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On the origins of transport 
inefficiencies in mesoscopic 
networks
Sébastien Toussaint1, Frederico Martins  1, Sébastien Faniel1, Marco G. Pala2,  
Ludovic Desplanque3, Xavier Wallart3, Hermann Sellier4, Serge Huant4, Vincent Bayot1 & 
Benoit Hackens  1

A counter-intuitive behavior analogous to the Braess paradox is encountered in a two-terminal 
mesoscopic network patterned in a two-dimensional electron system (2DES). Decreasing locally the 
electron density of one channel of the network paradoxically leads to an increased network electrical 
conductance. Our low temperature scanning gate microscopy experiments reveal different occurrences 
of such puzzling conductance variations, thanks to tip-induced localized modifications of electron flow 
throughout the network’s channels in the ballistic and coherent regime of transport. The robustness 
of the puzzling behavior is inspected by varying the global 2DES density, magnetic field and the tip-
surface distance. Depending on the overall 2DES density, we show that either Coulomb Blockade 
resonances due to disorder-induced localized states or Fabry-Perot interferences tuned by the tip-
induced electrostatic perturbation are at the origin of transport inefficiencies in the network, which are 
lifted when gradually closing one channel of the network with the tip.

The suppression of an axis in a transport network can surprisingly improve the overall network performances. 
This counterintuitive behavior - initially highlighted in road networks - is known as the Braess paradox1, formal-
ized in the framework of game theory. In short, the combination of selfish behaviors and non-linear response 
of traffic roads paradoxically increase transit time when new roads are added. The Braess paradox was later evi-
denced in electrical, hydraulics and mechanical networks2. In the latter cases, selfishness is obviously not at stake, 
but non-linear response is. In the linear classical regime, however, no physical system is expected to exhibit such 
paradox. The question is then: Is quantum mechanics a game changer?

This question was first addressed by means of simulations and experiments on an electronic network3. 
Downscaling such a network, one can reach the mesoscopic regime of transport where quantum behaviors such 
as energy quantization, quantum wave interferences and single charge effects become prominent. Performing a 
transport experiment on a mesoscopic network fabricated from InGaAs/InAlAs heterostructure, several authors 
of the present work revealed a behavior analogous to the Braess paradox3 : the network electrical conductance G 
was found to increase under depletion of its central axis. However, neither selfishness nor non-linear response 
can be invoked to explain what is - at first sight - perceived as a striking anomaly. While simulations based on 
the Keldysh-Green formalism predict such paradoxical behavior4, its possible physical origins are not yet exper-
imentally clarified. Simulations by Sousa et al.5 and Macucci et al.6 both conclude that different scenarios based 
on electron wave interferences can indeed yield conductance increase upon transport axis closures. The questions 
are now: can we pinpoint experimental conditions where interferences induce paradoxical conductance improve-
ment, and, are there other physical mechanisms able to induce such phenomenon?

The aim of this paper is to address these questions. For this purpose we perform conductance measurements 
on a mesoscopic network while tuning the local electron density by means of a moving nanoscopic scanning gate. 
We first confirm the existence of a paradoxical behavior in the quantum regime of transport, and then identify 
two distinct mechanisms that can be at its origin.
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We study the sample shown in Fig. 1a, similar in size and shape to the one studied in ref.3 and patterned using 
electron beam lithography and wet etching in an InGaAs/InAlAs heterostructure. A two- dimensional electron 
system (2DES) is confined 45 nm below the surface of the heterostructure that was grown by molecular beam 
epitaxy on a degenerately- doped InP substrate (InP n+) serving as a backgate to tune the global 2DES density. 
The experiments were performed at T = 4.2 K where the electron density n2D - obtained by analyzing 
Shubnikov-de Haas (SdH) oscillations on a neighboring Hall bar - varies from 6 to 8.4 × 1011 cm−2 as the backgate 
potential VBG goes from 2 to 4 V. Simultaneously the mobility varies from 9 to 11 m

