SCIENTIFIC REPORTS

OPEN

Received: 31 October 2017 Accepted: 30 January 2018 Published online: 09 February 2018

Identification of basic/helix-loophelix transcription factors reveals candidate genes involved in anthocyanin biosynthesis from the strawberry white-flesh mutant

Fengli Zhao^{1,2}, Gang Li^{1,2}, Panpan Hu^{1,2}, Xia Zhao^{1,2}, Liangjie Li^{1,2}, Wei Wei³, Jiayue Feng³ & Houcheng Zhou^{1,2}

As the second largest transcription factor family in plant, the basic helix-loop-helix (bHLH) transcription factor family, characterized by the conserved bHLH domain, plays a central regulatory role in many biological process. However, the bHLH transcription factor family of strawberry has not been systematically identified, especially for the anthocyanin biosynthesis. Here, we identified a total of 113 bHLH transcription factors and described their chromosomal distribution and bioinformatics for the diploid woodland strawberry *Fragaria vesca*. In addition, transcription profiles of 113 orthologous bHLH genes from various tissues were analyzed for the cultivar 'Benihoppe', its white-flesh mutant 'Xiaobai', and the 'Snow Princess' from their fruit development to the ripening, as well as those under either the ABA or Eth treatment. Both the RT-PCR and qRT-PCR results show that seven selected *FabHLH* genes (*FabHLH17, FabHLH25, FabHLH27, FabHLH29, FabHLH40, FabHLH80, FabHLH98*) are responsive to the fruit anthocyanin biosynthesis and hormone signaling according to transcript profiles where three color modes are observed for strawberry's fruit skin and flesh. Further, prediction for the protein interaction network reveals that four bHLHs (*FabHLH25, FabHLH25, FabHLH29, FabHLH80, FabHLH80*, *FabHLH98*) are involved in the fruit anthocyanin biosynthesis and hormone signaling transduction. These bioinformatics and expression profiles provide a good basis for a further investigation of strawberry bHLH genes.

The basic helix-loop-helix (bHLH) proteins, named by their signature conserved domain, form a large superfamily of transcription factor. They are widely distributed from yeast to human^{1,2} and play a central role in many different functions in the development of animals and plants^{3,4}. Typically, a bHLH domain consists of ~60 amino acids with two functionally distinct regions, and it comprises a stretch of about 13–17 hydrophilic basic amino acids at the N-terminal (basic region), followed by two regions of hydrophobic residue α -helix separated by an intervening loop (HLH region)⁵. The basic region, which contains six typical residues with a highly conserved HER motif (His-Glu-Arg) and is thus relevant to its binding to DNA sequences, allows HLH proteins to specifically adhere to the E-box (5'-CANNTG-3') or the variant G-box (5'-CACGTG-3'), where N corresponds to any nucleotide^{3,6-8}. The HLH region functions as a dimerization domain which promotes the formation of homodimers or heterodimers complex, and has been found to be highly conserved in organisms^{3,5,9,10}. Furthermore, the bHLH motifs have been characterized to be able to modulate gene expression by binding to DNA sequences and further participate in plant development^{3,11}.

With the completion of the plant genome sequencing, a large number of bHLH sequences are identified. Recently, more and more bHLH gene families have been located with the investigation of their functions for plants, including *Arabidopsis (Arabidopsis thaliana)*^{9,12}, tomato (*Solanum lycopersicum*)^{3,4}, common bean (*Phaseolus vulgaris*)⁷, apple (*Malus* × domestica)⁸, Chinese cabbage (*B. rapa* ssp. *pekinensis*)¹³, cotton (*Gossypium*)¹⁴. According to their

¹Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China. ²Key Laboratory of Fruit Breeding Technology, Ministry of Agriculture of China, Zhengzhou, China. ³College of Horticulture, Northwest A&F University, Yangling, China. Correspondence and requests for materials should be addressed to H.Z. (email: zhouhoucheng@caas.cn)

bioinformatics and evolutionary relationships^{2–4,7,8,13}, bHLH genes are classified into 15–26. For *Arabidopsis*, 162 bHLH genes have been identified from genome sequences and consequently been divided into 26 subfamilies according to the topology of trees, clade support values, branch lengths, and visual inspection². In addition, for the 'Golden Delicious' apple, 188 *MdbHLH (Malus × domestica* bHLH) transcription factors are sorted out and classified into 18 subfamilies⁸. Furthermore, transcription factors belonging to the same subfamily show similar structure, motif and protein function in plant^{1,9}.

bHLH transcription factors are important regulators in plant physiology, such as anthocyanin biosynthesis^{2,10,15}, biotic and abiotic stress^{12,16,17}, organ development^{1,12,18}, etc. To date, certain types of plant *bHLH* genes have been studied in-depth, providing insights into their biochemical functions⁵ and central roles of transcription factors. For example, genes, located in the IIIf subfamily of bHLH for *Arabidopsis*, have been proved to be involved in both the flavonoid biosynthesis and trichome formation⁵. Molecular interaction of TT8 (Transparent testa 8), GL3 (Glabra 3) and EGL3 (Enhancer of Glabra 3) from the IIIf subfamily with TTG1 (Transparent testa glabra1, WD40 protein family) and MYB (myeloblastosis protein, MYB protein family) forms a MBW (MYB-bHLH-WD40) complex, which regulates genes in the anthocyanin biosynthesis for *Arabidopsis* and tomato^{6,19–22}. Besides, genes from bHLH III(d + e) subfamily have been demonstrated to be able to regulate the JA signal pathway to enhance the plant defense and promote the anthocyanin biosynthesis^{23–27}. The underlying mechanism for the former is that MYC2 (myelocytomatosis 2) is crucial to the plant growth and thus may enhance disease resistance for apple²⁸. For the latter, low temperature facilitates the expression of *MdbHLH3*, which regulates anthocyanin accumulation and fruit coloration for apple^{27,29}.

Strawberry (*Fragaria* \times *ananassa* Duch.) is well recognized universally as a delicious and healthy food³⁰. In recent years, white strawberry is more and more favored by consumers, such as 'Xiaobai'31, 'Snow Princess' and 'Tokun' varieties. As a result, numerous researchers have been casting their eyes on the fruit ripening, ABA (abscisic acid) signaling pathway³²⁻³⁶ and anthocyanin biosynthesis^{37,38}. Roles of MYB transcription factors have been highlighted in the anthocyanin biosynthesis^{20,37,38}, while very few reports on bHLH transcription factors have been made³⁸⁻⁴⁰ and they are mostly limited to the single bHLH. For example, anthocyanin biosynthesis is essentially regulated by the FvDFR (F. vesca DFR, dihydroflavonol 4-reductase) and FvUFGT (F. vesca UFGT, 3-O-glucosyltransferase), which can be activated by FvbHLH33 (F. vesca bHLH33) with the co-expression of FvMYB10 (F. vesca MYB10)³⁹. Moreover, FabHLH3 (F. ananassa bHLH3) and FabHLH3 Δ (encode putative negative regulator), by interacting with the four MYBs, are found to be involved in the proanthocyanidins biosynthesis for strawberry³⁸. In order to systematically explore the molecular basis of bHLH from all of FvbHLHs involved in the anthocyanin biosynthesis and hormone response pathway, we will first analyze the bioinformation of 113 bHLH genes for the diploid woodland strawberry, F. vesca, and reveal their structure, evolution and function. Furthermore, we will study the transcript profiles of FabHLH genes from various tissues for the cultivar 'Benihoppe', its white flesh mutant 'Xiaobai', and the 'Snow Princess' from their fruit development to the ripening period, as well as those under either the ABA or Eth (ethephon) treatment. We finally discover that seven FabHLHs are crucial to the anthocyanin biosynthesis and fruit ripening for the strawberry fruit. We hope that this work will serve as a solid foundation for further investigations into functions of bHLH genes for the anthocyanin biosynthesis.

Results

Identification and annotation of bHLH transcription factors in strawberry. To identify bHLH transcription factors for F. vesca, a total of 166 bHLH members for strawberry via the BLAST-P (Basic Local Alignment Search Tool) search in the database of NCBI (National Center for Biotechnology Information) were obtained by comparing with the 112 strawberry bHLH amino acid sequences from the Plant Transcription Factor Database for the diploid woodland strawberry accession Hawaii-4 genome. Subsequently, to verify the reliability of the selection, a survey was conducted to confirm the presence of the conserved bHLH domain in protein sequences using the online CDD (Conserved Domains Database), SMART (Simple Modular Architecture research tool), and InterProScan database. The unique hits are kept, and duplications and similar DNA or protein sequences (with several bases different) are ruled out with only one of them left¹⁰. For example, there are four alternative variants for the sequence of FvbHLH64, only the longest variant is kept for the further analysis. In the end, 113 out of the 166 FvbHLH members are eventually selected (Table 1) out, forming the bHLH family for strawberry. The first 107 genes are renamed from FvbHLH1 to FvbHLH107 according to their distributions on the chromosome 1–7 from NCBI database^{8,41} (Table 1; Fig. 1). In particular, the left 6 on unknown chromosome are renamed from FvbHLH108 to FvbHLH113 by their position value from the minimum to the maximum(Table 1). The acquired 113 bHLH genes will be further used to study their bioinformation and biofunction, specially for the anthocyanin biosynthesis.

Phylogenetic analysis and multiple sequence alignments of the strawberry FvbHLH proteins.

Reflecting on the past researches, the exact number of the classified subfamily for bHLH proteins has barely been reported⁸. To investigate the classification and evolution as well as to gain insights into the potential function of FvbHLH proteins for strawberry, we constructed a phylogenetic tree (Fig. 2) for the 113 *FvbHLHs* from *F. vesca* and 158 *AtbHLHs* from *Arabidopsis*. 26 of bHLH subfamilies are further classified according to the nomenclature protocol proposed by Heim *et al.*⁵, with some modifications. For example, I(a + b) is divided into Ia and Ib, and IIIa and IIIc are combined into III(a + c); bHLHs that are not located in any of the 24 subfamilies are classified as "orphans" (Fig. 2). We find that FvbHLH protein is persistently present in all subfamilies and the number of it varies hugely from subfamily to subfamily. For instance, each of the smallest group II, IVd, XIII and XIV contains one *FvbHLH* gene, while the largest clade group XII contains twelve. Consequently, the classification of *bHLH* genes provides an evidence for relationships among genes during their evolution.

