analysis (SSA) and fast Fourier transform (FFT) to investigate the oscillations in cellular mechanics in detail.

SSA was initially introduced by Broomhead and King as a novel technique for the time series data analysis16,17. 
Thereafter, a series of representative publications brought SSA to the center stage as an effective analytical tool 
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applied in dynamical systems and signal processing18–22. Over the past decade, SSA has gained growing attention 
in the analysis of time series data in biological systems such as gene expression23–25 and ultrasonic detection and 
imaging26. The method presented here is an automated analytical tool based on the theory of time series data 
analysis described by Elsner et al.27 and Golyandina et al.28. It includes uneven time series cell adhesion and cell 
stiffness data interpolation, SSA filtering, and FFT prediction. This type of analysis is of fundamental importance 
for studying these oscillatory events and will help reveal their physiological function and clinical relevance.

Results
Detrending and standardization of the time series cell adhesion force. A representative raw time 
series cell adhesion force recorded with AFM at 0.5 Hz indentation frequency for 1800 sec was plotted in Fig. 1a. 
The raw time series data was linear-fitted as shown in panel (a) (red line). Prior to singular spectrum analysis 
(SSA), the raw time series data set was detrended by subtracting the linear fit, and standardized by subtracting the 
mean value of the data set and dividing by the standard deviation of the data set (Fig. 1b).

Singular spectrum analysis, grouping of components, and diagonal averaging. Prior to peri-
odicity detection, singular value decomposition was performed to filter the thermal and mechanical noise and 
isolate the real biological signals from the time series cell adhesion data. Construction of trajectory matrix of the 
data series is the first step in SSA methodology. In this study, the trajectory matrixes were constructed with the 
forward-backward method (eq. 1). The eigenvalues were plotted in the descending order in the singular spectrum 
of the time series cell adhesion force (Fig. 2, black circle). In addition, the eigenvalues were accumulated until the 
threshold was achieved (Fig. 2, blue triangle). The red arrows indicate the threshold (0.1 for total adhesion force/
per curve) between the potential biological signal and noise floor, i.e., the leading eigenvalues before the threshold 

Figure 1. Detrending and normalization of the raw time series integrin-FN total adhesion force per curve. 
(a) Time series of total adhesion force recorded at 0.5 Hz sampling frequency for 1800 sec (n = 1). The red line 
represents a linear fit of the experimental data set. The trend and intercept of the standardized adhesion time 
series were computed from the linear fit. (b) The detrended and standardized time series, which was used to 
perform singular spectrum analysis (SSA).

Figure 2. Representative singular spectrum of the standardized time series total integrin-FN adhesion force 
per curve. The eigenvalues (black circle) were plotted in descending order. The embedding dimension of this 
individual time series data is 451. The half-length of time series data is normally taken for the dimension of the 
embedded window. The accumulated eigenvalues (blue triangle) will be used to find the leading components 
from the standardized time series data. The red arrows indicate the eigenvalue threshold between the biological 
signal and noise floor.
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(including threshold) were considered real biological signals, whereas eigenvalues beyond the threshold were 
considered White noise. The SSA-filtered time series adhesion force (Fig. 3a, red solid line) was reconstructed 
by diagonal averaging the principal eigentriple matrixes YI using eq. 5, corresponding to the leading eigenvalues 
of the trajectory matrix. The FFT power spectrum density (PSD) for raw total adhesion force was compared to 
SSA filtered time series data set (Fig. 3b). The results showed most of the background noise had been removed 
after SSA filtering, and it was easy to detect the main leading oscillatory components of the data set, which were 
the potential candidates for the real biological signals. The oscillation component at 0.194 Hz was too fast for a 
live cell biomechanics and the components at 0.0186 Hz and 0.0208 Hz were too close to each other. Therefore, 
in this individual cell, the leading components at 0.0027 Hz and 0.0186 Hz with the highest oscillation powers, 
as indicated with arrows, were considered the real biological signals for further signal processing (Fig. 3b). Both 
two leading oscillatory components reconstructed with the two leading eigentriple matrices using eq. 5 gradually 
increased the oscillation power, reached their highest oscillation amplitudes, and then followed by a gradual 
decrease in oscillation power (Fig. 4).