Vs

2
. The device conductance G is 

Figure 1. (a) Scanning electron micrograph of the network whose conductance (G) is measured. (b) AFM 
topography of the network embedded in an artist’s view of the tip-network system. The different parameters 
present in an SGM experiment are shown: the tip potential (Vtip), the tip-sample surface distance (dtip) and the 
backgate potential (VBG). (c) Conductance measurement as a function of Vtip with the tip scanned along the 
dashed white line in (a), for dtip = 80 nm and VBG = −0.1 V. The vertical axes of (a) and (c) are matched. Note 
that the same data is presented in Supplementary Fig. 1a with a different color scale, and Supplementary Fig. 1b 
displays a mapping of VG

V BG
d

d tip
 calculated from data in Fig. 1c. (d) G measurement along the dashed red line in 

(c) and (e). Note that the anomaly in (c) and (d) occurs when the tip is right above the central branch of the 
network. (e) G mapping as a function of Vtip and VBG with the tip located 80 nm above the middle of the central 
channel. The black dashed line follows an iso-conductance line.
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measured using a low-frequency (28.5 Hz) standard lock-in technique, with the source-drain voltage across the 
device always being less than k T

e
B  to ensure quasi-equilibrium conditions.

In order to selectively perturb transport in the network channels, we used the scanning gate microscopy 
(SGM)7,8 technique that allows us to locally change the electrostatic potential landscape thanks to a polarised 
conductive atomic force microscope tip of apex radius smaller than 20 nm. The tip is attached to a tuning fork 
used as a force sensor to map the topography (see Fig. 1b) of the sample and to precisely determine the relative 
tip-network position9. The conducting AFM tip is then withdrawn at a distance dtip from the sample surface - typ-
ically a few tens of nanometers - and scanned in a plane parallel to the 2DES. All the following parameters, the tip 
position xtip, ytip, height dtip and polarization Vtip change the electrostatic potential landscape within the network 
and lead to variations of the device electrical conductance. The conductance is mapped as a function of xtip, ytip, 
VBG, Vtip, dtip and magnetic field B, which will generate all the data presented hereafter.

Results and Discussion
As a first experiment, we measure the device conductance as the polarized tip is scanned along the ashed line on 
Fig. 1a, 80 nm above the sample surface. As Vtip becomes more negative, we observe an anomalous conductance 
behavior when the tip is located above the central channel (along the red curve in Fig. 1d). On a particular Vtip 
domain, the conductance paradoxically rises as the negative Vtip progressively depletes the 2DES underneath the 
tip. Figure 1c shows that this peculiar behavior occurs only when the tip is located right above the central branch, 
as reported in ref.3. Beyond reproducing comparable results, we now investigate their robustness while varying 
the average charge carrier density in the whole network. This is done in Fig. 1e where the conductance is mapped 
in the Vtip − VBG plane with the tip located above the middle of the central branch. The black-dotted isoconduct-
ance line gives a different perspective to the anomalous behavior we are focused on. Indeed, the anomaly could 
either be evidenced by a negative VG

V BG
d

d tip
 or by a negative |G

V V
d

d BG tip
. One novelty revealed by the present experi-

ment is that the anomalous behaviour can be observed both for negative or positive tip potentials, which was not 
expected from earlier works3. For instance, Fig. 1e reveals that the anomaly drifts towards positive Vtip when the 
2DES density is lowered (VBG < 0). This fact is indeed worth emphasizing as it shows that depletion is not neces-
sarily a key ingredient for the observed anomaly. Figure 2a shows a line scan analogous to Fig. 1c, but for a posi-
tive value of VBG. Consistently with the trend observed in Fig. 1, the anomalous bump is now observed at more 
negative values of Vtip, and remains located above the central branch.

Observing the evolution of the amplitude of transport phenomena with temperature is often key to pinpoint 
their origin. Indeed, the characteristic times governing transport mechanisms follow different temperature 
dependences. For exemple, the phase coherence time τφ increases in most cases when lowering the tempera-
ture, which leads to an enhanced amplitude of electron interference phenomena. In this experiment, we surpris-
ingly observe strong qualitative changes when lowering the temperature: in the linescan data obtained at 50 mK 
(Fig. 2b) in the same conditions as Fig. 2a, the contrast is dominated by strong conductance fluctuations, and the 
anomalous behaviour observed at 4.2 K over the central branch is no longer visible. The large amplitude random 
fluctuations evidenced at the lowest temperature are a hallmark of Universal Conductance Fluctuations (UCFs), 
a phenomenon stemming from interferences between a large number of different semiclassical electron paths10. 
The enhancement of UCFs contributions is consistent with the increased phase coherence time. However, if the 