Name	Accession no.	length(bp)	No. of aa	Mw(Da)	pI	Chr.	Location	Group
FvbHLH1	XM_004287073	1999	459	39465.8	6.67	LG1	774071777509	VII(a+b)
FvbHLH2	XM_011472368	1508	353	39258.2	4.83	LG1	56287865630945	III(a+c)
FvbHLH3	XM_011472373	999	328	35846.2	5.09	LG1	56335935635348	III(a+c)
FvbHLH4	XM_004288907	2261	609	68051	7.62	LG1	62706956273919	IVd
FvbHLH5	XM_011462840	1688	422	46054.2	4.71	LG1	72577437260881	XI
FvbHLH6	XM_004287765	1722	321	35480.6	7.04	LG1	85584738560804	IVb
FvbHLH7	XM_011464708	1979	378	41465.2	9.25	LG1	95537589555736	VIII
FvbHLH8	XM_004287975	1584	376	40793.2	5.27	LG1	1077096810773625	VII(a+b)
FvbHLH9	XM_004287983	1126	250	27603.6	9.81	LG1	1083939810840523	VIIIb
FvbHLH10	XM_004288109	1417	335	37562.9	6.2	LG1	1290181312903720	Ia
FvbHLH11	XM_011468187	1629	351	39316.2	6.03	LG1	1512870715131319	IVa
FvbHLH12	XM_004288253	1878	352	39142.8	6.13	LG1	1514004915142329	IVa
FvbHLH13	XM_004288264	1519	365	40767.6	4.64	LG1	1530961015311394	IIIb
FvbHLH14	XM_004289363	1400	296	33300.1	6.19	LG1	1585216515853564	VIIIb
FvbHLH15	XM_004288393	968	240	27430.5	9.35	LG1	1839388718395702	Ib
FvbHLH16	XM_004289479	880	216	23826	10.2	LG1	1994146619942513	Vb
FvbHLH17	XM_004289620	1724	422	46479.1	6.06	LG2	14496711452519	XII
FvbHLH18	XM_004289703	1445	273	29597.9	7.62	LG2	29489182950935	Х
FvbHLH19	XM_004289751	2926	454	48833.1	8.64	LG2	39043573908604	VII(a+b)
FvbHLH20	XM_004292083	810	269	30282.7	4.95	LG2	39551283956367	VIIIc
FvbHLH21	 XM 011461385	1084	349	38855.1	5.38	LG2	39639993965470	VIIIc
FvbHLH22	 XM 011459605	1565	332	37043.7	8.94	LG2	43904664392690	IVa
FvbHLH23	 XM 011459618	1462	325	35939.1	5.95	LG2	46122004615547	IVb
FvbHLH24	 XM_004289847	1561	292	31061.1	5.91	LG2	55286045532429	XI
FvbHLH25	XM 011459681	2241	504	55378.5	5.77	LG2	57848565787096	III(d+e)
FvbHLH26	XM 011459763	2595	518	56543.3	5.83	LG2	72607097265049	VII(a+b)
FvbHLH27	XM 004292295	2144	544	59176.8	6.42	LG2	88706938873438	XII
FvbHLH28	XM 004290363	1260	244	27544	6.2	LG2	1250795712509504	Ib
FvbHLH29	XM_004290615	2955	702	77736.9	5.54	LG2	1655664216562043	IIIf
FvbHLH30	XM 004290623	1197	296	33052.3	5.3	LG2	1662846916632121	VIII
FvbHLH31	XM 011460379	2134	583	66027.7	5.22	LG2	1753783917540937	IIIb
FvbHLH32	XM 011460381	2473	674	76146.1	5.16	LG2	1754399617547612	IIIb
FvbHLH33	XM 011461514	1208	381	42148.2	5.05	LG2	1983941119840894	VIIIc
FybHLH34	XM 004290949	2921	430	46646.8	5 58	LG2	20151639 20155328	XII
FybHLH35	XM_011460622	1425	324	35244.1	5.88	LG2	2094279020945565	VII(a+b)
FvbHLH36	XM 004292764	1164	244	27373	7.96	LG2	2102602121027184	VIIIb
FvbHLH37	XM 011461186	1047	262	29141.9	6.61	LG2	3097964630981384	Vb
FvbHLH38	XM 004291800	2076	468	50979.6	7.79	LG2	3227873732282900	X
FybHLH39	XM_004293556	1718	244	27140	49	LG3	2254773 2258017	XIV
FvbHLH40	XM 011461973	1389	93	10385.6	5.07	LG3	32631153264716	XV
FvbHLH41	XM 011462057	1986	484	51788	5.46	LG3	40113924014350	X
FvbHLH42	XM 011462059	1003	216	24434	5.44	LG3	40266754028036	III(a+c)
FvbHLH43	XM_011462115	1885	286	32432.7	5 4 4	LG3	4881126 4883099	VIII
FvbHLH44	XM 011462301	2375	262	28591.3	7.74	LG3	73178857322470	Vb
FvbHLH45	XM 004293965	1075	187	20972.7	7.02	LG3	83964758397892	Ib
FybHLH46	XM 004294266	2082	448	49286.4	6.4	LG3	1338848213391583	X
FybHLH47	XM 004294288	1229	231	25421	8.44	LG3	1363796413641643	IVc
FvbHLH48	XM 004295162	3075	431	47638 7	6.09	LG3	2756475627568579	IX
FybHLH49	XM 004296310	1113	231	25855 3	6.02	LG4	5376656495	IVc
FybHLH50	XM 004296450	1106	244	27632.5	5.46	LG4	4132264 4135925	III(a+c)
FybHI H51	XM_004296502	1059	94	10600	7.93	LG1	5165859 5167450	XV
FybHI H52	XM 004296662	1799	350	37266.4	8.78	LG4	7927705 7935898	IX
FybHI H53	XM 004296894	1024	202	22735 5	9.27	LG4	12705986 12707777	Ia
FybHI H54	XM 004296937	2317	550	59476.9	63	LG4	14464166 14467207	XII
FybHI H55	XM 004290997	1619	345	38373 1	6.07	LG4	16335664 16338024	Vh
FybHI H56	XM 004207134	3010	550	59018 0	5.07	LG4	16797062 16800740	XII
FybHI H57	XM 004297147	1599	331	36302.8	5.95	LG4	16909459 16912235	Va
FyhHI HEO	XM 004297147	1047	98	11187 5	9.95	164	18127224 18120227	va XV
EvbHI US0	XM_004297270	2201	535	58210	5.05	LG4	1012/22410120/2/	IIIb
1.voi1L1139	1.111_00429/44/	2201	555	30210	5.01	LG4	19/0009119/099/1	1110
Continued								