Periodicity detection by fast Fourier transform. Periodic signals in the leading two components were 
detected using FFT and the power spectrum densities were plotted in Fig. 5. Both component 1 and component 
2 exhibited sharp peaks at 0.0027 Hz and 0.0186 Hz, respectively, and no side peak or shoulder appeared around 
them (Fig. 5). This indicates that component 1 and component 2 can be clearly isolated from the noise back-
ground. Sinusoidal time series adhesion force for the leading components 1 and 2 were reconstructed using the 
oscillatory parameter (frequency and amplitude) obtained from the FFT results (Fig. 6).

Comparison of the oscillations in cell adhesion between live and fixed VSMCs. To verify the 
leading oscillatory components are the real biological signals generated by a live cell, a sham control experiment 
was conducted on fixed VSMCs (Fig. 7). Oscillatory components for live VSMCs (red) and fixed VSMCs (blue) 
were plotted using the oscillation parameters for the first two leading components obtained from the summarized 
results of the SSA-FFT for the two group samples (Fig. 7a and b), respectively. The results showed distinct oscilla-
tions in the time series adhesion data for live VSMCs compared to the relative flat oscillation pattern shown in the 
real-time adhesion force for fixed VSMCs. The summation of the first two leading oscillatory components for the 
live cells also exhibited a strong oscillation in cell adhesion force compared to the fixed cells (Fig. 7c). In addition, 
it can be noted that the reconstructed time series adhesion for live VSMCs showed an average total adhesion force 
above 60 pN for components 1 and 2. However, the reconstructed time series adhesion data for fixed VSMCs 
presented a relative low average adhesion force around 20 pN. These results suggest that the oscillations observed 
in the cell adhesion were generated by the real biological activity of live VSMCs.

Comparison of the oscillations in live cell E-Modulus  to that of polyacrylamide gel substrate.  
The oscillation behavior of a live VSMC E-modulus was compared to that of a PA gel substrate (Fig. 8). The live 
VSMC showed a notable oscillation around 10 kPa, whereas the control PA gel exhibited a constant E-modulus 
around 16 kPa during the entire course of the experiment (Fig. 8a). The time series of the E-modulus of a live 

Figure 3. Integrin-FN adhesion force time series reconstruction and its fast Fourier transform (FFT). (a) The 
raw total adhesion force and the SSA filtered leading components of the time series (red line) corresponding 
to the leading eigenvalues in Fig. 2. The leading components were constructed using eq. 5. (b) A representative 
FFT conducted on the raw data and SSA filtered time series data sets, respectively. The FFT results demonstrated 
a strong background noise for the raw data compared to the clean background for SSA filtered signal (red). The 
FFT of the eigen decomposition revealed the frequency and amplitude of the leading oscillatory components 
with the largest power. In this study, the first two leading components were considered the real biological signals 
for further analysis (indicated by red arrows).



www.nature.com/scientificreports/

4SCiENTiFiC RepoRtS |  (2018) 8:2899  | DOI:10.1038/s41598-018-21253-9

VSMC was subjected to the SSA and FFT and two major oscillatory components were isolated and reconstructed 
similar to the total adhesion force (Fig. 8b and c). To compare the oscillation behaviors in cell E-modulus with the 
total adhesion force of VSMCs, the group average of the real-time E-modulus of VSMCs (n = 10) was summarized 

Figure 4. The two principle oscillatory components isolated from the raw time series integrin-FN adhesion 
force using SSA, which correspond to the two-leading frequencies with the highest power in the Fig. 3(b). Time 
series adhesion data was reconstructed with the leading two eigentriple matrices using eq. 5. (a) Component 
1 and (b) component 2 gradually increased oscillation powers and reached the highest oscillation amplitude 
followed by a gradual decrease in oscillation power.

Figure 5. Power spectrum densities plotted using the results of FFT conducted on oscillatory components 1 
and 2 in Fig. 4, respectively. Both (a) component 1 (0.0027 Hz) and (b) component 2 (0.0186 Hz) showed a sharp 
peak without any side peak or shoulder around them. It indicated that neither component 1 nor component 2 
mixed with any other oscillatory signal and that components 1 and 2 could be clearly isolated from background 
noise.
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(Fig. 9). The two major oscillatory components of the grouped VSMCs E-modulus showed notable oscillations 
around 16 kPa, whereas, the PA gel elasticity gave a constant value of 18kPa.