Figure 2. (a) Mapping of the SGM linescan along the blue dashed line in Fig. 1a, as a function of Vtip at 4.2 K, 
exhibiting an anomalous and robust increase of conductance when the tip scans above the central arm, for  
−2 V < Vtip < −1 V. (b) The same mapping is obtained at 50 mK. VBG = 0.8 V for both mappings. Note that the 
mappings of the derivative of data in Fig. 2b are presented in Supplementary Fig. 1c and d (i.e. derivative of G 
with respect to Vtip and y, respectively).
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anomalous bump of Fig. 2a was governed by the same phase coherence time as the one determining the UCFs’ 
amplitude, it should be no more visible than the random fluctuations attributed to UCFs in Fig. 2b. Hence, data 
in Fig. 2 advocate against UCFs as the origin of the anomalous behaviour. In the remainder of this paper, we will 
focus on the data collected at 4.2 K, where the anomalous behavour is more clearly visible, and we will come back 
to the interpretation of data in Fig. 2 at the end of the discussion. Note also that additional thermal cycles have 
been performed and confirmed the robustness of the effect.

We now investigate the conditions required for the emergence of anomalous conductance domains when 
sweeping both Vtip and VBG with the tip sitting at a constant distance above the middle of the central channel. The 
result is presented in Fig. 3 that provides a deeper insight in the density dependence of the studied behavior. The 
two sets of data differ by the doubling of dtip and a different range in VBG, and hence 2DES density ranges. From 
the conductance maps shown in Fig. 3b and e, we extracted two conductance plots at two specific VBG (Fig. 3a and d)  
where the targeted anomalies are emphasized by blue domains. The detection of paradoxical conductance 

Figure 3. (a) and (d) Conductance measurement when varying Vtip along the dashed lines in (b) and (e) 
corresponding to different ranges of electron densities. (b) and (e) Conductance measurement as Vtip and VBG 
are swept with dtip = 50 nm for (b) and 100 nm for (e) above the middle of the central channel (see Fig. 1a).  
(c) and (f) present the derivative of G with respect to Vtip at constant VBG associated to the G mappings presented 
in (b) and (e). All Vtip horizontal axis are matched.
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variations in the conductance maps is made easier by plotting VG
V BG
d

d tip
 as a function of VBG in Fig. 3c and f, since 

the signature of the paradox is a negative sign in this derivative (blue color).
A major piece of information resides in Fig. 3c and f, where the presence of two sets of stripes - with signifi-

cantly different slopes - is the main feature of the data. The phenomenology of stripes, i.e. a gradual and regular 
shift of periodic oscillations with respect to Vtip and VBG, does not correspond at all to that of UCFs, which are 
random by nature10, and therefore undergo a chaotic evolution when external parameters such a gate voltage and 
a magnetic field are varied. As already mentioned, UCFs are necessarily present since transport is in the coherent 
regime - as evidenced by the Aharanov-Bohm (AB) oscillations11 and lφ estimates discussed later in the paper - 
but, at 4.2 K, they are dominated by two other effects that we will now investigate. In contrast, when temperature 
is lowered down to 50 mK, UCFs become dominant, as shown on Fig. 2b. This is another clear sign that the phe-
nomena revealed in Fig. 3 are fundamentally different from UCFs.

The so-labelled slopes 1 and 2 characterize the presence of conductance anomalies which appear in blue in 
Fig. 3. Slope 1 characterizes isoconductance lines in Fig. 3b which are mainly governed by the backgate which 
tunes the overall electron density in the network. Mainly, but not completely, which means that the tip does 
not only have a local effect on the electron potential in the network, but also affects the global electron density. 
Expressed in terms of coupling capacitance, that to the back gate is 50 times larger than that of the tip. In short, 
slope 1 anomalies are directly related to the overall electron density as mainly tuned by VBG, or marginally by 
Vtip. By the way, we also note that slope 1 features progressively leave the floor to slope 2 at higher conductances 
i.e. higher electron densities. The latter point may be reminiscent of single charge effects, but we will need SGM 
imaging data (presented later) to tell more about the physical mechanism behind slope 1.