PheHIH40 XM, 01486388 P39 339 378.7.3 7.12 IGA 194746-1987066 KIT PMHIH40 XM, 01486508 1910 456 4814.8 6.18 IG4 2154438.2-154647 VIIIb PMHIH41 XM, 00429550 1872 6.02 IG4 220240.222073 XII PMHIH64 XM, 00430601 1800 262 2662.6 6.21 IG5 486954.458474 INT PMHIH64 XM, 00430073 3554 636 7125.1 IS5 IG5 4235201.420399 orphans PMHIH64 XM, 00430001 1830 412 570 IG5 4235201.420399 orphans PMHIH71 XM, 00430001 1830 412 571 IG5 423501.420393 IG7 IG5 81938.842068 XII PMHIH71 XM, 00429931 199 240 2602 IG5 1635 12557.1735326 VII PMHIH74 XM, 00429931 199 2142 2626 IG5 1635	Name	Accession no.	length(bp)	No. of aa	Mw(Da)	pI	Chr.	Location	Group	
PehHLH61 XM_001496048 1910 436 444.4 5.72.4 6.81 L64 1214388.21544.47 VIIIb PehHLH63 XM_004298200 1812 464 5274.2 6.30 L64 216712216738.9 III(+)C) PehHLH64 XM_004298704 2108 533 5086.7 6.78 L64 202391.32027032 orphans PehHLH64 XM_004298874 3324 6.36 7122.51 L51 L65 148551.3140004.51 III PehHH64 XM_004299807 IIII 216.51 L65 148551.3140004.51 IIII PehHH76 XM_004299907 IIII 216.51 156 342865.425604 XIIII PehHH70 XM_004299302 1202 216.01 1271.47 R5 L65 739735.73931.41 VIIII PehHH71 XM_004299303 1412 2662.0 S8 L50 1060434.106505.00 XIIIII PehHH71 XM_00429997 142 2662.0 S8 L50 156328.4140605.0 XIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	FvbHLH60	XM_004298488	1789	339	37867.3	7.12	LG4	1987246919875066	XII	
PehHIHe0XM_004298.2001812464574.20574.20678.1642672.2072.20XIIPehHIH63XM_004298741590275.2808.50578.1642024.2072.20XIIPehHIH64XM_004098611308262.262.50678.1632023913.320702303orphansPehHIH67XM_00429887325.40636122.10170.368.534.7.966.00IIIPehHIH67XM_0042980211810216.70312.8163415334865.425.600ATMPehHIH70XM_004299222151571.0621.428.4315334865.425.600ATMPehHIH70XM_004299222192240262.07.83163358403.437.037.01VIIC+PehHIH71XM_004299311920240262.05.8163548043.437.00VIIC+PehHIH73XM_004299311920240262.05.8163548043.447.00VIIC+PehHIH73XM_004299311900380.44.7115.0125280.112384.440.00IIC+PehHIH75XM_004299311900380.44.7115.0125280.112384.440.00IIC+PehHIH75XM_004290301900380.44.7015.0125280.112384.440.00IIC+PehHIH75XM_004290611900381.45.7016.0125280.112384.440.00IIC+PehHIH75XM_004299.01900381.45.7016.0125280.112384.440.00IIC+ <td>FvbHLH61</td> <td>XM_011465048</td> <td>1910</td> <td>436</td> <td>48434.6</td> <td>6.18</td> <td>LG4</td> <td>2154435821546437</td> <td>VIIIb</td>	FvbHLH61	XM_011465048	1910	436	48434.6	6.18	LG4	2154435821546437	VIIIb	
PehHLH63 XM_004297644 1599 275 2997.3 6.02 L64 2022912.3202702 VIII PehHLH64 XM_00430691 109 262 2962.60 26 L53 6689468847 Ib PehHLH65 XM_0042988754 3254 636 7125.1 5.1 L53 1485513.1490045 III PehHLH64 XM_00429887 836 191 21670.1 9.72 L53 205337.320650 III PehHLH64 XM_004299007 1180 412 48584 637 579737.3733265 Va PehHLH73 XM_004299332 1292 246 2920.3 5.99 L55 386943.387037 IVI PehHH173 XM_004299332 1299 246 2420.5 L50 1362944.1065000 III PehHH173 XM_00429937 1290 3814 6.16 165 137286.1219348 III PehHH175 XM_00429937 142 2424 2429.5 L50 L50 1435380.41400801	FvbHLH62	XM_004298520	1812	464	52734.2	6.36	LG4	2167122221673829	III(a+c)	
PehHLHeiXM_01146519021085335086.776.78LG202301323027032orphansPehHLH6XM_0042897813092622662.06.22LG5686954688474IbPehHLH6XM_0042898783619122167.09.72LG29653472966500IbPehHLH6XM_00429091318102763112.86.45LG234865426604XIIPehHLH7XM_0042902221515716271.478LG7347973.7353265VaPehHLH7XM_0042993221092462692.058LG536043.870337IVPehHLH7XM_0042993319022742662.05.8LG536043.870337IVPehHLH7XM_0042993412902742662.05.8LG536943.87034IPehHLH7XM_0042995412902742662.05.8LG1527261273944IPehHLH7XM_0042997412902844295.1LG152786.127394IPehHLH7XM_004290110003913614.6LG152786.127394IPehHLH8XM_004290112906827428.1LG1242377.446218IIIPehHLH8XM_004290112906827428.1LG1242372.44628IIIPehHLH8XM_004300312803191.6371.4LG35894.3A11PehHLH8XM_004300401960297.43641.5LG1242374.46	FvbHLH63	XM_004297644	1599	275	29997.3	6.02	LG4	2226426022267220	XII	
PehHlHeiXM_004300611309262252.0654165168594.6884741bPehHLH6XM_004288873284636712.15.11.65148553.140005117PehHLH6XM_00439007180276312.16.451.62402501.4023990orphansPehHLH6XM_004390211850271.0627.148116.374973.735353VPehHLH7XM_00429921125.571.0627.148116.374973.735353VPehHLH7XM_00429931120924626805.8916.589149.23.8340059VIIC.15PehHLH7XM_00429937129921402682.35.9916.581923.8340059VIIC.15PehHLH7XM_00429971129921402462.35.8416.51529151.121940110.1PehHLH7XM_0042997112992140242.55.2916.51529151.121940110.1PehHLH7XM_00429971142.35.4415.215.215.215.211.211.1PehHLH7XM_0042991120062.0748.55.215.215.211.211.1PehHLH8XM_0042919120022.122.915.215.211.211.211.2PehHLH8XM_004291120023.415.215.215.211.211.211.2PehHLH8XM_004291120023.415.215.215.215.215.2 <t< td=""><td>FvbHLH64</td><td>XM_011465190</td><td>2108</td><td>533</td><td>58065.7</td><td>6.78</td><td>LG4</td><td>2302391323027032</td><td>orphans</td></t<>	FvbHLH64	XM_011465190	2108	533	58065.7	6.78	LG4	2302391323027032	orphans	
P+bHLH6 XM_004298754 3254 636 7125.1 5.51 1.63 148551.1490045 IIIf P-bHLH68 XM_004299007 180 21670.1 9.72 1.63 246547.296600 I P-bHLH68 XM_004299007 180 276 31128.1 6.35 1.63 40230.402039 orphans P-bHLH7 XM_00429902 2155 571 62714.7 8 1.65 7347973.753265 VA P-bHLH7 XM_00429933 1492 2460 2802.3 5.99 1.65 848643.8370371 IVIC P-bHLH7 XM_0042993 129 246 2620.5 5.68 1.63 109238.8420695 XIU P-bHLH7 XM_0042993 129 244 2402.5 5.68 1.63 132578.1213948 IRI P-bHLH7 XM_00420304 129 2424 2425 5.51 153 143538.1446048 IRI P-bHLH8 XM_0042005 129 3464 4154 4.56 1423387.146	FvbHLH65	XM_004300691	1309	262	29626.9	6.42	LG5	686954688474	Ib	
PhilLIH67 XM_004298887 836 191 21670.1 9.72 LGS 965347.2966300 IIsb PrbHLH68 XM_004209021 180 412 4889.4 6.39 LGS 4025300.402999 perphans PrbHLH70 XM_004209222 2515 571 62714.7 8 LGS 7347973.7353265 Val PrbHLH71 XM_004209323 2909 264 28020.5 588 LGS 7347973.7353265 XII PrbHLH73 XM_00429933 2929 10426.7 9.71 LGS 838694.3837037 IVb PrbHLH74 XM_004299574 1299 274 2966.2 5.86 LGS 105621.3137149 VIIIC PrbHLH75 XM_00429978 1402 340 4016 LGS 1252517.1272148 XI PrbHLH75 XM_00430030 1299 3841.8 6.7 LGS 124227.2146498 IIIG++ PrbHLH8 XM_00430030 1269 3841.8 6.7 LGS 124237.142172188 X	FvbHLH66	XM_004298754	3254	636	71225.1	5.51	LG5	14855131490045	IIIf	
PhilLilés XM_004300913 1850 412 48894. 6.39 1G3 402501.4029999 orphans PubilLino XM_004292007 1180 276 31128.1 6.45 1C5 4234685.4236694 XII PubilLin7 XM_00430180 1492 394 44179.6 8L 1G3 7397035.7393413 VII(a+b) PubilLin7 XM_004293053 1290 1646 26920.3 5.99 1G3 841923.8420695 XII PubilLin7 XM_004299574 1290 274 2662.9 5.68 1G5 13692137.13271499 VIII PubilLin7 XM_00429978 1020 391 3024.4 471 1G3 1369137.13271499 VIII PubilLin8 XM_001466450 102 244 2425.5 5.2 1G5 1452387.1452149 III PubilLin8 XM_001466450 1020 354 4.61 166 53881.5358 XII PubilLin8 XM_00430000 1260 74852.5 5.2 <td< td=""><td>FvbHLH67</td><td>XM_004298887</td><td>836</td><td>191</td><td>21670.1</td><td>9.72</td><td>LG5</td><td>29653472966500</td><td>Ib</td></td<>	FvbHLH67	XM_004298887	836	191	21670.1	9.72	LG5	29653472966500	Ib	
PebHLH69XM_004299007118027631128.16.451G54243485.4236694XIIPebHLH70XM_00429922251557162714.781G57347037.3735265VaPebHLH71XM_00429933212092462620.35991G5848043.837037IVI(a+1)PebHLH72XM_004299350944921042.679.171G58419238.8420695XVPebHLH73XM_0042993699103403814.26.161G512157286.1159348IacPebHLH74XM_0042993619100330390.494.71IG51453382.6.1454001IXPebHLH75XM_00419078142034044009.44.856.7IG514623387.1452157IIIPebHLH8XM_0041010112606827485.25.52IG51462387.145723IacPebHLH8XM_0043000112883113418.66.7IG6538981.543382XIIPebHLH8XM_0043000512683213418.66.7IG6538981.543382XIIPebHLH8XM_0043000512683213418.66.7IG6538981.543382XIIPebHLH8XM_0043000512683213418.66.7IG6538985.39897.5IacPebHLH8XM_004302041273423941.45.7IG6547305.547897IacPebHLH8XM_004303312623241.76.14IG61493398.1438160VII <td>FvbHLH68</td> <td>XM_004300913</td> <td>1850</td> <td>412</td> <td>45859.4</td> <td>6.39</td> <td>LG5</td> <td>40252014029399</td> <td>orphans</td>	FvbHLH68	XM_004300913	1850	412	45859.4	6.39	LG5	40252014029399	orphans	
PebHLH70 XM_004299222 2515 571 62714.7 8 LGS 7347973.7353265 Val PebHLH71 XM_004299332 1209 246 26920.3 5.99 LGS 836043.8370357 IVIa + b) PebHLH73 XM_004299330 984 92 10426.7 9.17 LGS 841923.8420695 XI PebHLH74 XM_004299574 1299 274 29662.9 5.68 LGS 105238.420695 XI PebHLH75 XM_004299578 1420 339 38024.9 4.71 LGS 1257286.1215944 Ia PebHLH76 XM_004299778 1442 354 40009.1 4.85 LGS 1452387.1462315 III PebHLH80 XM_004300190 1269 32844 5.51 LGS 24527.21464968 III(d+e) PebHLH80 XM_004300409 1169 255 32841.5 5.45 LGS 24527.21464968 III(d+e) PebHLH81 XM_004300404 1269 32844.5 6.70 <td< td=""><td>FvbHLH69</td><td>XM_004299007</td><td>1180</td><td>276</td><td>31128.1</td><td>6.45</td><td>LG5</td><td>42348654236694</td><td>XII</td></td<>	FvbHLH69	XM_004299007	1180	276	31128.1	6.45	LG5	42348654236694	XII	
PvbHLH71 XM_004301080 1492 394 44179.6 7.83 LGS 7937035.7939413 VII(a + b) FvbHLH72 XM_004299332 1209 246 26920.5 5.99 LGS 856043.870557 IVb FvbHLH72 XM_004299574 1299 774 2662.9 5.68 LGS 1096244.10965206 XII FvbHLH75 XM_004299574 1299 274 2862.9 5.68 LGS 1157286.12159348 Ia FvbHLH77 XM_001406454 1192 224 2422 5.29 LGS 1455245.444008 III(- FvbHLH78 XM_00430140 1909 366 41948.8 6.7 LGS 1452387.14625157 IIIb FvbHLH81 XM_00430040 1268 211 3541.5 6.67 LGS 24315240.24317523 Ia FvbHLH81 XM_00430040 1268 211 3541.5 6.57 LGS 24315240.24317523 Ia FvbHLH81 XM_00430040 1268 24315240.24317523	FvbHLH70	XM_004299222	2515	571	62714.7	8	LG5	73479737353265	Va	
FvbHLH72 XM_004299332 1209 246 2620.3 5.99 LGS 836043.8370357 IVb FvbHLH73 XM_004299356 1829 274 28662.9 5.88 LGS 10962304 XII FvbHLH75 XM_004299571 1500 340 38142 6.16 LGS 1257266.12159348 Ia FvbHLH76 XM_00429715 142 3244 4.00 IGS 1325286.12159348 Ia FvbHLH77 XM_00429715 142 3244 4.00 IGS 14253826.1454008 II(I+e) FvbHLH80 XM_00430019 2690 682 74852 S.52 IGS 2462279.21464688 II(I+e) FvbHLH81 XM_00430030 1268 321 35418.5 6.67 IGS 24315240.24317523 Ia FvbHLH83 XM_00430030 1269 3384 5.41 IG6 539851.543382 XI FvbHLH83 XM_00430207 7278 710 7661.3 6.08 IG5 5497975.5	FvbHLH71	XM_004301080	1492	394	44179.6	7.83	LG5	79370357939413	VII(a+b)	
FvbHLH73 XM_004299336 984 92 10426.7 9.17 LGS 8419238.8420695 XV FvbHLH74 XM_004299574 1299 274 29662.9 5.68 LGS 10962434.10965206 XII FvbHLH75 XM_004039039 1000 38014.2 6.16 LGS 12157286.1215948 Ia FvbHLH70 XM_0040299778 1442 324 4295.2 5.29 LGS 14535826.14540081 IX FvbHLH70 XM_004299778 1442 354 40009.1 485 LGS 14523387.14623157 IIIb FvbHLB80 XM_004300409 12690 682 74852 5.52 LGS 1252571.71729489 XI FvbHLB81 XM_00430060 1268 321 3518.5 6.67 LGS 35981.543322 XI FvbHLB81 XM_00430060 1268 321.2 6.61 LGS 35981.543322 XII(a+b) FvbHLB8 XM_00430404 1427 32 643.7 LG6 1439363.160	FvbHLH72	XM_004299332	1209	246	26920.3	5.99	LG5	83680438370357	IVb	
FvbHLI174 XM_004299574 1299 274 29662.9 5.68 LG5 10962434.10965206 XII FvbHLI175 XM_004299639 1500 340 38514.2 6.16 LG5 11257286.12159348 Ia FvbHLI177 XM_004299778 1442 354 40009.1 4.85 LG5 145286.1454008 IX FvbHL177 XM_004300191 2690 682 74856.2 5.52 LG5 21462279.21464988 II(d+e) FvbHL187 XM_00430010 1268 321 35418.5 6.67 LG5 24162279.21464988 II(d+e) FvbHL182 XM_00430040 1268 321 35418.5 6.67 LG5 25152.0.1229489 XI FvbHL183 XM_00430207 2778 710 76641.7 6.08 LG6 393932.3984625 VII(a + b) FvbHL184 XM_00430207 2777 778 C41.7 6.14 LG6 1493398.14931670 Ib FvbHL185 XM_00430424 1427 342	FvbHLH73	XM_004299336	984	92	10426.7	9.17	LG5	84192388420695	XV	
FvbHLH75 XM_004299639 1500 340 38514.2 6.16 LG5 12157286.12159348 Ia FvbHLH76 XM_001401340 1020 339 38024.9 4.71 LG5 13269137.1327149 VIIIc FvbHLH77 XM_001466450 1909 386 41948.8 6.75 LG5 14535826.14540081 IIIC FvbHLH80 XM_00430010 1260 682 74856.2 5.52 LG5 21462279.21464968 III(d+e) FvbHLH81 XM_00430026 1268 321 35418.5 6.67 LG5 2435220.2351157.32 IA FvbHLB3 XM_00430027 2778 710 76643.7 6.08 LG6 539891.543382 XII FvbHLB48 XM_00430240 127 320 26241.7 6.14 LG6 76320.5736793 IA FvbHLB48 XM_00430838 182 540 5933.68 7.66 LG6 1431373.14433464 VIIIc FvbHLB48 XM_00430466 1728 319 <td< td=""><td>FvbHLH74</td><td>XM_004299574</td><td>1299</td><td>274</td><td>29662.9</td><td>5.68</td><td>LG5</td><td>1096243410965206</td><td>XII</td></td<>	FvbHLH74	XM_004299574	1299	274	29662.9	5.68	LG5	1096243410965206	XII	
FvbHLH76 XM_004301340 1020 339 38024.9 4.71 LG5 13269137.13271499 VIIIc FvbHLH77 XM_01466454 1192 224 24295.2 5.29 LG5 14535826.14540081 IX FvbHLH78 XM_004299778 1442 354 4009.1 4.85 LG5 14623387.1462157 IIIb FvbHLH80 XM_004300101 2690 682 748562 5.2 LG5 2126279.12424948 II(d + c) FvbHLH81 XM_004300300 1268 321 35418.5 6.67 LG5 2350922.25511575 XII FvbHLH82 XM_00430207 2778 710 7663.7 6.08 LG6 538981.543382 XI FvbHLH85 XM_00430207 2778 710 7664.3 6.08 LG6 5497305.5478975 Ia FvbHLH84 XM_00430204 1427 342 39041.4 5.67 LG6 41373.143344 VIIIc Fit FvbHLH85 XM_0043083 2182 540 </td <td>FvbHLH75</td> <td>XM_004299639</td> <td>1500</td> <td>340</td> <td>38514.2</td> <td>6.16</td> <td>LG5</td> <td>1215728612159348</td> <td>Ia</td>	FvbHLH75	XM_004299639	1500	340	38514.2	6.16	LG5	1215728612159348	Ia	
FvbHLH77 XM_011466454 1192 224 24295.2 5.29 LG5 14535826.14540081 IX FvbHLH78 XM_004299778 1442 354 40009.1 4.85 LG5 14623387.14625157 IIIb FvbHLH80 XM_004300500 1268 321 35418.5 6.67 LG5 24315240.24317523 Ia FvbHLH81 XM_004300205 2095 339 36374.6 6.07 LG6 33989352.3994265 VII(a + 5) FvbHLH82 XM_004300207 2078 710 76643.7 6.08 LG6 54939523994265 VII(a + 5) FvbHLH84 XM_004302404 1427 342 39041.4 5.67 LG6 54939523994265 VII(a + 5) FvbHLH85 XM_00430240 1427 342 39041.4 5.67 LG6 5473055479975 Ia FvbHLH84 XM_004302406 1428 3973.1 6.56 LG6 1430393.1491670 Ib FvbHLH84 XM_00430353 1282 JG6 1	FvbHLH76	XM_004301340	1020	339	38024.9	4.71	LG5	1326913713271499	VIIIc	
FvbHLH78 XM_004299778 1442 354 4009.1 4.85 LG5 L462387.14625157 IIIb FvbHLH79 XM_001406590 1009 386 4194.8 6.7 LG5 17225517.17229489 X FvbHLH80 XM_004300360 1269 682 74856.2 5.2 LG5 21642279.2144968 III(d+e) FvbHLH81 XM_004300360 1269 32841.5 5.45 LG5 25509922.2551157 XII FvbHLH82 XM_00430205 2095 339 36374.6 6.07 LG6 538981.543382 XII FvbHLH84 XM_004302441 1427 342 39041.4 5.67 LG6 538981.543957 IIID FvbHLH85 XM_01430640 197 230 26241.7 6.14 LG6 14930381.1491670 Ibr FvbHLH84 XM_00430353 1282 503 LG6 12760282.736505 VIIG+b) FvbHL189 XM_00430416 1490 322 36055.5 5.7 LG6 327	FvbHLH77	XM_011466454	1192	224	24295.2	5.29	LG5	1453582614540081	IX	
FvbHLH79 XM_011466590 1909 386 4194.8. 6.7. LG5 1722517.17229489 X FvbHLH80 XM_004300191 2690 682 74856.2 5.52 LG5 21462279.21464968 III(d+e) FvbHLH81 XM_004300400 1166 295 32841.5 5.45 LG5 23509922.25511575 XII FvbHLH82 XM_004302005 2095 339 3637.46 6.07 LG6 538981.543382 XI FvbHLH84 XM_004302007 2778 710 76643.7 6.08 LG6 53893523994265 VIII6 FvbHLH85 XM_004302404 1427 342 39041.4 5.67 LG6 547305478975 Ia FvbHLH86 XM_011470140 525 174 1976.1 8.77 LG6 123629736305 VIII6 FvbHLH88 XM_004303853 2182 540 5933.68 7.66 LG6 324694.33192 VI F FvbHLH98 XM_004304260 1703 352 </td <td>FvbHLH78</td> <td> XM_004299778</td> <td>1442</td> <td>354</td> <td>40009.1</td> <td>4.85</td> <td>LG5</td> <td>1462338714625157</td> <td>IIIb</td>	FvbHLH78	 XM_004299778	1442	354	40009.1	4.85	LG5	1462338714625157	IIIb	
FvbHLH80 XM_004300191 2690 682 74856.2 5.52 LG5 2146227921464968 III(d+e) FvbHLH81 XM_004300300 1268 321 35418.5 6.67 LG5 2431524024317523 Ia FvbHLH82 XM_004302027 2778 710 76643.7 C68 LG6 538981543382 XI FvbHLH84 XM_004302274 1427 342 39041.4 5.67 LG6 54773055478975 Ia FvbHLH86 XM_011470140 525 174 19761.3 8.71 LG6 1493038919831670 Ib FvbHLH87 XM_001305378 1408 298 32732.1 6.59 LG6 184313731843346 VIIIc FvbHLH89 XM_00430383 1282 5005 5.7 LG6 3072984930733592 Va FvbHLH91 XM_00430383 1282 36058.5 5.7 LG6 302288905.5 VII <e+bi< td=""> FvbHL191 XM_00430666 1728 319 35277.2 8.32</e+bi<>	FvbHLH79	XM_011466590	1909	386	41948.8	6.7	LG5	1722551717229489	X	