Discussion
Periodic oscillations in cell adhesion and stiffness have been reported previously by our laboratory2,13,14 and oth-
ers11,12. These highly dynamic characteristics of live cells are believed to be associated with the biological functions 
within the cell. We developed an analytical method by which the temporal aspects of time series cell adhesion 

Figure 6. Sinusoidal time series integrin-FN adhesion force was reconstructed for the leading components 
using the oscillation parameter obtained from the FFT results. Both (a) component 1 and (b) component 2 
oscillate with the average value around 70 kPa.

Figure 7. Sinusoidal reconstruction of the time series integrin-FN total adhesion force. (a) Oscillatory 
component 1, (b) component 2 and (c) the sum of the two leading components for live VSMCs (red) and fixed 
VSMCs (blue). Time series adhesion data were plotted using the oscillation parameters for the first two leading 
components obtained from the summarized result of the SSA-FFT performed on the two group samples, 
respectively (n = 10). The result demonstrated the significant oscillations in the time series adhesion force for 
live VSMCs compared to the relative flat profile of the total adhesion force for fixed VSMCs.
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Figure 8. Comparison of the oscillations in E-modulus between a live VSMC and polyacrylamide (PA) gel. 
(a) Representative raw time series of E-modulus data sets of a live VSMC (red) and a PA gel (blue). (b) The 
sinusoidal leading component 1 and (c) component 2 of the time series E-modulus reconstructed with SSA-
FFT for a live VSMC and PA gel, respectively. The live VSMC showed notable oscillations in the time series 
E-modulus whereas the control PA gel presented a constant E-modulus during measurement.

Figure 9. Sinusoidal reconstruction of E-modulus time series. (a) Oscillatory component 1, (b) component 2, 
and (c) sum of the two leading components for live VSMCs (red) and PA gel control (blue) (n = 10). The sum of 
components were plotted using the oscillation parameters obtained from the summarized result of the SSA-FFT 
process, respectively. The result showed the notable oscillations in the time series E-modulus for live VSMCs 
compared to the constant E-modulus for PA gel during the measurement.
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force and cell stiffness can be analyzed to extract individual oscillatory components2,13,14. In the present study, we 
utilized FFT to detect oscillations from cell adhesion and cell stiffness data series recorded by AFM. The strength 
of this approach is that it permits the isolation of oscillatory components for a deeper mechanistic and functional 
study. The most critical step in this method is SSA filtering to reduce environmental noise embedded within the 
AFM data series. This allows the periodicity-detecting tool, FFT, to identify the periodic biological signals, and 
estimate the oscillatory parameters from live cells. SSA filtering is accomplished by choosing a small number of 
leading eigenvalues and their associated eigenvectors. Following the principle of SSA, small eigenvalues were 
normalized to zero. A central part of SSA is the construction of a trajectory matrix. In this study, we composed 
the forward-backward trajectory matrixes with eq. 1. The forward-backward trajectory matrix is typically used to 
linearly predict short length data set instead of the forward or backward matrix simply because it can increase the 
number of equations and consequently improve the accuracy for estimated autoregressive coefficients24,29. Our 
results demonstrated that the forward-backward trajectory matrix was able to isolate clear and smooth principal 
components for periodicity detection through FFT (Fig. 6). Initially, the real biological components entangled 
with a huge number of periodic thermal and mechanical signals and thus were undistinguishable from these 
background noises (Fig. 3b). However, the reconstructed total adhesion time series of the leading components 
resulted in a very sharp and almost noise-free power spectrum density. To test our hypothesis that these oscil-
lations in biomechanics correlate with biological functions of a live cell, we compared the oscillation pattern of 
cell adhesions between live and fixed VSMCs. Obtained oscillatory signals from live VSMCs showed a distinctly 
higher frequency and amplitude than the fixed VSMCs, which confirmed the biological origin of these oscillatory 
signals (Fig. 7). In addition to the difference in oscillation patterns between live and fixed VSMCs, the live VSMCs 
demonstrated a significantly higher total adhesion force than fixed cell, indicating a loss of integrin-ligand bind-
ing capacity in fixed cell.

To verify the oscillations in cell stiffness did not result from the background noise of the AFM system either, 
the SSA-FFT was also performed on the real-time E-modulus of live VSMCs and PA gel substrate (Fig. 8). The 
results showed the significant differences in oscillation frequencies and E-Modulus between live VSMCs and PA 
gels. The grouped summary of the comparison between the live VSMCs and PA substrate, further confirmed 
that the oscillations in cell E-modulus correlated with the biological signal from a live cell (Fig. 9). Interestingly, 
the leading components 1 and 2 of the time series of cell adhesion and E-modulus oscillate at similar frequen-
cies correspondingly. It may indicate the underlying correlation between the oscillation in cell adhesion and cell 
E-modulus. Taken together, these results demonstrate that the combination of SSA and FFT can be used to detect 
the periodic biological signals from the time series of cell adhesion and E-modulus data sets collected by AFM.