Slope 2, on the other hand, does not follow isoconductance profiles and is much steeper than slope 1, which 
clearly points towards a mechanism where the local impact of the tip is prominent, if not dominant.

At this stage, it seems clear that slope 1 and 2 sign two distinct mechanisms and this will be further evidenced 
by SGM imaging data. Slope 2 is not vertical, which means that the second mechanism is affected by the local 
potential in the central arm, but also depends on the overall density in the network. Slope 2 also spreads equally 
in both positive and negative Vtip and remains unaffected on a large range of conductance. Slope 2 additionally 
remains roughly unchanged in Fig. 3c and f.

In order to differentiate the two mechanisms, we use the ability of the SGM technique to yield real space 
insight into the network. The proximity of a polarised tip perturbs the potential landscape along the electron 
flow, which affects the macroscopic value of G. The measurement of G(xtip, ytip) when scanning the tip in a plane -  
at a few tens of nanometers - parallel to the sample surface allows to get local information in the form of SGM 
conductance maps.

Figure 4d and e show SGM maps measured in the range where slope 1 is dominant (Fig. 4a–c). Taken at the 
two closeby values of Vtip pointed on Fig. 4a, the two SGM images (Fig. 4d and e) have clear resemblances. In 
particular, we note a strong spot that marks a position where the tip brings the conductance close to zero. The 
mechanism behind slope 1 should thus be able to “close” all 3 arms while the tip sits above one specific region 
(note that in this experiment, we do not have precise information on the conductance of each parallel arm within 
the device). To go further in our understanding of Fig. 4d and e, it is useful to realise a subtraction of the two 
SGM images (Fig. 4f) as it highlights the small variations atop of a strong varying background. This data allows to 
identify sets of concentric fringes originating from different locations in the network, and is clearly reminiscent 
of the data reported by Liu et al. in a similar device12, as well as SGM data obtained on patterned quantum dots in 
the Coulomb blockade regime13 (note that the evolution of the concentric fringe pattern is shown as a function of 
Vtip in Fig. S2c–j). This observation tells us that the mechanism behind slope 1 is most probably related to single 
charge effects14–17. Even though the low conductance spot is not atop the central arm, the long-range contribution 
of the tip to the electron potential landscape produces strong conductance variations when Vtip varies while the 
tip sits above the central arm. The fact that the so-called “slope 1” anomalies locate along iso-conductance lines 
is also consistent with charging effects which are directly related to the long-range potential perturbation in 
the network. The suppression of slope 1 features at higher densities also advocates for single charging effects of 
disorder-induced quantum dots (QDs), which naturally disappear as the bottom of the conduction band is low-
ered. In our device, such QDs are therefore present along all three branches. The presence of QDs within a 2DES 
drastically affects the conductance of the device whenever transport occurs through the QD regions and when the 
coincidence of the dots energy levels and the Fermi energy is tuned by an external gate. Here, varying the backgate 
or the tip voltage changes the number of trapped charges within each QD, which induces Coulomb blockade (CB) 
dips in the device conductance. Since these CB dips are located on concentric fringes in SGM images, without 
particular spatial symmetry, one way to practically see a clear signature of Coulomb blockade is to subtract two 
SGM images realised for closeby tip voltages. This is exactly the purpose filled by Fig. 4f.

As evidenced in ref.12, discharging events of disorder-induced QD occur when the negatively biased tip 
approaches the dot location. Pinpointing the actual dot locations is not straightforward. Indeed both the tip 
geometry and complex anisotropic screening in the network lead to a tip induced potential perturbation difficult 
to evaluate. A priori, the potential perturbation and the QD present no particular symmetries. Nevertheless, QDs 
locations can be roughly estimated within the network near the centers of the concentric fringes presented in 
Fig. 4f, i.e. in the top branch and near the right exit of the network. Figure 4f also reveals that few conductance 
variations are observed inside the innermost fringes. This can be attributed either to a completely emptied dot or 
to potential barriers becoming too high for significant tunneling events to occur. This innermost region naturally 
expands as the tip is polarised more negatively12. Visually this leads to the expansion of concentric fringes as 
closeby-Vtip SGM images are subtracted for more negative tip potential pairs. This expansion is at the heart of the 
non monotonous conductance behavior observed in Fig. 4a where the tip is standing above the middle of the 
central channel. Indeed, as demonstrated in Supplementary Figure S2, a white concentric fringe (evidenced in 
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Fig. 4f), corresponding to = 0G
V
d