FvbHLH8I XM_004300360 1268 321 35418.5 6.67 LG5 24315240.24317523 Ia FvbHLH82 XM_00430005 2095 339 36374.6 6.07 LG5 25509922.25511575 XII FvbHLH84 XM_004302005 2095 339 36374.6 6.07 LG6 538981543382 XI FvbHLH84 XM_00430204 1427 342 39041.4 5.61 LG6 54773055478975 Ia FvbHLH85 XM_01147010 525 174 19761.3 8.71 LG6 54773055478975 Ia FvbHLH86 XM_01147010 525 174 19761.3 8.71 LG6 14930398.14931670 Ib FvbHLH88 XM_004303578 1408 298 32732.1 6.59 LG6 18431373.1843464 VIIIc FvbHLH98 XM_004304266 1728 319 3227.2 8.32 LG6 32169884.310783 XII FvbHLH91 XM_004304269 1670 3527.2 8.3	FvbHLH80	XM 004300191	2690	682	74856.2	5.52	LG5	2146227921464968	III(d+e)	
FvbHLH82 XM_004300469 1196 295 32841.5 5.45 LG5 2550992225511575 XII FvbHLH83 XM_00430205 2095 339 36374.6 6.07 LG6 538981543382 XI FvbHLH84 XM_004302040 1427 342 39041.4 5.67 LG6 54773055478975 Ia FvbHLH85 XM_011468604 97 230 26241.7 6.14 LG6 1493039814931670 Ib FvbHLH88 XM_004305478 1408 298 32732.1 6.59 LG6 1843137318433464 VIIIc FvbHLH89 XM_00430353 2182 540 59336.8 7.66 LG6 2756022827363650 VII(a+b) FvbHLH90 XM_004304269 1728 319 35277.2 8.32 LG6 3216698432169818 IX FvbHLH91 XM_004308165 1937 429 47554.5 8.19 LG7 1392304139548 IX FvbHL193 XM_004308155 1937 420	FvbHLH81	 XM_004300360	1268	321	35418.5	6.67	LG5	2431524024317523	Ia	
FvbHLH83 XM_00430205 2095 339 36374.6 6.07 LG6 538981.543382 XI FvbHLH84 XM_004302277 2778 710 76643.7 6.08 LG6 3989352.3994265 VII(a+b) FvbHLH85 XM_004302404 1427 342 39041.4 5.67 LG6 5477305.5478975 Ia FvbHLH86 XM_011470140 525 174 19761.3 8.71 LG6 7635289.736793 VIIIb FvbHLH87 XM_011468604 997 230 26241.7 6.14 LG6 14930398.14931670 Ib FvbHLH89 XM_004303853 2182 540 59336.8 7.66 LG6 2736028.27363650 VII(a+b) FvbHLH90 XM_004304266 1728 319 35277.2 8.32 LG6 32169848 IX FvbHLH91 XM_00430653 1670 352 38982.9 5.97 LG6 32238590.32243935 XII FvbHLH92 XM_00430653 1670 45944 5452	FvbHLH82	 XM 004300469	1196	295	32841.5	5.45	LG5	2550992225511575	XII	
FvbHLH84 XM_004302277 2778 710 76643.7 6.08 LG6 39893523994265 VII(a+b) FvbHLH85 XM_004302404 1427 342 39041.4 5.67 LG6 54773055478975 Ia FvbHLH86 XM_011470140 525 174 19761.3 8.71 LG6 73632697363793 VIIIb FvbHLH87 XM_004305478 1408 298 32732.1 6.59 LG6 14930398.14931670 Ib FvbHLH89 XM_004303445 1408 298 32732.1 6.59 LG6 3070284930733592 Va FvbHLH90 XM_004303446 1469 322 3608.5 5.7 LG6 3223859032243935 XII FvbHLH91 XM_004304269 1670 352 3982.9 5.97 LG6 3223850932243935 XII FvbHLH92 XM_00430653 1670 2352 3987.5 6.15 LG7 232356234886 VIII FvbHLH93 XM_00430653 1650 46844.5	FvbHLH83	XM 004302005	2095	339	36374.6	6.07	LG6	538981543382	XI	
FvbHLH85 XM_004302404 1427 342 39041.4 5.67 LG6 5477305.5478975 Ia FvbHLH86 XM_011470140 525 174 19761.3 8.71 LG6 7363269.7363793 VIIIb FvbHLH87 XM_01468604 997 230 26241.7 6.14 LG6 14930398.14931670 Ib FvbHLH88 XM_004305478 1408 298 32732.1 6.59 LG6 18431373.18433464 VIIIc FvbHLH90 XM_004304146 1469 322 36058.5 5.7 LG6 3072984930733592 Va FvbHL190 XM_004304269 1670 352 38982.9 5.97 LG6 322889032243935 XII FvbHL192 XM_00430455 1937 429 47554.5 8.19 LG7 13923041395438 IX FvbHL194 XM_00430653 160 420 46844.5 6.1 LG7 2332756234886 VIII FvbHL195 XM_00430657 1955 491 54	FvbHLH84	XM 004302277	2778	710	76643.7	6.08	LG6	39893523994265	VII(a+b)	
FvbHLH86 XM_011470140 525 174 19761.3 8.71 LG6 73632697363793 VIIIb FvbHLH87 XM_011468604 997 230 26241.7 6.14 LG6 1493039814931670 Ib FvbHLH88 XM_004305478 1408 298 32732.1 6.59 LG6 1843137318433464 VIIIc FvbHLH89 XM_00430353 2182 540 59336.8 7.66 LG6 2736022827363650 VII(a+b) FvbHLH90 XM_004304266 1728 319 35277.2 8.32 LG6 3216698432169818 IX FvbHLH91 XM_004308165 1937 429 47554.5 8.19 LG7 13923041395438 IX FvbHL193 XM_004306579 1955 491 54529.8 5.03 LG7 2392602356974 III(d+e) FvbHL196 XM_004306579 1955 491 54529.8 5.03 LG7 51023805106265 III FvbHL197 XM_004306579 1955 49	FvbHLH85	XM 004302404	1427	342	39041.4	5.67	LG6	54773055478975	Ia	
FvbHLH87 XM_011468604 997 230 26241.7 6.14 LG6 14330398.14931670 Ibs FvbHLH88 XM_004305478 1408 298 32732.1 6.59 LG6 18431373.18433464 VIIIc FvbHLH89 XM_004303853 2182 540 59336.8 7.66 LG6 27360228.27363650 VII(a + b) FvbHLH90 XM_004304266 1728 319 35277.2 8.32 LG6 32166984.32169818 IX FvbHLH91 XM_004304269 1670 352 38982.9 5.97 LG6 32238590.32243935 XII FvbHLH93 XM_004308165 1937 429 47554.5 8.19 LG7 1392304.1395438 IX FvbHLH94 XM_01470561 1430 294 33574.5 6.15 LG7 232750.2.34886 VIII FvbHLH95 XM_00430653 2160 420 46844.5 6.1 LG7 73926.2.745885 Ia FvbHLH95 XM_004306829 2615 643	FybHLH86	XM 011470140	525	174	19761.3	8.71	LG6	73632697363793	VIIIb	
FvbHLH88 XM_004305478 1408 298 32732.1 6.59 LG6 18431373.18433464 VIIIc FvbHLH89 XM_004303853 2182 540 59336.8 7.66 LG6 18431373.18433464 VIIIc FvbHLH90 XM_004304164 1469 322 36058.5 5.7 LG6 30729849.30733592 Va FvbHLH91 XM_004304266 1728 319 35277.2 8.32 LG6 32166984.32169818 IX FvbHLH92 XM_004308165 1937 429 47554.5 8.19 LG7 13923041395438 IX FvbHLH93 XM_00430653 160 420 46844.5 6.1 LG7 23275c2334886 VIII FvbHLH96 XM_00430657 1955 491 54529.8 5.03 LG7 50202956974 III(d+e) FvbHLH97 XM_004308329 2615 643 71423.8 5.42 LG7 5102380.5106265 IIIf FvbHL199 XM_004308329 2615 6413	FybHLH87	XM 011468604	997	230	26241.7	6.14	LG6	1493039814931670	Ib	
FvbHLH89 XM_004303853 2182 540 59336.8 7.66 LG6 27360228.27363650 VII(a+b) FvbHLH90 XM_004304166 1469 322 36058.5 5.7 LG6 30729849.30733592 Va FvbHLH91 XM_004304266 1728 319 35277.2 8.32 LG6 32166984.32169818 IX FvbHLH92 XM_004304269 1670 352 38982.9 5.97 LG6 32238590.32243935 XII FvbHLH93 XM_004308165 1937 429 47554.5 8.19 LG7 13923041395438 IX FvbHLH94 XM_011470561 1430 294 33574.5 6.15 LG7 2332756234886 VIII FvbHLH95 XM_004306579 1955 491 54529.8 5.03 LG7 29550202956974 III(d+e) FvbHLH96 XM_004306832 2615 643 71423.8 5.42 LG7 51023805106265 IIIf FvbHLH99 XM_004306857 2010 465 <td>FybHLH88</td> <td>XM 004305478</td> <td>1408</td> <td>298</td> <td>32732.1</td> <td>6.59</td> <td>LG6</td> <td>1843137318433464</td> <td>VIIIc</td>	FybHLH88	XM 004305478	1408	298	32732.1	6.59	LG6	1843137318433464	VIIIc	
FvbHLH90 XM_004304146 1469 322 36058.5 5.7 LG6 3072984930733592 Va FvbHLH91 XM_004304266 1728 319 35277.2 8.32 LG6 3216698432169818 IX FvbHLH92 XM_004304269 1670 352 38982.9 5.97 LG6 3223859032243935 XII FvbHLH93 XM_004308165 1937 429 47554.5 8.19 LG7 13923041395438 IX FvbHLH94 XM_011470561 1430 294 33574.5 6.15 LG7 23327562334886 VIII FvbHLH95 XM_004306579 1955 491 54529.8 5.03 LG7 29550202956974 III(d+e) FvbHLH97 XM_004308579 1955 491 54529.8 5.03 LG7 51023805106265 IIIf FvbHLH99 XM_004308329 2615 643 71423.8 5.42 LG7 51023805106265 IIIf FvbHLH99 XM_011470775 1286 361 <td>FybHLH89</td> <td>XM 004303853</td> <td>2182</td> <td>540</td> <td>59336.8</td> <td>7.66</td> <td>LG6</td> <td>2736022827363650</td> <td>VII(a+b)</td>	FybHLH89	XM 004303853	2182	540	59336.8	7.66	LG6	2736022827363650	VII(a+b)	
First First <th< td=""><td>FvbHLH90</td><td>XM_004304146</td><td>1469</td><td>322</td><td>36058 5</td><td>57</td><td>LG6</td><td>30729849 30733592</td><td>Va</td></th<>	FvbHLH90	XM_004304146	1469	322	36058 5	57	LG6	30729849 30733592	Va	
FvbHLH92 XM_004304269 1670 352 38982.9 5.97 LG6 32238590.32243935 XII FvbHLH93 XM_004308165 1937 429 47554.5 8.19 LG7 1392304.1395438 IX FvbHLH94 XM_01470561 1430 294 33574.5 6.15 LG7 2332756.2334886 VIII FvbHLH95 XM_004306503 2160 420 46844.5 6.1 LG7 2743026.2745885 Ia FvbHLH96 XM_004306509 1955 491 54529.8 5.03 LG7 2955020.2956974 III(d+e) FvbHLH97 XM_004306509 3013 616 67483 6.11 LG7 33951703398461 III(d+e) FvbHLH98 XM_004308329 2615 643 71423.8 5.42 LG7 51023805106265 IIIf FvbHLH99 XM_01470775 1286 361 39894.6 6.6 LG7 137261811375286 II FvbHL100 XM_004307626 1299 261	FybHLH91	XM 004304266	1728	319	35277.2	8.32	LG6	3216698432169818	IX	
FvbHLH93 XM_004308165 1937 429 47554.5 8.19 LG7 13923041395438 IX FvbHLH94 XM_004308165 1937 429 47554.5 8.19 LG7 13923041395438 IX FvbHLH94 XM_01470561 1430 294 33574.5 6.15 LG7 23327562334886 VIII FvbHLH95 XM_004306503 2160 420 46844.5 6.1 LG7 27430262745885 Ia FvbHLH96 XM_004306609 3013 616 67483 6.11 LG7 51023805106265 III(d + e) FvbHLH97 XM_004308329 2615 643 71423.8 5.42 LG7 51023805106265 IIIf FvbHLH99 XM_01470775 1286 361 39894.6 6.6 LG7 7393425800960 Ia FvbHLH100 XM_00430752 2010 465 52012.7 5.61 LG7 137261811375286 II FvbHL1101 XM_004307626 1299 261 <	FybHLH92	XM 004304269	1670	352	38982.9	5.97	LG6	3223859032243935	XII	
Fride Ind_onion Ind_onion <thind_oniin< th=""> <thind_onion< th=""> <thind_i< td=""><td>FvbHLH93</td><td>XM_004308165</td><td>1937</td><td>429</td><td>47554 5</td><td>8 19</td><td>LG7</td><td>1392304 1395438</td><td>IX</td></thind_i<></thind_onion<></thind_oniin<>	FvbHLH93	XM_004308165	1937	429	47554 5	8 19	LG7	1392304 1395438	IX	
Frommer File	FybHLH94	XM_011470561	1430	294	33574 5	6.15	LG7	2332756 2334886	VIII	
Frommer Instruction <	FybHLH95	XM_004306563	2160	420	46844 5	61	LG7	2743026 2745885	Ia	
Freihnes Index correspondence Index correspondence Index correspondence Index correspondence FvbHLH97 XM_004306609 3013 616 67483 6.11 LG7 33951703398461 III(d+e) FvbHLH98 XM_004308329 2615 643 71423.8 5.42 LG7 51023805106265 IIIf FvbHLH99 XM_011470775 1286 361 39894.6 6.6 LG7 57993425800960 Ia FvbHLH100 XM_004308575 2010 465 52012.7 5.61 LG7 1137261811375286 II FvbHLH101 XM_011471173 1907 243 27413.7 5.92 LG7 1227802012280123 Ib FvbHLH102 XM_004307508 1708 446 50855 6.11 LG7 1701761717022889 X FvbHLH103 XM_004309112 1767 366 40022.1 5.39 LG7 2178973121792322 Ia FvbHLH104 XM_004308085 1469 254 28708.4 5.51 <td>FybHI H96</td> <td>XM_004306579</td> <td>1955</td> <td>491</td> <td>54529.8</td> <td>5.03</td> <td>LG7</td> <td>2955020 2956974</td> <td>III(d+e)</td>	FybHI H96	XM_004306579	1955	491	54529.8	5.03	LG7	2955020 2956974	III(d+e)	
Freihnen Integenesses Integenesses <td>FybHLH97</td> <td>XM_004306609</td> <td>3013</td> <td>616</td> <td>67483</td> <td>6.11</td> <td>LG7</td> <td>3395170 3398461</td> <td>III(d+e)</td>	FybHLH97	XM_004306609	3013	616	67483	6.11	LG7	3395170 3398461	III(d+e)	
Frommon Inf_oot 100020 1000 111000 111000 111000 111000 111000 111000 111000 111000 111000 111000 111000 111000 111000 1110000 1110000 1110000 1110000000 1110000000000000000000000000000000000	FvbHLH98	XM_004308329	2615	643	71423.8	5.42	LG7	5102380 5106265	IIIf	
Freind Freid Freid <t< td=""><td>FybHLH99</td><td>XM_011470775</td><td>1286</td><td>361</td><td>39894.6</td><td>6.6</td><td>LG7</td><td>5799342 5800960</td><td>Ia</td></t<>	FybHLH99	XM_011470775	1286	361	39894.6	6.6	LG7	5799342 5800960	Ia	
Frommino Information	FybHLH100	XM_004308575	2010	465	52012.7	5.61	LG7	11372618 11375286	II	
FvbHLH101 IM_00110110 IM IDS IDS <thids< th=""> IDS IDS</thids<>	FybHI H101	XM_011471173	1907	243	27413 7	5.92	LG7	12278020 12280123	Ib	
FVbHLH102 IM_004309305 I/00 I/00 <th 00<="" th=""> I/00 I/00</th>	I/00 I/00	FybHLH102	XM_004307508	1708	446	50855	6.11	LG7	17017617 17022889	x
FvbHLH105 IM_004309112 1767 366 40022.1 5.39 LG7 21789731.21792322 Ia FvbHLH104 XM_004308085 1469 254 28708.4 5.51 LG7 23053917.23055551 Ib FvbHLH105 XM_004308085 1469 254 28708.4 5.51 LG7 23053917.23055551 Ib FvbHLH106 XM_011472396 792 196 21478.6 9.61 LG7 23057596.23058575 Ib FvbHLH107 XM_004308087 1609 261 29145.2 9.42 LG7 23060616.23062531 Ib FvbHLH108 XM_004309700 2236 365 40673.8 7.06 Un 17881.23082 Ib FvbHLH109 XM_004309608 1230 245 26615.1 5.83 Un 32335.34765 IVc FvbHLH110 XM_004309546 1181 166 18402 9.1 Un 56243.60570 X FvbHLH111 XM_011459272 3679 780 85359.2	FybHLH103	XM_004307626	1299	261	28984	9.04	LG7	18389468 18391089	Vh	
FvbHLH101 FvbHLH103 FvbHLH113 FvbHLH113 FvbHLH113 FvbHLH113 FvbHLH113 FvbHLH113 FvbHLH113 FvbHLH113 FvbHLH112 FvbHLH113 FvbHLH113 <t< td=""><td>FybHI H104</td><td>XM_004309112</td><td>1767</td><td>366</td><td>40022.1</td><td>5 39</td><td>LG7</td><td>21789731 21792322</td><td>Ia</td></t<>	FybHI H104	XM_004309112	1767	366	40022.1	5 39	LG7	21789731 21792322	Ia	
FvbHLH105 XM_004300305 F403 2.54 20703.4 5.51 EG7 2505371.2505353 F0 FvbHLH106 XM_011472396 792 196 21478.6 9.61 LG7 23057596.23058575 Ib FvbHLH107 XM_004308087 1609 261 29145.2 9.42 LG7 23060616.23062531 Ib FvbHLH108 XM_004309700 2236 365 40673.8 7.06 Un 1788123082 Ib FvbHLH109 XM_004309608 1230 245 26615.1 5.83 Un 3233534765 IVc FvbHLH110 XM_004309546 1181 166 18402 9.1 Un 5624360570 X FvbHLH111 XM_011459272 3679 780 85359.2 5.24 Un 147469152520 XIII FvbHLH112 XM_011459212 949 175 19447.2 5.77 Un 17518081753619 XII FvbHLH113 XM_004310203 1028 115 Un	FybHLH105	XM_004308085	1469	254	28708.4	5.55	LG7	23053917 23055551	Ib	
FvbHLH107 XM_004308087 1609 261 29145.2 9.42 LG7 23060616.23062531 Ib FvbHLH107 XM_004309700 2236 365 40673.8 7.06 Un 17881.23082 Ib FvbHLH108 XM_004309700 2236 365 40673.8 7.06 Un 17881.23082 Ib FvbHLH109 XM_004309608 1230 245 26615.1 5.83 Un 32335.34765 IVc FvbHLH110 XM_004309546 1181 166 18402 9.1 Un 56243.60570 X FvbHLH111 XM_011459272 3679 780 85359.2 5.24 Un 147469.152520 XIII FvbHLH112 XM_011459212 949 175 19447.2 5.77 Un 1751808.1753619 XII FvbHLH113 XM_004310903 1028 121 10232.6 11.5 Un 1066155 107105 XV	FybHI H106	XM 011472396	792	196	21478.6	9.61	LG7	23057596 23058575	Ib	
FvbHLH10 XM_004309700 2236 365 40673.8 7.06 Un 1788123082 Ib FvbHLH109 XM_004309608 1230 245 26615.1 5.83 Un 3235534765 IVc FvbHLH110 XM_004309546 1181 166 18402 9.1 Un 5624360570 X FvbHLH111 XM_011459272 3679 780 85359.2 5.24 Un 147469152520 XIII FvbHLH112 XM_011459212 949 175 19447.2 5.77 Un 17518081753619 XII FvbHLH113 XM_004310933 1038 171 10232.6 11.5 Un 1066155.105710 XV	FybHI H107	XM 004308087	1609	261	29145.2	9.01	LG7	23060616 23062531	Ib	
FvbHLH109 XM_004309608 1230 245 26615.1 5.83 Un 32335.34765 IVc FvbHLH110 XM_004309608 1230 245 26615.1 5.83 Un 32335.34765 IVc FvbHLH110 XM_004309546 1181 166 18402 9.1 Un 5624360570 X FvbHLH111 XM_011459272 3679 780 85359.2 5.24 Un 147469152520 XIII FvbHLH112 XM_011459212 949 175 19447.2 5.77 Un 1751808.1753619 XII FvbHLH113 XM_004310903 1038 171 10320.6 11.5 Un 1066158.1057105 XV	FybHI H109	XM_004300700	2236	365	40673.8	7.44	LG/	17881 23082	Ib	
FV01L1107 XM_004309506 1250 243 20015.1 5.85 UI 5255.34/05 IVC FvbHLH110 XM_004309546 1181 166 18402 9.1 Un 56243.60570 X FvbHLH111 XM_011459272 3679 780 85359.2 5.24 Un 147469.152520 XIII FvbHLH112 XM_011459212 949 175 19447.2 5.77 Un 1751808.1753619 XII FvbHLH113 XM_004310303 1038 171 10230.6 11.5 Un 1066158 107105 XV	EvbHI U100	XM 004200200	1230	245	26615 1	5.00	Un	37335 24765	IVc	
FvbHLH110 XM_004302030 1101 100 10402 5.1 011 50243.00070 X FvbHLH111 XM_011459272 3679 780 85359.2 5.24 Un 147469152520 XIII FvbHLH112 XM_011459212 949 175 19447.2 5.77 Un 1751808.1753619 XII FvbHLH113 XM_004310203 1028 171 10220.6 115 Up 1066158 1057105 XV	FybHI H110	XM 004309544	1181	166	18402	9.05	Un	56243 60570	X	
FVbHLH111 XM_0114392/2 30/7 700 03339.2 5.24 011 14/409152520 XIII FvbHLH112 XM_011459212 949 175 19447.2 5.77 Un 17518081753619 XII FvbHLH113 XM_004310203 1028 171 10220.4 11.5 Up 1066159 1027105 VV	EvbHI U111	XM 011450272	3670	780	85350.2	5.24	Un	147469 152520	A VIII	
IVUILIIII2 AWI_011437212 747 1/3 1744/.2 5.// UII 1/510001/35019 All EvbH1 H113 YM 00/310203 1028 171 10220.4 11.5 Us 1062159 1062159 VV	EvbHI U112	XM_011459212	010	175	10/17 2	5.24	Un	1751808 1752610	VII	
	FybHI H112	XM_004310202	1028	171	19329.6	11 5	Un	1966158 1967185	XV	