In summary, adhesion force data recorded by AFM carries various environmental noises such as mechanical 
and thermal instabilities entangled with potential intrinsic biological oscillatory signals due to the noise sensi-
tivity of an AFM device. Utilization of SSA in the real-time AFM data set enables us to reduce the noise level by 
isolating the principal oscillatory signals from the raw time series adhesion data and reconstruct the time series 
adhesion force and E-modulus only with the principle oscillatory components. FFT could be applied to detect the 
periodicity in the SSA pre-filtered noise-free/noise-reduced cell adhesion data set. The method developed in this 
study allows us to analyze the temporal aspect of real-time cell adhesion and E-Modulus data component-wise, to 
understand what drives the oscillations, and to investigate the biological functions and clinical relevance of these 
biomechanical oscillations in live cells.

Methods
VSMCs isolation and culture. Sprague-Dawley rats were used for this study and maintained in accordance 
with the 8th Edition of the Guide for the Care and Use of Laboratory Animals (NRC, 2011). Animals used in these 
studies were approved by the Laboratory Animal Use Committee of the University of South Dakota (protocol 
#: 13-09-15-18 C). VSMCs were enzymatically isolated from the descending thoracic aorta of euthanized rats 
using CO2 asphyxiation2,30 and seeded onto 60 mm tissue culture dishes (World Precision Instruments, Sarasota, 
FL). Cells were maintained in DMEM/F-12 (Invitrogen) supplemented with 10% FBS (Atlanta Biologicals, 
Lawrenceville, GA), 10 mM HEPES (Sigma, St. Louis, MO), 2 mM L-glutamine, 1 mM sodium pyruvate, 100 U/
ml penicillin, and 100 μg/ml streptomycin in a humidified incubator (Heraeus Instruments, Newtown, CT) with 
5% CO2 at 37 °C. The cells used in AFM experiments were maintained in primary culture for 3–7 days without 
passage. All reagents were purchased from Invitrogen (Life Technologies Carlsbad, CA) except HEPES and FBS.

Fibronectin coating on AFM probes for Integrin α5β1 mediated cell adhesion measurement.  
A stylus AFM probe (MLCT, Santa Barbara, CA; Bruker Corp.) was coated with fibronectin (FN, Invitrogen, 
Carlsbad, CA) using the protocol described in previous publications2,30. Briefly, the probe was incubated with 
10 mM polyethylene glycol (PEG, Sigma, St. Louis, MO) for 5 min, washed with phosphate buffered saline (PBS), 
and then incubated with FN (0.1 mg/ml) for 5 min followed by rinsing with PBS.

Real-time α5β1 integrin-mediated cell adhesion and stiffness measurement using AFM.  
Real-time monitoring of biomechanical properties of live VSMC was performed using an Asylum AFM System 
(Model MFP-3D-BIO, Asylum Research, Santa Barbara, CA) mounted on an inverted microscope (Model IX81, 
Olympus America Inc.). A 5 μm diameter glass microbead was glued to an AFM probe (MLCT-O10, Santa 
Barbara, CA; Bruker Corp.) and used for E-modulus measurement. All AFM measurements were conducted 
at room temperature (~25 °C) in CO2 independent medium (Invitrogen) without antibiotics. The parameters 
employed were a 0.5 Hz sampling frequency, with an approach/retraction velocity of 1 µm/sec, 1000 nm trav-
eling distance for one sampling cycle (indentation and retraction), and approximately 1000–3000 pN loading 
force resulting in an average cellular indentation of 200 nm. Cells were randomly selected and indented at a site 
between the nucleus and cell boundary to collect approximately 900 force curves within 30 min. To minimize 
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drifting, after the probe was submerged in cell bath, the AFM system was thermally and mechanically equilibrated 
for at least 30 min. Each cantilever was calibrated after a given adhesion and before a stiffness experiment using 
thermal noise amplitude analysis31,32.