d tip
, crosses the central branch and a clear correspondence is established between 

the conductance maximum in Fig. 4a and the movement of this fringe over the middle of the central channel. In 
this picture, the average network density is the main parameter for the slope 1-mechanism, while small local 
potential variations due to the tip induce the contrast in G-maps. Consistently with Fig. 3c, concentric fringes are 
also observed in SGM mappings realised for closeby-VBG mappings at constant Vtip.

At this point, we revealed a first mechanism, CB, explaining the anomalous behaviour. Interestingly, we can 
strongly attenuate CB oscillations by increasing the global electron density. As shown on Fig. 3f, slope 1 - related 
features vanish at higher density, which means that disorder-induced localized states do not rule conductance in 
the network any more. Consistently, no concentric fringes can be observed for closeby-Vtip SGM images realised 
at higher density (see Supplementary Figure S3).

We now turn to slope 2 that originates from a qualitatively different mechanism. At this point one has to recall 
what qualitatively changes when rising the 2DES density. In addition to a stronger tip potential screening, the ampli-
tude of coherent effects rises. The latter is confirmed by magneto-conductance data taken at different densities (from 
VBG = 2 to 4 V) with no tip in the network vicinity. One of these curves is presented in Fig. 5a. Sweeping a magnetic 
field orthogonal to the 2DES clearly reveals G-oscillations with a period of 7 mT (see inset of Fig. 5a). This B-period 
corresponds to the AB period for electrons circulating around an antidot present in the network (see Fig. 1a)11,18. 
Indeed, the 7mT-oscillations amplitude increases strongly and then saturates as VBG goes from 2 to 4 V, with a thresh-
old near 2.2 V (see Supplementary Figure S4 where a detailed analysis of the AB oscillations is presented) which is 
also the point where slope 1 leaves the floor to slope 2. The picture is now even clearer as one expects AB effects to be 
much attenuated or absent in the presence of the potential barriers needed for CB. The transition to the AB regime 
occurs in the range 2.2 < VBG < 3.2 V, beyond which the amplitude saturates as the CB potential barriers are no 
longer significant. The presence of AB and even Altshuler-Aronov-Spivak (AAS) oscillations19 implies that a coher-
ent mechanism could be at play in the case of slope 2 anomalies. In addition, from the analysis of the autocorrelation 

Figure 4. (a) Conductance measurement extracted from (b) (red dashed line) (b) Conductance measurement 
as Vtip and VBG are swept with the tip located 50 nm above the middle of the central channel (see Fig. 1a).  
(c) Derivative of G with respect to Vtip at constant VBG corresponding to the G mapping in (b). (d) And (e) 
Scanning gate microscopy conductance maps of the network realised for closeby Vtip for the tip scanned in a 
plane parallel to the surface and located 50 nm above it and with VBG = 1.8 V. (f) Subtraction of the two SGM 
conductance mappings showed in (d) and (e).
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function of magnetoconductance traces20,21, we extracted a coherence length μφ ~l m1  comparable to the size of the 
network in the VBG range where slope 2 related features are observable.

In this framework, one might suggest that the tip potential perturbation could modulate the interferences in 
the network through the electrostatic AB effect. However, the anomalous conductance variations are one order of 
magnitude larger in amplitude than the observed magnetic AB effect. Indeed, in the electron density range 
between 7 and 8.4 × 1011 cm−2 where AB effects are fully developed (i.e. VBG between 3 and 4 V), the RMS ampli-
tude of the anomalous effect is on average ∼ . × − G1 5 10 2

0 while the magnetic AB amplitude is < 2 × 10−3G0 (with 
G0 = 2e2/h). Note that measurements on quantum rings realised in similar heterostructures revealed that the 
electrostatic and magnetic AB effect have equal amplitudes22. This is a strong indication that the anomalous phe-
nomenon is not compatible with a tip-induced electrostatic AB effect associated with electron paths encircling an 
antidot in our sample.