Table 1. Details of bHLH gene family for strawberry. Accession numbers are available in the National center forBiotechnology Information database. Mw, molecular weight; pI, isoelectric point.

In order to know sequence features of strawberry bHLH domains and further to understand FvbHLH gene's function, we performed multiple sequence alignment of amino acid sequences of the 113 strawberry bHLH (Figs 3; S1). It is revealed that there are four conserved regions for a bHLH domain, including one basic region,

two helix regions and one loop region. We find that residues of His-2, Glu-6, Arg-7, Arg-9, Arg-10, Leu-20, Leu-23, Leu-36, Leu-46, etc., in the bHLH domain are conserved, implying that the amino acid residues may play an important role in strawberry's evolution. In addition, we notice that the basic region of the bHLH domain can bind to DNA and it is critical to the gene biofunction⁴. It also has been known that both Glu-6 and Arg-9 in basic region of bHLH domain play important roles in the DNA binding^{4,9,13} and recognition of G-box and E-box (binding mode). As a result, we divided the FvbHLH binding into three modes: G-box (with the presence of His/Lys-2, Glu-6 and Arg-9), E-box (with the presence of Glu-6 and Arg-9) and non-E-box (without the simultaneous presence of Glu-6 and Arg-9) binding⁴². As is demonstrated in Fig. S1, FvbHLH proteins are divided into three types: 57 for the G-box-binding, 25 for the E-box-binding, 31 for the non-E-box-binding.

Gene structure and conserved motif analysis of *FvbHLH* **genes.** Gene structure and conserved motif analysis of *Arabidopsis* and strawberry bHLH were performed to acquire more information about gene families⁵. By scanning all aspects of gene structure and conserved motif, genes within each subfamily are discovered to contain a similar number of intron and conserved motif, while the number of them is strikingly different on genes from different subfamily (Figs S2; S3), in consistent with the previous bootstrap analysis⁴³⁻⁴⁵. For instance, each gene from III(d + e) subfamily contains one exon except for *FvbHLH97* and *AtbHLH14* genes. In sharp contrast to this, 77.8% of *bHLH* genes from Ia subfamily contain three exons and two introns.

It has been pointed out that part of motifs, acting as activation domain, are important for the interaction with other modules of the transcription complex, and are the targets of signal transduction chains^{5,10}. It might be inspiring to see how the motif structure is related to the gene classification. Thus, we searched 24 conserved motifs by MEME (Multiple Expectation Maximization for Motif Elicitation) program to obtain their distributions on bHLH sequences (Figs S2; S3). As is shown in Fig. S2, the bHLH proteins identified from the same subfamily share similar conserved motif. For example, motif 21 is exclusively located in all members from the XIII subfamily, whereas all bHLH sequences from IVc subfamily contain motif 1, motif 2, motif 10 and motif 15 at the C-terminal region. As bHLH is composed of motif 1 and motif 2, both of which are consistently identified in all strawberry and *Arabidopsis* bHLH proteins (Figs S2; S3). Hence, the classification of 26 subfamilies is thus further supported by the gene structure and motif analysis.