AFM force curve analysis. AFM force curve analysis was automated using a proprietary software package 
written in MATLAB (R2016a, Mathworks). Adhesion forces between FN and integrin adhesion complexes were 
determined by the product of cantilever spring constant and the height of ruptures in retraction force curve. The 
cell stiffness was estimated by fitting a modified Hertz model to the approaching force curve as described in our 
previous publication2,30. From retraction force curves, a number of cell adhesion properties can be evaluated such 
as adhesion probability, average adhesion force per curve, total adhesion force per curve and loading rate of cell 
adhesion force (Fig. S1).

Singular value decomposition of the time series AFM data. The first step in the SSA algorithm is 
embedding the initial time series adhesion data with a window matrix, and converting it into a trajectory matrix. 
Given the time series of adhesion data with the elements x1, x2, x3, …, xN, the forward-backward trajectory matrix 
T was composed by eq. 1. The forward-backward trajectory matrix is normally used to estimate the coefficient 
of autoregressive (AR) linear prediction, where each sample of a time series data is approximated with a linear 
combination of previous samples and AR coefficients. This method is able to double the number of equations 
for AR coefficient estimation and thus increase the accuracy of the output coefficient for short data series29,33–35.
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where p is the order of the AR model, and in this study p = N/2, N is the number of data in the time series.
Singular value decomposition (SVD) of the trajectory matrix is the central part of the SSA, which is performed 

by the eigenvalue decomposition (EVD) of the covariance matrix. Various approaches to the construction of the 
covariance matrix have been reported by Broomhead et al.17 and Vautard et al.20. In this study, we composed the 
covariance matrix by the product of the trajectory matrix and its transpose as defined by eq. 2, which was origi-
nally proposed by Broomhead et al.17.

= ⋅ ′C T T (2)

where C is the covariance matrix, T is the trajectory matrix of the original time series adhesion force and T′ is the 
transpose of trajectory matrix T.

EVD produced L many of eigenvalues of covariance matrix C, denoted by i L, (1 )iλ ≤ ≤ , and left and right 
eigenvectors, denoted by Ui,(1 ≤ i ≤ L) and Vi, (1 ≤ i ≤ L) respectively. The trajectory matrix T was reconstructed 
by eq. 3.

∑ λ=
=

T U V
(3)i

d

i i i
T

1

where d is the maximal value of i, such that 0iλ > , the collection U Vi i i
Tλ  is the ith eigentriple of the trajectory 

matrix T.

Reconstruction of time series data by grouping of the leading components. Eigentriples were 
grouped according to the similarity of the individual components28. The grouping step of the SSA consisted of 
decomposing the L × K matrix T into a number of disjoined subgroups according to the components’ trend and 
oscillation similarity. In this study, we pair-wisely grouped every two eigentriples for the leading eigentriples 
corresponding to the leading eigenvalues into principal eigentriple matrixes YI (I = 1, 2, 3…) using eq. 4 with the 
dimensions of L × K for trajectory matrix T.

Y U V I( 1, 2, 3)
(4)I

i I

I

i i i
T

1

∑ λ= =
=

+

For the time series cell stiffness data, 0.6 was empirically set as the threshold of the accumulated eigenvalue 
fraction, namely the eigenvalue prior to this threshold were considered as real biological signals and they contrib-
ute 60% of the energy of the oscillation in cell stiffness, and the rest were considered as the background noise. For 
the time series adhesion data, the threshold was set as 0.1 due to the relatively high background noise generated 
by the system during cell adhesion measurement compared to the stiffness data (indicated by the red arrow on 
the blue lin2 in Fig. 2).

Diagonal averaging is the last step of SSA to transform each matrix of the grouped decomposition YI into a 
new time series data with length N. The diagonal averaging steps were performed by eq. 528.
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where gI is the reconstructed time series component, YI is the Grouped Eigentriple matrix constructed by the 
forward-backward trajectory matrix.

Periodicity detection by a fast Fourier transform. A fast Fourier transform (FFT) was employed to 
detect the oscillatory signal of the leading components. The algorithm used for FFT in this study is eq. 6, origi-
nally proposed by Cooley and Turkey36.

X x e k N0, , 1
(6)k

n

N

n
i k n

N
0

1
2∑= = … − .π

=

−
−

where Xk is a series of complex numbers, xn is the time series data, and the frequency corresponding to the biggest 
complex modulus (|Xk|) was considered as the frequency of the oscillatory component.

Data availability. The raw data used to generate the figures in this manuscript are available from the corre-
sponding or the first author upon request.
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