However, interferences involving electron paths encircling smaller surfaces could lead to larger amplitude 
AB-like oscillations, which could be an alternative hypothesis explaining the origin of the anomalous phenome-
non. Such oscillations should be visible in the magnetoconductance of the device, and their B-periodicity would 
allow to infer the area encompassed by interfering electron trajectories. To observe how the anomalous phenom-
enon evolves with the magnetic field, the derivative of G with respect to Vtip, measured with the tip over the mid-
dle point of the central branch of the network, is mapped as a function of B in Fig. 5c - note that the central branch 
is not depleted by the tip, over the full Vtip range in Fig. 5c (more details about tip-induced depletion are provided 
in the Supplementary Figure S5). Strikingly, the anomalous blue domain observed between ∼−V 8tip  and −6 V 
persists over the full B-range, and its average position is only weakly modulated by B with an AB periodicity asso-
ciated with trajectories around antidots (i.e. 7 mT). If an AB effect corresponding to a surface S trajectory was at 
the origin of the phenomenon, the sign of |BG

V
d

d tip
 should be reversed at constant Vtip with a periodicity corre-

sponding to φ0/S (where φ0 is the quantum of flux). The absence of sign reversal in the B-range considered in 
Fig. 5c means that S is much smaller than φ0/30 mT = 0.068 μm2, which corresponds to a circle with a radius 

Figure 5. (a) and (b) Network’s conductance as (a) the magnetic field (B) and (b) the back-gate potential (VBG) 
are swept in absence of nearby AFM tip. The inset of Fig. 5a highlights the AB oscillations whose period are 
7 mT. (c) Derivative of G with respect to Vtip vs B and Vtip with a tip polarized above the middle of the central 
branch for dtip = 50 nm with VBG = 3.8 V. (d) Derivative of G with respect to VBG vs B and VBG with no tip in the 
network’s vicinity.
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smaller than 148 nm. This radius is smaller than the antidot lateral size, but could fit into the central branch of the 
network. One could then imagine that the tip potential locally raises the potential in the central branch of the 
network, so as to create a small-area antidot which could generate AB-like oscillations with a large B-period. This 
hypothesis can be simply checked by putting the tip further away from the device. The anomalous behavior is now 
observed when varying VBG, as shown in Fig. 5b. The tip-induced antidot hypothesis is therefore ruled out. Note 
that the observation of the anomalous behavior for positive Vtip was anyway incompatible with this hypothesis. At 
that point, applying a magnetic field reveals that the anomalous phenomenon in VvsG

V BG
d
d tip

 also remains essen-

tially unaffected, up to 40 mT, as shown in Fig. 5d (although a small-amplitude 7 mT modulation also decorates 
the data). Since no sign reversal is observed for the anomalies over an even larger B-range than in Fig. 5c,d natu-
rally leads to consider the possibility of coherent interferences between electron paths encompassing a vanishing 
surface and intrinsic to the 2DEG network, i.e. not induced by the tip.

The latter idea corresponds indeed to the picture of standing electron wave patterns located within a 1D cavity 
inside the network. The tip-induced perturbation area is critical in this framework as it can tune the local electron 
density and hence change the interference pattern. A simple way to tune this parameter is to vary the tip-surface 
distance dtip as shown on Fig. 6b, obtained with the tip remaining above the middle of the central branch. 
Oscillations of G and VG

d tip
d

d tip
 are visible as a function of both dtip and Vtip in Fig. 6a and b, forming a fan-like 

structure. The observed convergence of the fringes on Fig. 6b at the level of the 2DES ( ∼ −d 45 nmtip ) indicates 
that they originate from a phenomenon triggered by the tip perturbation, occurring in the central branch right 
under the tip (cfr. Fig. 1c), as opposed to the CB-related fringes, associated with the effect of the tail of the tip 
perturbation (i.e. a long range effect). Note also the clear qualitative differences between Figs S2 and S3 which 
illustrate the very different effect of the tip in the CB and AB regimes.