Transcript patterns of *FabHLH* genes among different tissues in three cultivated strawberry varieties. To reveal FabHLH genes (*F. ananassa* bHLH)' role in regulating strawberry's development, we focus on their temporal and spatial transcript patterns from eight different organs/tissues for three cultivated strawberry varieties ('Benihoppe', 'Xiaobai', and 'Snow white') under standard growth conditions (Figs 4A; 5A). We observe from the Fig. 5A that 78 *bHLH* genes are highly transcripted in certain tissues and their transcript patterns are similar to each other. For example, the *FabHLH31* and *FabHLH32* from IIIb subfamily are only transcript in anthotaxy for the two varieties ('Benihoppe' and 'Snowwhite'); the *FabHLH6* and *FabHLH49* show similar transcript mode in all tissues for the three varieties ('Benihoppe', 'Xiaobai', and 'Snowwhite'). However, some *bHLH* genes show observable different transcript behavior for the three varieties. For instance, *FabHLH5* carries on the same transcript pattern with certain degree of expression in tissues from 'Benihoppe' and 'Xiaobai', while it is barely expressed in 'Snow Princess', resulting into a considerable deviation from the transcript pattern for the other two. Specially, expression mode of *FabHLH18* differs for all the three varieties: highly transcripted in all tissues from 'Xiaobai', highly transcripted in some tissues from 'Benihoppe', lowly expressed in all tissues from 'Snow Princess'.

Transcript patterns of *FabHLH* **genes during the fruit development and ripening for the white-flesh mutant strawberry.** In order to identify bHLH genes involved in the color formation of strawberry fruit, three cultivated strawberry varieties were used in this study: Benihoppe, Xiaobai and Snow Princess. Colors of both the fruit flesh and skin of 'Benihoppe' are red. As the mutant of 'Benihoppe', 'Xiaobai' carries on the white or yellow color for its flesh with its fruit skin red or pink³¹. White is found for the color of 'Snow Princess' fruit flesh and skin (Fig. 4A). Additionally, strawberry fruit development and ripening are divided into seven stages: S1 small green fruit, S2 middle green fruit, S3 large green fruit, S4 white fruit, S5 initial red, S6 partial red, S7 full red (Fig. 4B). Because of the strong correlation between the gene expression pattern with its function, transcript patterns of 113 *FabHLH* genes for the color formation during the fruit development and ripening stages for the three varieties are tracked and summarized in Fig. 5B, in which the synthesis of anthocyanin is recorded from the turning stage to the red stage²⁸. To examine the transcript of *FvbHLH* genes involved in the anthocyanin bio-synthesis, both the RT-PCR (semi-quantitative reverse-transcription PCR) and qRT-PCR (quantitative RT-PCR) techniques are adopted to analyze genes' expression level.

Figure 5B reveals that the number of up-regulated expression of *FabHLH* genes from 'Benihoppe' is 71 during the fruit ripening and this number from the 'Snow Princess' and 'Xiaobai' continuously falls down to 45 and 24, respectively. Depending on the consistency between the expression level of the up-regulated genes and anthocyanin content (Fig. 4B), 7 *FabHLH* genes are chosen out of the 113 genes to further investigate the possible expression patterns of bHLHs involved in the anthocyanin biosynthesis (Fig. 5): *FabHLH17, FabHLH25, FabHLH27, FabHLH29, FabHLH40, FabHLH80, FabHLH98*. In the following will be reported three relevant gene expression patterns: First, we will focus on the *FabHLH25*. Its expression is significantly up-regulated during all stages for 'Benihoppe' fruit, in accordance with its color of fruit skin and flesh, indicating that *FabHLH25* promotes the anthocyanin biosynthesis for 'Benihoppe'; for 'Xiaobai' fruit, it is up-regulated at S2 stage and subsequently down-regulated at S5 stage, in discordance with the color of fruit skin while coinciding with the color of fruit flesh, suggesting that *FabHLH25* is not relevant to the anthocyanin biosynthesis for 'Xiaobai'; however, the expression of *FabHLH25* is always down-regulated in the whole life for 'Snow Princess' fruit, agreeing well

Figure 1. Chromosomal distributions of *FvbHLH* genes. The name on the side of each chromosome corresponds to the approximate location of each bHLH gene.

Figure 2. Phylogenetic tree constructed from the neighbor-joining method using the bHLH transcription factor domain for strawberry. Genes marked by the red asterisk indicates the seven candidates of FvbHLH involved in the anthocyanin biosynthesis.

Figure 3. The characterization and distribution of bHLH domains. The top: sequence logo of the FvbHLH domain by MEME. The bottom: distribution of amino acids in the bHLH consensus motif among strawberry. Asterisk symbol corresponds to each column above, which stands for the percentage of presence of amino acids at each site and the color of the asterisk symbol corresponds bHLH regions from the top insert. The analysis of the amino acids composition at each site marked by the asterisk indicates that the conservation of conserved amino acids is over 50%.

Figure 4. Materials of strawberry used in this study. (**A**) The fruit of 'Benihoppe', 'Xiaobai', and 'Snow Princess'. (**B**) Seven fruit development and ripening stages of 'Benihoppe', 'Xiaobai', and 'Snow Princess'. *Bar* = 1 cm.

Figure 5. Transcript accumulation profiles of 113 *FabHLH* genes from different tissues and seven fruit development and ripening stages using semi-quantitative PCR for the three cultivated strawberry varieties. (**A**) Lanes: R, roots; YL, young leaves; ML, mature leaves; RN, runners; RT, runner tips; RTL, runner with tips and one leaf; A, anthotaxy; F, flowers. (**B**) Lanes: S1, small green fruit; S2, middle green fruit; S3, large green fruit; S4, white fruit; S5, initial red; S6, partial red; S7, full red. *FvActin, FvRib413* and *FvGAPDH2* were used as an internal control.

with the color of fruit skin and flesh, implying that *FabHLH25* is barely related to the anthocyanin biosynthesis for 'Snow Princess'. As a consequence, expression level of *FabHLH25* shows significant difference between 'Benihoppe' and 'Xiaobai', and no observable difference between 'Xiaobai' and 'Snow Princess' is found from S4 to S7. This result implies that the *FabHLH25* might be involved in the anthocyanin biosynthesis for the fruit

flesh. Second, we will turn to FabHLH27 gene. Its expression is up-regulated during the overall stages for both the 'Benihoppe' and 'Xiaobai' fruits. This mode coincide with the color of fruit skin for 'Benihoppe' and 'Xiaobai' and the color of fruit flesh for 'Benihoppe', and is inconsistent with the color of fruit flesh for 'Xiaobai'. The consistency here indicates that FabHLH27 promotes the anthocyanin biosynthesis for both the 'Benihoppe' and 'Xiaobai'. Nevertheless, FabHLH27 gene's expression is always down-regulated for 'Snow Princess' fruit, in perfect agreement with the color of fruit skin and flesh for 'Snow Princess', implying that FabHLH27 is not in charge of the anthocyanin biosynthesis for 'Snow Princess'. In brief, expression level of FabHLH27 shows significant difference among 'Benihoppe', 'Xiaobai' and 'Snow Princess' from S4 to S7. This feature signifies that the FabHLH27 could promote the anthocyanin biosynthesis for the fruit skin. Third, we will cast our eyes on the FabHLH80 gene. Its expression is constantly down-regulated for 'Benihoppe' fruit, in good accordance with the color of fruit skin and flesh for 'Benihoppe', suggesting that FabHLH80 is not involved in the anthocyanin biosynthesis for 'Benihoppe'. FabHLH80 gene's expression is up-regulated at S2 stage and subsequently down-regulated at S5 stage for 'Xiaobai' fruit, going inversely with the color of fruit skin and flesh for 'Xiaobai', indicating that FabHLH80 does not promote the anthocyanin biosynthesis for 'Xiaobai'; nevertheless, FabHLH80 becomes down-regulated at S2 stage and up-regulated at S4 stage for 'Snow Princess' fruit, in good accordance with the color of fruit skin and flesh for 'Snow Princess', implying that FabHLH80 does not promote the anthocyanin biosynthesis for 'Snow Princess' either. As a short summarize, expression level of FabHLH80 shows significant difference from S4 to S7 for three varieties. Such a mode leads us to the conclusion that the *FabHLH80* may inhibit the anthocyanin biosynthesis. Based on those observations and our more extensive data on expression patterns of the 7 previously selected bHLH genes, it is shown that they are indeed related to the anthocyanin biosynthesis.

Transcript patterns of the FabHLHs genes' response to hormone treatment. Regarding to the fact that both ABA and Eth are critical plant hormone involved in the plant response to abiotic stress at the fruit ripening^{9,46,47}, we further investigated responding transcript patterns of 113 FabHLH genes for the three varieties under the treatment of either ABA or Eth (Figs 6; 7; S4; S5). With the implement of ABA, numbers of responsive FabHLH genes from 'Benihoppe', 'Xiaobai' and 'Snow Princess' are 62, 47, and 43, respectively, in which 35 shared genes are founded for all the three. In parallel, numbers of responsive FabHLH genes from 'Benihoppe', 'Xiaobai' and 'Snow Princess' under the exposure to Eth are 67, 75 and 57, respectively, with a shared number of 34 for the three. For the two treatments, 25 genes are discovered to be simultaneously responsive for the three varieties. For example, the expression level of FabHLH29 from IIIf subfamily strikingly increases at the initial stage (0.5 hpt (hour post treatment) to 2 hpt) and maintains a high value afterwards in response to ABA treatment for 'Xiaobai' and 'Snow Princess', while it decreases thoroughly under the ABA treatment for 'Benihoppe'. When subjected to the Eth, FabHLH29 expresses highly for 'Benihoppe' and keeps relatively low yet higher than the control for both 'Xiaobai' and 'Snow Princess'. In addition, expression level of FabHLH98 from IIIf subfamily is invariably high for the three varieties under both treatments compared with the control: the increase of it is significantly induced at early stages (0.5 hpt to 2 hpt), and it reaches the peak at later stages (4 hpt to 9 hpt) in response to the ABA treatment for 'Benihoppe' and 'Xiaobai'. However, it is induced and starts to reach its maximum from 6 hpt to 9 hpt in response to ABA treatment for 'Snow Princess'; under the treatment of Eth, FabHLH98 's expression is induced and begins to reach the peak at later stages (4 hpt to 12 hpt) for the three varieties. Besides, bHLH genes from III(d + e) subfamily are realized to be responsive to both treatments for the three varieties as well. This finding demonstrates that subfamilies of III(d + e) and IIIf might be involved in the fruit ripening and plant response to abiotic stress.

Network interaction analysis of FabHLHs response to anthocyanin biosynthesis and hormone **stress.** The above results argue that 7 *FabHLH* genes are highly possible to be involved in the anthocyanin biosynthesis and hormone response pathway for strawberry as a result of the interaction between bHLH and other proteins. Network interaction analysis has been recently demonstrated to be a powerful method to study the gene function. Online software of STRING 10 is used to reconstruct the interaction network of the 7 FvbHLH based on the orthologous gene of Arabidopsis. Only 4 bHLHs (FvbHLH25, FvbHLH29, FvbHLH80, and FvbHLH98) are proved to be able to predict the interacting proteins (Fig. 8; Table S2). According to the database of STRING 10, they are involved in the control of flavonoid pigmentation, epidermal cell fate specification and regulation of ABA-inducible genes under drought stress conditions. As is shown in Fig. 8; Table S2, FvbHLH25 (homologous to AT4G1640 for Arabidopsis) can be associated with MYB113, which could combine with several bHLH proteins in the anthocyanin biosynthesis⁴⁸. Besides, FvbHLH25 also interacts with JAZ5 (JASMONATE ZIM-Domain 5) and JAZ6, which are the repressor of jasmonate response. FvbHLH29 (homologous to TT8 for Arabidopsis) can interact with MYB75, which promotes the synthesis of anthocyanin biosynthesis by activating the expression of DFR (dihydroflavonol-4-reductase) such that it is eventually involved in the control of flavonoid pigmentation. Moreover, FvbHLH80 (homologous to MYC2 for Arabidopsis) could react with MYB2 in the regulation of ABA-induced genes under drought stress conditions, as well as with MYC3 and MYC4 in the control of subsets of JA-dependent responses. In addition, FvbHLH98 (homologous to EGL3 for Arabidopsis) participates in the anthocyanin accumulation in Arabidopsis^{1,48,49} and tomato²¹. These results show that 4 FvbHLHs are involved in the fruit ripening and hormone response pathway^{25,34,38,47,50}.

Discussion

With the functionality being the transcription, bHLH family are involved in the regulatory process of fruit ripening, hormone signaling and abiotic stress¹². In the past few decades, features and functions of the bHLH gene family have been identified and investigated for several plant species^{3,8,12}. Though as one of the most important horticultural crops grown worldwide providing ingredient for processed foods like jams and juices, strawberry has been barely studied for its bHLH family, who participates in the anthocyanin biosynthesis in the fruit

Figure 6. Transcript accumulation patterns of 113 bHLH genes for the three strawberry varieties under hormone stress (ABA and Eth). *FvActin, FvRib413* and *FvGAPDH2* were used as an internal control. The transcript accumulation profiles were generated by semi-quantitative PCR and were visualized as heat maps. The color scale represents the relative transcript level with increased (red) and decreased (green) transcript abundance. The FvbHLH genes marked by red asterisk indicate their candidacy in the anthocyanin biosynthesis.

ripening. Very few bHLHs have been investigated for the strawberry, such as *FabHLH3*³⁸, *FaSPT* (spatula)⁴⁰ and *FvbHLH33*³⁹. In the present study, we first identified a total of 113 bHLH genes based on the *F. vesca* genome (Table 1 and Fig. 1), and further implemented their bioinformation analysis (Figs 2; 3; S2) followed by the expression pattern classification during the fruit ripening under hormone treatments for three varieties (Figs 5; 6; 7).

With the rapid development of bioinformation analysis, the information stored in various genomes can be decoded to elucidate mechanisms that regulate fruit ripening and response to abiotic stress⁴. We firstly identified 113 unique bHLH proteins using the conserved motif of bHLH by filtering candidate genes according to the criteria described by Sun *et al.*³. Next, based on the phylogenetic analysis of FvbHLH, the selected FvbHLHs were classified into 26 subfamilies (Fig. 3) with the methodology similar to the classification of *Arabidopsis* (26 subfamilies), tomato (26 subfamilies) and Chinese cabbage (26 subfamilies)^{2–4,13}. Moreover, the analysis of motif and gene structure is performed to gain evidence to support phylogenetic relationship for gene families.

Most bHLH proteins identified so far are mostly functionally characterized for *Arabidopsis* and tomato, with the revealing of their effects on the regulation of plant development, fruit ripening, anthocyanin biosynthesis and hormone signaling responses^{6,16}. Those results prove that transcript pattern of a gene is closely related to its function, based on which we designed to examine the expression patterns of 113 *FvbHLH* genes from tissues, at fruit ripening stage, as well as those under the treatment of hormone (Figs 5; 6; 7). We discover that the expression patterns for the 78 out of the 113 genes from various tissues for the three varieties are similar to each other. To

Figure 7. qRT-PCR transcription analysis of seven selected FabHLH genes during fruit development and ripening stages, and them under either ABA or Eth treatment for the three strawberry varieties. *FvRib413* is used as an internal control. The experiments were repeated three times and gave consistent results. The mean values and SDs were obtained from three biological and technical replicates. Different letters indicate the statistical difference among samples at P \leq 0.01 and P \leq 0.05 (fruit development and ripening), and P \leq 0.01 (ABA and Eth treatments) according to Duncan's multiple range test.

.....

comprehensively understand the role of bHLH genes on the anthocyanin biosynthesis, RT-PCR and qRT-PCR analyses for the three varieties with different fruit flesh and skin colors were performed (Figs 4; 5B; 6; 7). 7 *FabHLHs* are found to be highly responsive for the anthocyanin biosynthesis depending on their different expression levels: *FabHLH17*, *FabHLH25*, *FabHLH27*, *FabHLH29*, *FabHLH40*, *FabHLH80*, *FabHLH98*. For example, the expression level of *FabHLH27* is high for both 'Benihoppe' and 'Xiaobai' (red or pink skin) at the later stages (S5 \rightarrow S7), while it stays low for 'Snow Princess' (white skin) at the similar stage S5. This implies that this gene is involved in the anthocyanin biosynthesis of fruit skin.

Figure 8. Interaction network analysis of bHLH proteins identified for strawberry and related genes for *Arabidopsis.* Line thickness is related to the combined score (FvbHLH25 score >0.7, the others score >0.9). The homologous genes of strawberry are in red.

It has been reported that IIIf subfamily matters for the fruit color formation. Hereby, we focus on the 2 out of the 7 candidate FabHLHs that fall into the IIIf subfamily: FabHLH29 and FabHLH98. We found that FabHLH29 is relevant to the anthocyanin biosynthesis according to its expression pattern during the fruit ripening for the three varieties. Besides, gene sequence of FabHLH29 is highly similar to that of AtTT8 (AtbHLH42), which has been reported to be involved in anthocyanin biosynthesis^{1,6,15}. Moreover, the FabHLH29 also is responsive to both the ABA and Eth treatments, thought with certain difference (down-regulated for 'Benihoppe' under ABA treatment, up-regulated for rest cases), for the three varieties. More evidence for the involvement FabHLH29 in the anthocyanin biosynthesis comes from the interaction network. Proteins (F3H (Flavanone 3-hydyroxylase), DFR, TTG1 and MYB), located in the pathway of anthocyanin biosynthesis, are predicated to interact with FabHLH29 (AtTT8) (Fig. 8). Researchers have realized that the TT8 from subfamily IIIf is active in regulating the synthesis of anthocyanin and proanthocyanidin for Arabidopsis^{1,6,50,51} by forming a stabilized MBW complex with TT2 and TTG1, and it is involved in the anthocyanin biosynthesis for rice as well²². We also find that the expression pattern of FabHLH98 (homologous to EGL3) shows no significant difference during the fruit ripening for 'Benihoppe', 'Xiaobai', and 'Snow Princess', which denies the participation of FabHLH98 in the anthocyanin biosynthesis. However, FabHLH98 is responsive to the abiotic stress with the implement of ABA and Eth, which seems to suggest its involvement in the fruit ripening. What's more, analysis of interaction network of FabHLH98 demonstrates that it also plays a role in the activation of anthocyanin biosynthesis, possibly with MYB75/PAP1, inconsistent with previous results from the analysis of expression pattern during the fruit ripening in this study, yet in good agreement with the precursor reports^{1,6,27}. In brief, expression pattern analysis under hormone treatments fits well with results from the interaction network investigation for the three varieties. However, both are inconsistent with expression pattern results during the fruit ripening. Consequently, FabHLH98 is selected as the candidate gene for the study of anthocyanin biosynthesis and a further study on its precise role is still in demand.

Previous papers inform that genes from bHLH subfamily III(d + e) take part in JA signal pathway, resulting into the regulation of plant defense during developmental process for *Arabidopsis*^{23,25,26} and the promotion of anthocyanin biosynthesis^{24,27} for apple. Moreover, the function of bHLH subfamily IIId, including bHLH3, can negatively regulate JA-mediated plant defence and development¹³, while the function of bHLH subfamily IIIe can activate JA-induced leaf senescence²⁵. In addition, as a repressor in the JA signaling pathway, MdJAZ can be phosphorylated by MdSnRK1.1 (Snf1-Related protein Kinases) to facilitate its 26S proteasome-mediated degradation, releasing MdbHLH3 which will bind to promoters of the anthocyanin biosynthesis genes *MdDFR* and *MdUFGT*, thus finally promotes the biosynthesis of anthocyanin and proanthocyanidin^{24,27}. In our experiments, we find that *FabHLH25* from III(d + e) subfamily might be correlated with the anthocyanin biosynthesis of fruit flesh (Figs 5B, 7) from the analysis of the expression pattern for the three varieties during their ripening. Moreover, the FabHLH25 (homologous to AT4G16430, FabHLH3 and MdbHLH3) protein strongly interact with MYB113, JAZ5 and JAZ6 proteins (Fig. 8) according to results from interaction network analysis, in consistent with the known knowledge that FabHLH25 is able to interact with MYB and form the MBW complex to regulate the expression of genes involved in the proanthocyanidin biosynthesis³⁸. What's more, it has been mentioned that MdMYC2 positively regulates anthocyanin biosynthesis by modulating the expression of positive regulators in JA signaling (MdMYB1, MdbHLH3, MdbHLH33) for the apple⁵². From our observation, the transcript pattern and interaction network analysis evidence that the *FabHLH80* (homologous to MYC2) from III(d + e) subfamily might also be present in the anthocyanin biosynthesis. Therefore, our research hereby paves the way for further studies and understandings of bHLH genes function in the fruit ripening and anthocyanin biosynthesis for strawberry.

In conclusion, the first comprehensive and systematic analysis of strawberry bHLH transcription factors is performed. First, 113 bHLH transcription factors from the entire strawberry genomes are identified as candidate genes responsible for the anthocyanin biosynthesis and further renamed based on their chromosome distribution. Next, the selected genes are divided to 26 subfamilies according to phylogenetic analyses, gene structures and protein motifs. Third, expression patterns of 113 *FabHLHs* obtained during fruit development and ripening, as well as those under either the ABA or Eth treatment, suggest that seven *FabHLHs* (*FabHLH17, FabHLH25, FabHLH27, FabHLH29, FabHLH40, FabHLH80, FabHLH98*) are involved in the anthocyanin biosynthesis of strawberry fruit. Finally, results of interaction network analyses of the four *FabHLH* genes (*FabHLH25, FabHLH29, FabHLH98*), *FabHLH98*) reveal that bHLHs proteins might participate in the anthocyanin biosynthesis during the fruit ripening and in the hormone response pathway. This study will provide an insight into a further understanding of functions of bHLH members in the color formation for fruits.

Materials and Methods

Identification of bHLH transcription factors for strawberry. To identify bHLH transcription factors in the strawberry genome (*F. vesca*), we performed a search from the NCBI database (*F. vesca* (taxid:57918)) (https://www.ncbi.nlm.nih.gov/genome/3314). The published *Arabidopsis* and strawberry bHLH protein sequences were downloaded from the Plant Transcription Factor Database (http://planttfdb.cbi.pku.edu.cn/) and used as queries in BLAST-P searches with default parameters in NCBI database. To further validate all bHLH transcription factors, full-length amino acid sequences of the 166 putative candidates were verified using the CDD (https://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi), the hidden Markov model of SMART (http://smart.embl-heidelberg.de/smart/set_mode.cgi?NORMAL=1)^{53,54} and InterProScan program (http://www.ebi. ac.uk/inter-pro/search/sequence-search) to confirm their completeness and the presence of bHLH domain. Details about the bHLH sequences, such as length of amino acid sequences, theoretical molecular weights (Mw) and isoelectric point (pI), were obtained from ExPASy Proteomics server (http://web.expasy.org/compute_pi/).

Bioinformatic analysis of bHLH transcription factors for strawberry. Chromosomal localization data was retrieved from NCBI Map Viewer (https://www.arabidopsis.org/mapview/). Genes were mapped to the chromosomes using MapDraw. These genes were renamed from FvbHLH1 to FvbHLH113 according to their position, from the top to bottom, on the *F. vesca* chromosome^{8,41}. Multiple domain alignments of strawberry bHLH proteins and domains were performed using ClustalX 2.0.12 with default settings for obtained sequences of the FvbHLH domains, and alignment results were shown and drew by OriginPro 89. To compare the evolutionary relationship between Arabidopsis (AtbHLH) and strawberry (FvbHLH), we obtained the phylogenetic tree for bHLH proteins using MEGA5.1 with the neighbor-joining method and the following parameters: complete deletion, p-distance model and 1000 replicates of bootstrap method^{4,9}. 26 subfamilies were identified according to the clade support values, topology of the trees, branch lengths, visual inspection of the bHLH amino acid sequences and classification of strawberry^{2,4,10}. The online Gene Structure Display Server (GSDS 2.0, http://gsds.cbi.pku.edu.cn/) was used to investigate the exon-intron structure of the FvbHLH transcription factors based on each coding sequence (CDS) and corresponding genomic sequence. Conserved motifs in FvbHLH transcription factors were identified from the online MEME (http://meme-suite.org/tools/meme). The FvbHLH25, FvbHLH29, FvbHLH80 and FvbHLH98 protein sequences were employed as queries for the BLAST-P search in Arabidopsis Information Resource (TAIR, https://www.arabidopsis.org/) to obtain protein sequences of AT4G16430, AtTT8, AtMYC2 and AtEGL3, respectively. Specific interaction network with experimental evidences of AT4G16430, AtTT8, AtMYC2 and AtEGL3 was constructed using online STRING 10 (http://string-db.org/) with option value >0.700 or 0.900.

Plant materials, growth conditions and treatments. Three octoploid cultivated strawberry varieties (*F. ananassa* Duch. 'Benihoppe'; *F. ananassa* Duch. 'Xiaobai', the white-flesh mutant of 'Benihoppe'; *F. ananassa* 'Snow Princess' with white fruit skin and flesh.) were used in this study (Fig. 4A). Plantlets of the three varieties were grown in the strawberry germplasm resource greenhouse of Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, Henan, China (Fig. 4A). Strawberry plantlets were transplanted into a plastic pot (diameter: 17 cm, height: 15 cm) containing soil mix (perlite: peat, 1: 4, v/v) and grown in greenhouse with temperatures ranging from 8 °C to 28 °C, relative humidity ranging from 55% to 70%, and without supplemental lighting.

To analyze transcript patterns of bHLH transcription factors, strawberry organs/tissues (roots, young leaves, mature leaves, runners, runner tips, runner with tips and one leaf, anthotaxy, flowers, small green fruit, middle green fruit, large green fruit, white fruit, initial red fruit, partial red fruit, full red fruit) were obtained from different developmental stages. Various vegetative and reproductive tissues were collected and stored at -80 °C for tissue-specific experiments. To analyze the expression level of bHLH transcription factors to different hormones, strawberry plantlets at the stage of the sixth leaf fully expanded were sprayed with ABA at 0.1 mM, Eth at 0.5 g/L, and water, respectively. Leaf samples were collected for RNA extraction at 0, 0.5, 1, 2, 4, 6, 9 and 12 hpt. Leaves with water treatment at 0 hpt were used as control. Each time for each treatment, one leaf from each of the three separate plants, thus three leaves in total, was picked up to conduct one analysis, and all treatments were performed thrice independently.