The difference of behavior between both types of fringes with respect to changes of dtip is further evidenced in 
G

V
d

d tip
 vs (Vtip,VBG) maps (such data were already shown in Fig. 3c where dtip = 50 nm). Such a map is presented in 

Fig. 6c with dtip = 140 nm where both slope 1 and slope 2 - identified on Fig. 3c - are reported for comparison 
purposes. One can directly observe that the slope of fringes emerging at low VBG (slope 1 fringes) does not vary 
with dtip, while slope 2 decreases as dtip increases. A weaker slope means a larger Vtip period at constant VBG, which 
is consistent with Fig. 6b. The increasing period of the oscillations of dG

V tip
d

d tip
 vs Vtip when the tip goes away from 

the surface is compatible with the hypothesis of a local tip-induced variation of the interfering electron wave-
length modifying resonant patterns in a 1D cavity23,24. This is illustrated in Fig. 7: in the area where the density is 
modified by the tip-induced perturbation, the Fermi wavelength changes according to π

n
2

D2
. In turns this affects 

the cavity resonance conditions, defined by:

∫ ∫φ π π∆ = = =ds k s ds n s N( ) 2 ( ) 2 (1)F D2

where k(s) is the local Fermi wavevector, s the spatial variable along the cavity and N the resonance order.
In this framework, an oscillation of dG

V tip
d

d tip
 vs Vtip corresponds to a change of the resonance order N of the 

cavity. The increasing period of the oscillations observed when withdrawing the tip (Fig. 6b) is then explained by 
the diminishing lever arm of the tip over the local change in the Fermi wavelength. The VBG-period associated to 
these oscillations is roughly equal to 0.3 V, as shown on Fig. 5b. Considering the resonance hypothesis, each max-
imum is assumed to correspond to successive resonance orders N, N + 1, N + 2… At resonance, the following 
equation is relevant: 2Lc = NλF(VBG) where Lc is the cavity length and λ = π

F n
2

D2
 is the Fermi wavelength. One 

can therefore write:

λ
λ+

= =
+

+
N

N
n

n1 (2)
F
N

F
N

D
N

D
N

1
2

2
1

Since we measured n2D as a function of VBG (from SdH oscillations), we can determine N for the different 
resonances. For the maxima identified in Fig. 5b at VBG = (3.1, 3.44, 3.8)[V], we have n2D = (7.34, 7.74, 8.15) 
[1015 m−2], hence λF = (29.24, 28.48, 27.75)[nm]. The corresponding values of N are 36, 37, 38, which leads to a 
cavity length Lc of ~530 nm. Note that 2Lc is smaller than the elastic mean free path μ∼ .μl 1 5 m and comparable 
to the phase coherence length µ∼φl 1 m - for VBG = 3.8 V. Lc is larger than the central channel width so the 1D 
cavity is naturally located along the central branch, as schematically represented in Fig. 7 (white dashed line in the 
right inset). The edges of the cavity could correspond to the two open ends of the central branch: sharp changes 
of potential are expected at these locations, associated with the widening of the 1D channel, which could increase 
the reflection of electron wave functions into the 1D channel. However, further work is needed to confirm this 
hypothesis.

Now that we identified a clear dtip-dependency of the resonance, one can naturally wonder why slope 2 
remains roughly unchanged in (Vtip, VBG) mappings as dtip goes from 50 to 100 nm (see Fig. 3c and f). To clarify 
this observation we realised a set of measurements in the same (Vtip, VBG) conditions as those presented in Fig. 3b 
but for several values of dtip between 50 and 140 nm. The interest of such Vtip, VBG maps is that the behavior of 
both slope 1 and slope 2 can be observed as dtip changes. Qualitatively we would expect both slopes to decrease 
when rising dtip - indeed no tip-induced conductance variation would be observed for a tip located at infinity. 
We are going to discuss both slopes separately. We observed that slope 1 remains unchanged no matter the value 
of dtip between 50 and 140 nm (see Fig. 3c and Supplementary Figure S6). This is not surprising since the QDs 
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leading to CB-related variations are located roughly at the center of the concentric fringes observed in Fig. 4f - i.e. 
a few hundreds of nanometers away from the center of the central channel. So, the charging events are almost 
insensitive to a change of 90 nm in dtip and slope 1 is the same in Fig. 6c. On the contrary, as presented in Fig. 6c, 
slope 2 decreases when dtip goes from 50 to 140 nm. A smaller slope means a higher Vtip period at constant VBG. 
This observation is consistent with Fig. 6b, where the iso-order resonance domains are going away from each 
other as dtip increases. Also, slope 2 rotates around a particular point identified in Fig. 6c. Qualitatively, when the 
tip is brought away, one should apply a stronger tip potential in order to reach an equivalent resonant order. The 
domains located along slope 2 associated to the same resonance order should be rotating around a point where 
the tip is neutral with respect to the resonant pattern. It is possible to identify this particular point by checking 
where two equivalent domains for different dtip are crossing. As expected, this point is located near Vtip = 0 V.