RNA preparation, semi-quantitative reverse-transcription PCR and quantitative real-time PCR Analysis. Each RNA was extracted from tissue samples using the E.Z.N.A Plant RNA Kit (Omega, China) according to the manufacturers' instruction. RNA concentration and quality were measured by the NanoDrop 1000 (Thermo, USA). The first-strand cDNA was synthesized using the PrimerScriptTM RT reagent Kit with gDNA Eraser (TaKaRa, China) according to the manufacturers' instruction. The concentration of cDNA was adjusted based on the strawberry housekeeping genes *FvActin*, *FvRib413* and *FvGAPDH2*^{44,46}. The primers used in this study were designed by the Vector NTI software (Table S1) without any interference with the conserved region, and were amplified the product to a length of of 150 bp to 300 bp. RT-PCR reactions were performed using $2 \times Taq$ Mix (Beijing, China) with the following parameters: annealing temperature between 53 °C and 57 °C with 32–34 cycles. The PCR products were placed on the 1% (w/v) agarose gel with GelStain (10000×) (Tiangen, China) staining and further imaged under the AlphaView SA software. Each reaction was repeated three times. The expression data from the RT-PCR were acquired, analyzed, and visualized using the software AlphaView SA and Mev 4.8.1^{43–45}. qRT-PCR was performed according to Wei *et al.*⁴⁶. The primers were listed in the Supplemental Table S1.

Statistical analysis. Statistical analysis was performed by the Duncan's multiple range test module in the SPSS Statistics 17.0 software. Each experiment was independently repeated at least three times. Mean values \pm standard deviation of the mean (SD) were presented (Fig. 7), and least significant differences were calculated at the 5% or 1% level of probability.

References

- 1. Hichri, I. *et al.* Recent advances in the transcriptional regulation of the flavonoid biosynthetic pathway. *J Exp Bot* **62**, 2465–2483, https://doi.org/10.1093/jxb/erq442 (2011).
- 2. Pires, N. & Dolan, L. Origin and Diversification of Basic-Helix-Loop-Helix Proteins in Plants. Mol Biol Evol 27, 862–874 (2010).
- 3. Sun, H., Fan, H. J. & Ling, H. Q. Genome-wide identification and characterization of the bHLH gene family in tomato. Bmc Genomics 16 (2015).
- Wang, J. Y. et al. Genome-wide analysis of bHLH transcription factor and involvement in the infection by yellow leaf curl virus in tomato (Solanum lycopersicum). Bmc Genomics 16 (2015).
- Heim, M. A. et al. The basic helix-loop-helix transcription factor family in plants: A genome-wide study of protein structure and functional diversity. Mol Biol Evol 20, 735–747 (2003).
- 6. Feller, A., Machemer, K., Braun, E. L. & Grotewold, E. Evolutionary and comparative analysis of MYB and bHLH plant transcription factors. *Plant J* 66, 94–116 (2011).
- Kavas, M. et al. Genome-wide characterization and expression analysis of common bean bHLH transcription factors in response to excess salt concentration. *Mol Genet Genomics* 291, 129–143 (2016).
- 8. Mao, K., Dong, Q. L., Li, C., Liu, C. H. & Ma, F. W. Genome Wide Identification and Characterization of Apple bHLH Transcription Factors and Expression Analysis in Response to Drought and Salt Stress. *Front Plant Sci* 8 (2017).
- 9. Li, X. X. *et al.* Genome-wide analysis of basic/helix-loop-helix transcription factor family in rice and *Arabidopsis. Plant physiology* **141**, 1167–1184 (2006).
- Toledo-Ortiz, G., Huq, E. & Quail, P. H. The Arabidopsis basic/helix-loop-helix transcription factor family. Plant Cell 15, 1749–1770, https://doi.org/10.1105/tpc.013839 (2003).
- 11. Ledent, V. & Vervoort, M. The basic helix-loop-helix protein family: Comparative genomics and phylogenetic analysis. *Genome Res* 11, 754–770 (2001).
- Carretero-Paulet, L. et al. Genome-Wide Classification and Evolutionary Analysis of the bHLH Family of Transcription Factors in Arabidopsis, Poplar, Rice, Moss, and Algae. Plant physiology 153, 1398–1412 (2010).
- Song, X. M. et al. Genome-wide analysis of the bHLH transcription factor family in Chinese cabbage (Brassica rapa ssp pekinensis). Mol Genet Genomics 289, 77–91 (2014).
- 14. Yan, Q. et al. The Basic/Helix-Loop-Helix Protein Family in Gossypium: Reference Genes and Their Evolution during Tetraploidization. Plos One 10 (2015).
- Gonzalez, A., Zhao, M., Leavitt, J. M. & Lloyd, A. M. Regulation of the anthocyanin biosynthetic pathway by the TTG1/bHLH/Myb transcriptional complex in Arabidopsis seedlings. Plant J 53, 814–827 (2008).
- Goossens, J., Mertens, J. & Goossens, A. Role and functioning of bHLH transcription factors in jasmonate signalling. J Exp Bot 68, 1333–1347 (2017).
- Takahashi, Y., Ebisu, Y. & Shimazaki, K. Reconstitution of Abscisic Acid Signaling from the Receptor to DNA via bHLH Transcription Factors. *Plant physiology* 174, 815–822 (2017).
- Sorensen, A. M. et al. The Arabidopsis ABORTED MICROSPORES (AMS) gene encodes a MYC class transcription factor. Plant J 33, 413–423 (2003).
- 19. Nemesio-Gorriz, M. *et al*. Identification of Norway Spruce MYB-bHLH-WDR Transcription Factor Complex Members Linked to Regulation of the Flavonoid Pathway. *Front Plant Sci* 8 (2017).
- Salvatierra, A., Pimentel, P., Moya-Leon, M. A. & Herrera, R. Increased accumulation of anthocyanins in *Fragaria chiloensis* fruits by transient suppression of FcMYB1 gene. *Phytochemistry* 90, 25–36 (2013).
- Tominaga-Wada, R. *et al.* Expression and protein localization analyses of *Arabidopsis* GLABRA3 (GL3) in tomato (*Solanum lycopersicum*) root epidermis. *Plant Biotechnol-Nar* 34, 115-+ (2017).
- Zhou, L. L., Shi, M. Z. & Xie, D. Y. Regulation of anthocyanin biosynthesis by nitrogen in TTG1-GL3/TT8-PAP1-programmed red cells of *Arabidopsis thaliana*. *Planta* 236, 825–837 (2012).
- Abe, H. et al. Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling. Plant Cell 15, 63–78, https://doi.org/10.1105/tpc.006130 (2003).
- 24. Liu, X. J. *et al.* MdSnRK1.1 interacts with MdJAZ18 to regulate sucrose-induced anthocyanin and proanthocyanidin accumulation in apple. *J Exp Bot* **68**, 2977–2990 (2017).
- Qi, T. C. et al. Regulation of Jasmonate-Induced Leaf Senescence by Antagonism between bHLH Subgroup IIIe and IIId Factors in Arabidopsis. Plant Cell 27, 1634–1649 (2015).
- 26. Song, S. S. *et al.* ThebHLH Subgroup IIId Factors Negatively Regulate Jasmonate-Mediated Plant Defense and Development. *Plos Genet* **9** (2013).
- 27. Xie, X. B. *et al.* The bHLH transcription factor MdbHLH3 promotes anthocyanin accumulation and fruit colouration in response to low temperature in apples. *Plant Cell Environ* **35**, 1884–1897 (2012).
- Carbone, F. et al. Developmental, genetic and environmental factors affect the expression of flavonoid genes, enzymes and metabolites in strawberry fruits*. Plant Cell Environ 32, 1117–1131 (2009).
- 29. Yang, J. et al. Identification and expression analysis of the apple (Malus x domestica) basic helix-loop-helix transcription factor family. Sci Rep 7, 28, https://doi.org/10.1038/s41598-017-00040-y (2017).

- 30. Darwish, O. et al. SGR: an online genomic resource for the woodland strawberry. Bmc Plant Biol 13 (2013).
- 31. Li, C. M. & Li, J. A new variety of strawberry -Xiaobai. Shanxi Fruits 157, 46 (2014).
- 32. Hawkins, C., Caruana, J., Schiksnis, E. & Liu, Z. Genome-scale DNA variant analysis and functional validation of a SNP underlying yellow fruit color in wild strawberry. *Sci Rep* 6, 29017, https://doi.org/10.1038/srep29017 (2016).
- 33. Chai, Y. M., Jia, H. F., Li, C. L., Dong, Q. H. & Shen, Y. Y. FaPYR1 is involved in strawberry fruit ripening. J Exp Bot 62, 5079-5089 (2011).
- 34. Jia, H. F. et al. Abscisic Acid Plays an Important Role in the Regulation of Strawberry Fruit Ripening. Plant physiology 157, 188–199 (2011).
- Jia, H. F. *et al.* Type 2C protein phosphatase ABI1 is a negative regulator of strawberry fruit ripening. *J Exp Bot* 64, 1677–1687 (2013).
 Zhang, Y. C. *et al.* Transcript Quantification by RNA-Seq Reveals Differentially Expressed Genes in the Red and Yellow Fruits of
- Fragaria vesca. Plos One 10 (2015).
 37. Kadomura-Ishikawa, Y., Miyawaki, K., Takahashi, A., Masuda, T. & Noji, S. Light and abscisic acid independently regulated FaMYB10 in Fragaria x ananassa fruit. Planta 241, 953–965 (2015).
- Schaart, J. G. et al. Identification and characterization of MYB-bHLH-WD40 regulatory complexes controlling proanthocyanidin biosynthesis in strawberry (*Fragaria x ananassa*) fruits. New Phytol 197, 454–467 (2013).
- 39. Lin-Wang, K. et al. Engineering the anthocyanin regulatory complex of strawberry (Fragaria vesca). Front Plant Sci 5 (2014).
- Tisza, V., Kovacs, L., Balogh, A., Heszky, L. & Kiss, E. Characterization of FaSPT, a SPATULA gene encoding a bHLH transcriptional factor from the non-climacteric strawberry fruit. Plant Physiol Bioch 48, 822–826, https://doi.org/10.1016/j.plaphy.2010.08.001 (2010).
- Ling, J. et al. Genome-wide analysis of WRKY gene family in *Cucumis sativus. Bmc Genomics* 12 (2011).
 Niu, X., Guan, Y., Chen, S. & Li, H. Genome-wide analysis of basic helix-loop-helix (bHLH) transcription factors in *Brachypodium distachyon. Bmc Genomics* 18, 619, https://doi.org/10.1186/s12864-017-4044-4 (2017).
- doi.org/10.1093/ixb/eru007 (2014).
- 44. Wei, W. et al. Bioinformatics identification and transcript profile analysis of the mitogen-activated protein kinase gene family in the diploid woodland strawberry Fragaria vesca. Plos One 12 (2017).
- Wei, W. et al. The WRKY transcription factors in the diploid woodland strawberry Fragaria vesca: Identification and expression analysis under biotic and abiotic stresses. Plant Physiol Bioch 105, 129–144 (2016).
- Wei, W. et al. Identification and Transcript Analysis of the TCP Transcription Factors in the Diploid Woodland Strawberry Fragaria vesca. Front Plant Sci 7 (2016).
- Kumar, R., Khurana, A. & Sharma, A. K. Role of plant hormones and their interplay in development and ripening of fleshy fruits. J Exp Bot 65, 4561–4575, https://doi.org/10.1093/jxb/eru277 (2014).
- Feyissa, D. N., Lovdal, T., Olsen, K. M., Slimestad, R. & Lillo, C. The endogenous GL3, but not EGL3, gene is necessary for anthocyanin accumulation as induced by nitrogen depletion in *Arabidopsis* rosette stage leaves. *Planta* 230, 747–754 (2009).
- Gao, C. H. et al. Genome-wide identification of GLABRA3 downstream genes for anthocyanin biosynthesis and trichome formation in Arabidopsis. Biochem Bioph Res Co 485, 360–365 (2017).
- 50. Baudry, A. *et al.* TT2, TT8 and TTG1 synergistically specify the expression of BANYULS and proanthocyanidin biosynthesis in *Arabidopsis thaliana. Plant J* **39**, 366–380 (2004).
- Baudry, A., Caboche, M. & Lepiniec, L. TT8 controls its own expression in a feedback regulation involving TTG1 and homologous MYB and bHLH factors, allowing a strong and cell-specific accumulation of flavonoids in *Arabidopsis thaliana*. *Plant J* 46, 768–779 (2006).
- An, J. P. et al. The molecular cloning and functional characterization of MdMYC2, a bHLH transcription factor in apple. Plant Physiol Bioch 108, 24–31 (2016).
- 53. Letunic, I., Doerks, T. & Bork, P. SMART: recent updates, new developments and status in 2015. *Nucleic acids research* 43, D257–D260 (2015).
- Schultz, J., Milpetz, F., Bork, P. & Ponting, C. P. SMART, a simple modular architecture research tool: Identification of signaling domains. P Natl Acad Sci USA 95, 5857–5864 (1998).

Acknowledgements

The authors would also like to thank proofreaders and editors for help on the manuscript. This research is supported by the Central Public-interest Scientific Institution Basal Research Fund (1610192016608, 1612382017204, 1610192017716), the Natural Science Foundation of Henan Province (162300410329) and the Agricultural Science and Technology Innovation Program (CAAS-ASTIP-2017-ZFRI). We thank Menghua Zhao and Aslam Ali for language editing of this manuscript.

Author Contributions

H.Z. conceived the research. F.Z. performed all treatments with the help of P.H., G.L., X.Z., L.L., and W.W. G.L. carried out partly hormone treatment experiments. P.H., X.Z. and L.L. prepared all plant materials. H.Z. and F.Z. analyzed and interpreted the data. F.Z. wrote the manuscript, and H.Z. and J.F. revised it. All authors read and approved the final manuscript.

Additional Information

Supplementary information accompanies this paper at https://doi.org/10.1038/s41598-018-21136-z.

Competing Interests: The authors declare no competing interests.

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2018