Figure 6. (a) Conductance measured for different values of Vtip and dtip for the tip centered above the middle 
of the central branch (see Fig. 1a) VBG = 3.8 V. (b) Derivative of G with respect to dtip corresponding to the 
mapping (a). (c) Derivative of G with respect to Vtip at constant VBG associated to the G mappings similar to 
Fig. 3b but realised for dtip = 140 nm. The slope labelled ‘Coulomb blockade’ is identical to the slope 1 presented 
in Figs. 3c and 4c. We also reported the slope 2 identified on Fig. 3c obtained with dtip = 50 nm (black dashed 
line) to compare with the slope observed with dtip = 140 nm (blue dashed line). All horizontal axes are matched.
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At the end of this discussion, we can now come back to the interpretation of the temperature dependence 
shown in Fig. 2. One question indeed naturally arises if we consider UCFs on one side, and the Fabry-Perot reso-
nance mechanism that we identified in the central branch on the other side: since both phenomena stem from 
electron interferences, why do they exhibit different temperature dependences? To answer the question, another 
time scale should be considered, in addition to the phase coherence time: the electron dwell time25,26. The electron 
dwell time in the central branch constituting a 1D cavity τd

D1  is expected to be small compared to the dwell time 
in the whole device τd

network. This has consequences on the temperature dependence of coherent oscillations. 
Indeed, as temperature decreases, the phase coherence time increases and a crossover is expected when it 
becomes larger than the cavity dwell time: below this crossover temperature - typically in the range 1–5 K for 
cavities similar to the ones considered here21 - the amplitude of coherent oscillations saturates. One can then 
understand the difference shown in Fig. 2a,b in the temperature dependence of the anomalous phenomenon 
associated to the 1D cavity characterized by a relatively small τd

D1 , and of UCFs, related to interferences between 
semiclassical paths exploring the full device area (much larger than the 1D cavity). Figure 2a,b show that UCFs 
dominates at 50 mK, but undergo a fast decay when temperature rises so that the anomalous conductance phe-
nomenon becomes visible at 4.2 K. One can therefore infer that the amplitude of the latter phenomenon saturates 
below 4.2 K, because τ τ>φ d

D1 , while the UCFs amplitude increases below 4 K, because τ τ<φ d
network.

Conclusion
We identified two mechanisms at the origin of the paradoxical increase of conductance observed in a mesoscopic 
network while gradually depleting one channel: charging CB events associated to disorder-induced localized 
states and resonance mechanism due to the presence of a 1D cavity in the central channel. The first phenomenon 
has already been extensively studied in previous works, and in particular in ref.12 in the context of open nan-
odevices (G > 2e2/h). Regarding the second mechanism, the electron wave resonance raises several questions 
and prospects. The formation of a 1D cavity is already puzzling: what causes electron wave reflections? Unlike 
resonant tunneling diodes, we revealed resonant state signatures in an open coherent and ballistic system where 
no tunneling mechanism is expected. Further work should allow to discriminate between different causes of 
reflection inside the structure (e.g. the abrupt variation of the electrostatic confining potential at the entrance of 
the 1D channel). By comparison with other channels in the network, only the central one could lead to a sym-
metric resonant cavity. In the top and bottom channels, one of their sides gradually curbs to form the right angle 
that connects them to the vertical channels, while the curvature of the etched sides is very sharp at the opening of 
the central channel. Is this the only reason why a resonance is only present in the central branch? We also stress 
out that the two mechanisms described in the current work are intrinsically different from the one evidenced in 
the simulations results from ref.3, where the anomalous behavior was observed on the verge of full depletion of 
the central channel. This means that paradoxical behaviors with different origins can be identified in nanoscale 
conducting networks.
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